Hydrophobic Compounds Reshape Membrane Domains
Publication Date
October 09, 2014
Journal
PLOS Computational Biology
Authors
Jonathan Barnoud, Giulia Rossi, Siewert J. Marrink & Luca Monticelli
Volume
10
Issue
10
Pages
e1003873
DOI
http://doi.org/10.1371/journal.pcbi.1003873
Publisher URL
http://journals.plos.org/ploscompbiol/article?id=10.1371%2Fjournal.pcbi.1003873
PubMed
http://www.ncbi.nlm.nih.gov/pubmed/25299598
PubMed Central
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4191877
Europe PMC
http://europepmc.org/abstract/MED/25299598
Web of Science
000344547900027
Scopus
84908351275
Mendeley
http://www.mendeley.com/research/hydrophobic-compounds-reshape-membrane-domains
Events
Loading … Spinner

Mendeley | Further Information

{"title"=>"Hydrophobic Compounds Reshape Membrane Domains", "type"=>"journal", "authors"=>[{"first_name"=>"Jonathan", "last_name"=>"Barnoud", "scopus_author_id"=>"55345252100"}, {"first_name"=>"Giulia", "last_name"=>"Rossi", "scopus_author_id"=>"7402913633"}, {"first_name"=>"Siewert J.", "last_name"=>"Marrink", "scopus_author_id"=>"6701843021"}, {"first_name"=>"Luca", "last_name"=>"Monticelli", "scopus_author_id"=>"6701854539"}], "year"=>2014, "source"=>"PLoS Computational Biology", "identifiers"=>{"pui"=>"600311092", "isbn"=>"1553-7358 (Electronic)\\r1553-734X (Linking)", "pmid"=>"25299598", "doi"=>"10.1371/journal.pcbi.1003873", "sgr"=>"84908351275", "scopus"=>"2-s2.0-84908351275", "issn"=>"15537358"}, "id"=>"d7983d59-8d01-33cb-b7ec-6de02d5e02b2", "abstract"=>"Cell membranes have a complex lateral organization featuring domains with distinct composition, also known as rafts, which play an essential role in cellular processes such as signal transduction and protein trafficking. In vivo, perturbations of membrane domains (e.g., by drugs or lipophilic compounds) have major effects on the activity of raft-associated proteins and on signaling pathways, but they are difficult to characterize because of the small size of the domains, typically below optical resolution. Model membranes, instead, can show macroscopic phase separation between liquid-ordered and liquid-disordered domains, and they are often used to investigate the driving forces of membrane lateral organization. Studies in model membranes have shown that some lipophilic compounds perturb membrane domains, but it is not clear which chemical and physical properties determine domain perturbation. The mechanisms of domain stabilization and destabilization are also unknown. Here we describe the effect of six simple hydrophobic compounds on the lateral organization of phase-separated model membranes consisting of saturated and unsaturated phospholipids and cholesterol. Using molecular simulations, we identify two groups of molecules with distinct behavior: aliphatic compounds promote lipid mixing by distributing at the interface between liquid-ordered and liquid-disordered domains; aromatic compounds, instead, stabilize phase separation by partitioning into liquid-disordered domains and excluding cholesterol from the disordered domains. We predict that relatively small concentrations of hydrophobic species can have a broad impact on domain stability in model systems, which suggests possible mechanisms of action for hydrophobic compounds in vivo.", "link"=>"http://www.mendeley.com/research/hydrophobic-compounds-reshape-membrane-domains", "reader_count"=>52, "reader_count_by_academic_status"=>{"Professor > Associate Professor"=>1, "Student > Doctoral Student"=>5, "Researcher"=>17, "Student > Ph. D. Student"=>16, "Student > Master"=>2, "Student > Bachelor"=>5, "Professor"=>5, "Other"=>1}, "reader_count_by_user_role"=>{"Professor > Associate Professor"=>1, "Student > Doctoral Student"=>5, "Researcher"=>17, "Student > Ph. D. Student"=>16, "Student > Master"=>2, "Student > Bachelor"=>5, "Professor"=>5, "Other"=>1}, "reader_count_by_subject_area"=>{"Unspecified"=>4, "Biochemistry, Genetics and Molecular Biology"=>7, "Materials Science"=>1, "Agricultural and Biological Sciences"=>14, "Physics and Astronomy"=>9, "Chemical Engineering"=>1, "Chemistry"=>14, "Computer Science"=>2}, "reader_count_by_subdiscipline"=>{"Materials Science"=>{"Materials Science"=>1}, "Chemistry"=>{"Chemistry"=>14}, "Physics and Astronomy"=>{"Physics and Astronomy"=>9}, "Agricultural and Biological Sciences"=>{"Agricultural and Biological Sciences"=>14}, "Computer Science"=>{"Computer Science"=>2}, "Biochemistry, Genetics and Molecular Biology"=>{"Biochemistry, Genetics and Molecular Biology"=>7}, "Unspecified"=>{"Unspecified"=>4}, "Chemical Engineering"=>{"Chemical Engineering"=>1}}, "reader_count_by_country"=>{"Czech Republic"=>3, "Norway"=>1, "United States"=>1, "Brazil"=>2, "Germany"=>1, "Spain"=>1}, "group_count"=>2}

CrossRef

Scopus | Further Information

{"@_fa"=>"true", "link"=>[{"@_fa"=>"true", "@ref"=>"self", "@href"=>"https://api.elsevier.com/content/abstract/scopus_id/84908351275"}, {"@_fa"=>"true", "@ref"=>"author-affiliation", "@href"=>"https://api.elsevier.com/content/abstract/scopus_id/84908351275?field=author,affiliation"}, {"@_fa"=>"true", "@ref"=>"scopus", "@href"=>"https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=84908351275&origin=inward"}, {"@_fa"=>"true", "@ref"=>"scopus-citedby", "@href"=>"https://www.scopus.com/inward/citedby.uri?partnerID=HzOxMe3b&scp=84908351275&origin=inward"}], "prism:url"=>"https://api.elsevier.com/content/abstract/scopus_id/84908351275", "dc:identifier"=>"SCOPUS_ID:84908351275", "eid"=>"2-s2.0-84908351275", "dc:title"=>"Hydrophobic Compounds Reshape Membrane Domains", "dc:creator"=>"Barnoud J.", "prism:publicationName"=>"PLoS Computational Biology", "prism:issn"=>"1553734X", "prism:eIssn"=>"15537358", "prism:volume"=>"10", "prism:issueIdentifier"=>"10", "prism:pageRange"=>nil, "prism:coverDate"=>"2014-01-01", "prism:coverDisplayDate"=>"1 October 2014", "prism:doi"=>"10.1371/journal.pcbi.1003873", "citedby-count"=>"16", "affiliation"=>[{"@_fa"=>"true", "affilname"=>"IBCP Institut de Biologie et de Chimie des Proteines", "affiliation-city"=>"Lyon", "affiliation-country"=>"France"}, {"@_fa"=>"true", "affilname"=>"Universite Claude Bernard Lyon 1", "affiliation-city"=>"Villeurbanne", "affiliation-country"=>"France"}], "pubmed-id"=>"25299598", "prism:aggregationType"=>"Journal", "subtype"=>"ar", "subtypeDescription"=>"Article", "source-id"=>"4000151810"}

Facebook

  • {"url"=>"http%3A%2F%2Fjournals.plos.org%2Fploscompbiol%2Farticle%3Fid%3D10.1371%252Fjournal.pcbi.1003873", "share_count"=>0, "like_count"=>0, "comment_count"=>0, "click_count"=>0, "total_count"=>0}

Twitter

Counter

  • {"month"=>"10", "year"=>"2014", "pdf_views"=>"162", "xml_views"=>"11", "html_views"=>"2929"}
  • {"month"=>"11", "year"=>"2014", "pdf_views"=>"57", "xml_views"=>"7", "html_views"=>"366"}
  • {"month"=>"12", "year"=>"2014", "pdf_views"=>"29", "xml_views"=>"1", "html_views"=>"122"}
  • {"month"=>"1", "year"=>"2015", "pdf_views"=>"21", "xml_views"=>"2", "html_views"=>"99"}
  • {"month"=>"2", "year"=>"2015", "pdf_views"=>"19", "xml_views"=>"0", "html_views"=>"95"}
  • {"month"=>"3", "year"=>"2015", "pdf_views"=>"21", "xml_views"=>"0", "html_views"=>"163"}
  • {"month"=>"4", "year"=>"2015", "pdf_views"=>"14", "xml_views"=>"1", "html_views"=>"131"}
  • {"month"=>"5", "year"=>"2015", "pdf_views"=>"19", "xml_views"=>"0", "html_views"=>"121"}
  • {"month"=>"6", "year"=>"2015", "pdf_views"=>"16", "xml_views"=>"0", "html_views"=>"101"}
  • {"month"=>"7", "year"=>"2015", "pdf_views"=>"18", "xml_views"=>"0", "html_views"=>"112"}
  • {"month"=>"8", "year"=>"2015", "pdf_views"=>"18", "xml_views"=>"0", "html_views"=>"128"}
  • {"month"=>"9", "year"=>"2015", "pdf_views"=>"25", "xml_views"=>"0", "html_views"=>"103"}
  • {"month"=>"10", "year"=>"2015", "pdf_views"=>"16", "xml_views"=>"0", "html_views"=>"79"}
  • {"month"=>"11", "year"=>"2015", "pdf_views"=>"12", "xml_views"=>"0", "html_views"=>"76"}
  • {"month"=>"12", "year"=>"2015", "pdf_views"=>"16", "xml_views"=>"0", "html_views"=>"86"}
  • {"month"=>"1", "year"=>"2016", "pdf_views"=>"8", "xml_views"=>"1", "html_views"=>"56"}
  • {"month"=>"2", "year"=>"2016", "pdf_views"=>"16", "xml_views"=>"0", "html_views"=>"68"}
  • {"month"=>"3", "year"=>"2016", "pdf_views"=>"11", "xml_views"=>"0", "html_views"=>"59"}
  • {"month"=>"4", "year"=>"2016", "pdf_views"=>"10", "xml_views"=>"0", "html_views"=>"50"}
  • {"month"=>"5", "year"=>"2016", "pdf_views"=>"13", "xml_views"=>"0", "html_views"=>"59"}
  • {"month"=>"6", "year"=>"2016", "pdf_views"=>"18", "xml_views"=>"0", "html_views"=>"51"}
  • {"month"=>"7", "year"=>"2016", "pdf_views"=>"14", "xml_views"=>"0", "html_views"=>"56"}
  • {"month"=>"8", "year"=>"2016", "pdf_views"=>"16", "xml_views"=>"0", "html_views"=>"63"}
  • {"month"=>"9", "year"=>"2016", "pdf_views"=>"15", "xml_views"=>"0", "html_views"=>"54"}
  • {"month"=>"10", "year"=>"2016", "pdf_views"=>"16", "xml_views"=>"0", "html_views"=>"62"}
  • {"month"=>"11", "year"=>"2016", "pdf_views"=>"5", "xml_views"=>"0", "html_views"=>"58"}
  • {"month"=>"12", "year"=>"2016", "pdf_views"=>"15", "xml_views"=>"0", "html_views"=>"57"}
  • {"month"=>"1", "year"=>"2017", "pdf_views"=>"9", "xml_views"=>"0", "html_views"=>"46"}
  • {"month"=>"2", "year"=>"2017", "pdf_views"=>"11", "xml_views"=>"0", "html_views"=>"66"}
  • {"month"=>"3", "year"=>"2017", "pdf_views"=>"12", "xml_views"=>"0", "html_views"=>"56"}
  • {"month"=>"4", "year"=>"2017", "pdf_views"=>"11", "xml_views"=>"0", "html_views"=>"52"}
  • {"month"=>"5", "year"=>"2017", "pdf_views"=>"13", "xml_views"=>"1", "html_views"=>"51"}
  • {"month"=>"6", "year"=>"2017", "pdf_views"=>"10", "xml_views"=>"0", "html_views"=>"59"}
  • {"month"=>"7", "year"=>"2017", "pdf_views"=>"12", "xml_views"=>"0", "html_views"=>"48"}
  • {"month"=>"8", "year"=>"2017", "pdf_views"=>"7", "xml_views"=>"0", "html_views"=>"36"}
  • {"month"=>"9", "year"=>"2017", "pdf_views"=>"11", "xml_views"=>"0", "html_views"=>"42"}
  • {"month"=>"10", "year"=>"2017", "pdf_views"=>"6", "xml_views"=>"0", "html_views"=>"22"}

Figshare

  • {"files"=>["https://ndownloader.figshare.com/files/1711016"], "description"=>"<p>(a) Mechanism of action of octane on phase-separated membranes: lipid mixing (expressed as DLiPC-DPPC contact fraction) vs. solute distribution (expressed as solute-DLiPC contact fraction) as a function of simulation time (represented with a color scale, from green to blue). The vertical solid line marks the solute-DLiPC contact fraction of 0.5 (solute mostly at the interface). The vertical dashed line marks a solute-DLiPC contact fraction of 0.39 (ideal mixing of the solute). The horizontal solid line indicates the DLiPC-DPPC contact fraction in the absence of solute. The numbers in red circles refer to specific times during the simulation: (1) t = 0 ns, (2) t = 40 ns, (3) t = 300 ns, (4) t = 20 µs. (b) Lipid mixing (expressed as DLiPC-DPPC contact fraction) as a function of linactant molar fraction at 295 K.</p>", "links"=>[], "tags"=>["phase separation", "aliphatic compounds", "domain stabilization", "model membranes", "protein trafficking", "model systems", "membrane domains", "macroscopic phase separation", "lipophilic compounds perturb membrane domains", "domain stability", "Signal transduction", "domain perturbation", "lipophilic compounds", "Hydrophobic Compounds Reshape Membrane Domains Cell membranes"], "article_id"=>1198797, "categories"=>["Uncategorised"], "users"=>["Jonathan Barnoud", "Giulia Rossi", "Siewert J. Marrink", "Luca Monticelli"], "doi"=>"https://dx.doi.org/10.1371/journal.pcbi.1003873.g004", "stats"=>{"downloads"=>2, "page_views"=>45, "likes"=>0}, "figshare_url"=>"https://figshare.com/articles/_Mechanism_of_action_and_thermodynamics_of_linactants_/1198797", "title"=>"Mechanism of action and thermodynamics of linactants.", "pos_in_sequence"=>0, "defined_type"=>1, "published_date"=>"2014-10-09 03:06:59"}
  • {"files"=>["https://ndownloader.figshare.com/files/1711015"], "description"=>"<p>Localization of DLiPC lipids and aliphatic solutes (averaged over the last 100 ns of simulation at low solute concentration, 295 K) expressed as relative density and normalized solute density . Right panels: snapshots from the same simulations, side view. Only one particle per lipid is shown; phosphate group is colored in red for DLiPC and in blue for DPPC, cholesterol hydroxyl group is in yellow, solutes in gray.</p>", "links"=>[], "tags"=>["phase separation", "aliphatic compounds", "domain stabilization", "model membranes", "protein trafficking", "model systems", "membrane domains", "macroscopic phase separation", "lipophilic compounds perturb membrane domains", "domain stability", "Signal transduction", "domain perturbation", "lipophilic compounds", "Hydrophobic Compounds Reshape Membrane Domains Cell membranes"], "article_id"=>1198796, "categories"=>["Uncategorised"], "users"=>["Jonathan Barnoud", "Giulia Rossi", "Siewert J. Marrink", "Luca Monticelli"], "doi"=>"https://dx.doi.org/10.1371/journal.pcbi.1003873.g003", "stats"=>{"downloads"=>1, "page_views"=>54, "likes"=>0}, "figshare_url"=>"https://figshare.com/articles/_Aliphatic_compounds_act_as_linactants_/1198796", "title"=>"Aliphatic compounds act as linactants.", "pos_in_sequence"=>0, "defined_type"=>1, "published_date"=>"2014-10-09 03:06:59"}
  • {"files"=>["https://ndownloader.figshare.com/files/1711010"], "description"=>"<p>Snapshots of a single leaflet from simulations of systems with high concentration of benzene or cyclohexane, and with no solute, at 325 K. Colors are the same as in <a href=\"http://www.ploscompbiol.org/article/info:doi/10.1371/journal.pcbi.1003873#pcbi-1003873-g001\" target=\"_blank\">Fig. 1</a>. Bottom right: DLiPC-DPPC contact fraction as a function of temperature from simulations without solutes and with high concentration of solutes. Thermal stabilization of phase separation is evident for fullerene, benzene, and polystyrene.</p>", "links"=>[], "tags"=>["phase separation", "aliphatic compounds", "domain stabilization", "model membranes", "protein trafficking", "model systems", "membrane domains", "macroscopic phase separation", "lipophilic compounds perturb membrane domains", "domain stability", "Signal transduction", "domain perturbation", "lipophilic compounds", "Hydrophobic Compounds Reshape Membrane Domains Cell membranes"], "article_id"=>1198791, "categories"=>["Uncategorised"], "users"=>["Jonathan Barnoud", "Giulia Rossi", "Siewert J. Marrink", "Luca Monticelli"], "doi"=>"https://dx.doi.org/10.1371/journal.pcbi.1003873.g002", "stats"=>{"downloads"=>1, "page_views"=>18, "likes"=>0}, "figshare_url"=>"https://figshare.com/articles/_Thermal_stabilization_of_phase_separation_/1198791", "title"=>"Thermal stabilization of phase separation.", "pos_in_sequence"=>0, "defined_type"=>1, "published_date"=>"2014-10-09 03:06:59"}
  • {"files"=>["https://ndownloader.figshare.com/files/1711006"], "description"=>"<p>(a) MARTINI models of the hydrophobic solutes chosen for this study (colored in gray), phospholipids and cholesterol. (b) Side view of the phase separated membrane in the presence of fullerene at 295 K; DPPC is colored in blue, cholesterol in yellow, and DLiPC in red. (c) Top view of membrane systems with and without solutes (295 K, high solute concentration). Only one leaflet is displayed, and only one particle per lipid is shown (phosphate group), in red for DLiPC and in blue for DPPC. Solutes, cholesterol, and water are omitted for clarity. (d) DLiPC-DPPC contact fraction for the same systems; the solid blue line is for the case without solutes, the dashed lines are error estimates.</p>", "links"=>[], "tags"=>["phase separation", "aliphatic compounds", "domain stabilization", "model membranes", "protein trafficking", "model systems", "membrane domains", "macroscopic phase separation", "lipophilic compounds perturb membrane domains", "domain stability", "Signal transduction", "domain perturbation", "lipophilic compounds", "Hydrophobic Compounds Reshape Membrane Domains Cell membranes"], "article_id"=>1198787, "categories"=>["Uncategorised"], "users"=>["Jonathan Barnoud", "Giulia Rossi", "Siewert J. Marrink", "Luca Monticelli"], "doi"=>"https://dx.doi.org/10.1371/journal.pcbi.1003873.g001", "stats"=>{"downloads"=>3, "page_views"=>37, "likes"=>0}, "figshare_url"=>"https://figshare.com/articles/_Effect_of_hydrophobic_compounds_on_the_stability_of_membrane_domains_/1198787", "title"=>"Effect of hydrophobic compounds on the stability of membrane domains.", "pos_in_sequence"=>0, "defined_type"=>1, "published_date"=>"2014-10-09 03:06:59"}
  • {"files"=>["https://ndownloader.figshare.com/files/1711019"], "description"=>"<p>* When 2 numbers are reported, they refer to 2 independent simulations of the same system.</p><p>** Modified force field, with stronger interactions between cholesterol and aromatics (SC4-SC1 interaction set to ε = 3.5 kJ/mol, instead of ε = 3.11 kJ/mol).</p><p>*** Simulation starting from a mixed membrane (starting configuration taken from the last frame of the simulation in the presence of cyclohexane at 325 K).</p><p>List of simulations performed.</p>", "links"=>[], "tags"=>["phase separation", "aliphatic compounds", "domain stabilization", "model membranes", "protein trafficking", "model systems", "membrane domains", "macroscopic phase separation", "lipophilic compounds perturb membrane domains", "domain stability", "Signal transduction", "domain perturbation", "lipophilic compounds", "Hydrophobic Compounds Reshape Membrane Domains Cell membranes"], "article_id"=>1198800, "categories"=>["Uncategorised"], "users"=>["Jonathan Barnoud", "Giulia Rossi", "Siewert J. Marrink", "Luca Monticelli"], "doi"=>"https://dx.doi.org/10.1371/journal.pcbi.1003873.t001", "stats"=>{"downloads"=>3, "page_views"=>36, "likes"=>0}, "figshare_url"=>"https://figshare.com/articles/_List_of_simulations_performed_/1198800", "title"=>"List of simulations performed.", "pos_in_sequence"=>0, "defined_type"=>3, "published_date"=>"2014-10-09 03:06:59"}
  • {"files"=>["https://ndownloader.figshare.com/files/1711017"], "description"=>"<p>(a) Lipid and solute lateral distribution at 325 K, with high concentration of solute, expressed as relative DLiPC density normalized solute density. Aromatic solutes co-localize with unsaturated lipids. (b) Close-up view of the membrane centered on the L<sub>d</sub> phase, in a system without solute (left) and in the presence of benzene (gray); cholesterol molecules are highlighted in orange. Benzene is found approximately at the same location as cholesterol.</p>", "links"=>[], "tags"=>["phase separation", "aliphatic compounds", "domain stabilization", "model membranes", "protein trafficking", "model systems", "membrane domains", "macroscopic phase separation", "lipophilic compounds perturb membrane domains", "domain stability", "Signal transduction", "domain perturbation", "lipophilic compounds", "Hydrophobic Compounds Reshape Membrane Domains Cell membranes"], "article_id"=>1198798, "categories"=>["Uncategorised"], "users"=>["Jonathan Barnoud", "Giulia Rossi", "Siewert J. Marrink", "Luca Monticelli"], "doi"=>"https://dx.doi.org/10.1371/journal.pcbi.1003873.g005", "stats"=>{"downloads"=>1, "page_views"=>21, "likes"=>0}, "figshare_url"=>"https://figshare.com/articles/_Mechanism_of_action_of_aromatic_compounds_/1198798", "title"=>"Mechanism of action of aromatic compounds.", "pos_in_sequence"=>0, "defined_type"=>1, "published_date"=>"2014-10-09 03:06:59"}
  • {"files"=>["https://ndownloader.figshare.com/files/1711021", "https://ndownloader.figshare.com/files/1711022", "https://ndownloader.figshare.com/files/1711023", "https://ndownloader.figshare.com/files/1711024"], "description"=>"<div><p>Cell membranes have a complex lateral organization featuring domains with distinct composition, also known as rafts, which play an essential role in cellular processes such as signal transduction and protein trafficking. <i>In vivo</i>, perturbations of membrane domains (e.g., by drugs or lipophilic compounds) have major effects on the activity of raft-associated proteins and on signaling pathways, but they are difficult to characterize because of the small size of the domains, typically below optical resolution. Model membranes, instead, can show macroscopic phase separation between liquid-ordered and liquid-disordered domains, and they are often used to investigate the driving forces of membrane lateral organization. Studies in model membranes have shown that some lipophilic compounds perturb membrane domains, but it is not clear which chemical and physical properties determine domain perturbation. The mechanisms of domain stabilization and destabilization are also unknown. Here we describe the effect of six simple hydrophobic compounds on the lateral organization of phase-separated model membranes consisting of saturated and unsaturated phospholipids and cholesterol. Using molecular simulations, we identify two groups of molecules with distinct behavior: aliphatic compounds promote lipid mixing by distributing at the interface between liquid-ordered and liquid-disordered domains; aromatic compounds, instead, stabilize phase separation by partitioning into liquid-disordered domains and excluding cholesterol from the disordered domains. We predict that relatively small concentrations of hydrophobic species can have a broad impact on domain stability in model systems, which suggests possible mechanisms of action for hydrophobic compounds <i>in vivo</i>.</p></div>", "links"=>[], "tags"=>["phase separation", "aliphatic compounds", "domain stabilization", "model membranes", "protein trafficking", "model systems", "membrane domains", "macroscopic phase separation", "lipophilic compounds perturb membrane domains", "domain stability", "Signal transduction", "domain perturbation", "lipophilic compounds", "Hydrophobic Compounds Reshape Membrane Domains Cell membranes"], "article_id"=>1198802, "categories"=>["Uncategorised"], "users"=>["Jonathan Barnoud", "Giulia Rossi", "Siewert J. Marrink", "Luca Monticelli"], "doi"=>["https://dx.doi.org/10.1371/journal.pcbi.1003873.s001", "https://dx.doi.org/10.1371/journal.pcbi.1003873.s002", "https://dx.doi.org/10.1371/journal.pcbi.1003873.s003", "https://dx.doi.org/10.1371/journal.pcbi.1003873.s004"], "stats"=>{"downloads"=>4, "page_views"=>43, "likes"=>0}, "figshare_url"=>"https://figshare.com/articles/_Hydrophobic_Compounds_Reshape_Membrane_Domains_/1198802", "title"=>"Hydrophobic Compounds Reshape Membrane Domains", "pos_in_sequence"=>0, "defined_type"=>4, "published_date"=>"2014-10-09 03:06:59"}

PMC Usage Stats | Further Information

  • {"unique-ip"=>"21", "full-text"=>"22", "pdf"=>"18", "abstract"=>"0", "scanned-summary"=>"0", "scanned-page-browse"=>"0", "figure"=>"0", "supp-data"=>"0", "cited-by"=>"0", "year"=>"2014", "month"=>"10"}
  • {"unique-ip"=>"22", "full-text"=>"24", "pdf"=>"13", "abstract"=>"0", "scanned-summary"=>"0", "scanned-page-browse"=>"0", "figure"=>"33", "supp-data"=>"9", "cited-by"=>"0", "year"=>"2014", "month"=>"11"}
  • {"unique-ip"=>"14", "full-text"=>"11", "pdf"=>"10", "abstract"=>"0", "scanned-summary"=>"0", "scanned-page-browse"=>"0", "figure"=>"3", "supp-data"=>"0", "cited-by"=>"0", "year"=>"2014", "month"=>"12"}
  • {"unique-ip"=>"10", "full-text"=>"10", "pdf"=>"6", "abstract"=>"0", "scanned-summary"=>"0", "scanned-page-browse"=>"0", "figure"=>"1", "supp-data"=>"0", "cited-by"=>"0", "year"=>"2015", "month"=>"1"}
  • {"unique-ip"=>"17", "full-text"=>"20", "pdf"=>"8", "abstract"=>"0", "scanned-summary"=>"0", "scanned-page-browse"=>"0", "figure"=>"0", "supp-data"=>"0", "cited-by"=>"0", "year"=>"2015", "month"=>"2"}
  • {"unique-ip"=>"23", "full-text"=>"26", "pdf"=>"7", "abstract"=>"0", "scanned-summary"=>"0", "scanned-page-browse"=>"0", "figure"=>"5", "supp-data"=>"0", "cited-by"=>"0", "year"=>"2015", "month"=>"3"}
  • {"unique-ip"=>"18", "full-text"=>"18", "pdf"=>"4", "abstract"=>"0", "scanned-summary"=>"0", "scanned-page-browse"=>"0", "figure"=>"2", "supp-data"=>"0", "cited-by"=>"0", "year"=>"2015", "month"=>"4"}
  • {"unique-ip"=>"12", "full-text"=>"10", "pdf"=>"5", "abstract"=>"0", "scanned-summary"=>"0", "scanned-page-browse"=>"0", "figure"=>"3", "supp-data"=>"0", "cited-by"=>"0", "year"=>"2015", "month"=>"5"}
  • {"unique-ip"=>"6", "full-text"=>"5", "pdf"=>"5", "abstract"=>"0", "scanned-summary"=>"0", "scanned-page-browse"=>"0", "figure"=>"0", "supp-data"=>"0", "cited-by"=>"0", "year"=>"2015", "month"=>"6"}
  • {"unique-ip"=>"14", "full-text"=>"14", "pdf"=>"2", "abstract"=>"0", "scanned-summary"=>"0", "scanned-page-browse"=>"0", "figure"=>"1", "supp-data"=>"0", "cited-by"=>"0", "year"=>"2015", "month"=>"7"}
  • {"unique-ip"=>"12", "full-text"=>"9", "pdf"=>"4", "abstract"=>"0", "scanned-summary"=>"0", "scanned-page-browse"=>"0", "figure"=>"0", "supp-data"=>"0", "cited-by"=>"0", "year"=>"2015", "month"=>"8"}
  • {"unique-ip"=>"21", "full-text"=>"20", "pdf"=>"7", "abstract"=>"0", "scanned-summary"=>"0", "scanned-page-browse"=>"0", "figure"=>"1", "supp-data"=>"0", "cited-by"=>"0", "year"=>"2015", "month"=>"9"}
  • {"unique-ip"=>"26", "full-text"=>"24", "pdf"=>"16", "abstract"=>"0", "scanned-summary"=>"0", "scanned-page-browse"=>"0", "figure"=>"8", "supp-data"=>"0", "cited-by"=>"1", "year"=>"2015", "month"=>"10"}
  • {"unique-ip"=>"21", "full-text"=>"20", "pdf"=>"5", "abstract"=>"0", "scanned-summary"=>"0", "scanned-page-browse"=>"0", "figure"=>"8", "supp-data"=>"0", "cited-by"=>"1", "year"=>"2015", "month"=>"11"}
  • {"unique-ip"=>"14", "full-text"=>"12", "pdf"=>"4", "abstract"=>"0", "scanned-summary"=>"0", "scanned-page-browse"=>"0", "figure"=>"0", "supp-data"=>"0", "cited-by"=>"0", "year"=>"2015", "month"=>"12"}
  • {"unique-ip"=>"11", "full-text"=>"10", "pdf"=>"2", "abstract"=>"0", "scanned-summary"=>"0", "scanned-page-browse"=>"0", "figure"=>"0", "supp-data"=>"0", "cited-by"=>"0", "year"=>"2016", "month"=>"1"}
  • {"unique-ip"=>"7", "full-text"=>"6", "pdf"=>"2", "abstract"=>"0", "scanned-summary"=>"0", "scanned-page-browse"=>"0", "figure"=>"0", "supp-data"=>"0", "cited-by"=>"0", "year"=>"2016", "month"=>"2"}
  • {"unique-ip"=>"17", "full-text"=>"17", "pdf"=>"4", "abstract"=>"0", "scanned-summary"=>"0", "scanned-page-browse"=>"0", "figure"=>"2", "supp-data"=>"0", "cited-by"=>"0", "year"=>"2016", "month"=>"3"}
  • {"unique-ip"=>"9", "full-text"=>"9", "pdf"=>"2", "abstract"=>"0", "scanned-summary"=>"0", "scanned-page-browse"=>"0", "figure"=>"1", "supp-data"=>"0", "cited-by"=>"0", "year"=>"2016", "month"=>"4"}
  • {"unique-ip"=>"17", "full-text"=>"17", "pdf"=>"3", "abstract"=>"0", "scanned-summary"=>"0", "scanned-page-browse"=>"0", "figure"=>"0", "supp-data"=>"0", "cited-by"=>"0", "year"=>"2016", "month"=>"5"}
  • {"unique-ip"=>"6", "full-text"=>"6", "pdf"=>"3", "abstract"=>"0", "scanned-summary"=>"0", "scanned-page-browse"=>"0", "figure"=>"4", "supp-data"=>"0", "cited-by"=>"0", "year"=>"2016", "month"=>"7"}
  • {"unique-ip"=>"11", "full-text"=>"11", "pdf"=>"1", "abstract"=>"0", "scanned-summary"=>"0", "scanned-page-browse"=>"0", "figure"=>"0", "supp-data"=>"0", "cited-by"=>"0", "year"=>"2016", "month"=>"8"}
  • {"unique-ip"=>"15", "full-text"=>"16", "pdf"=>"1", "abstract"=>"0", "scanned-summary"=>"0", "scanned-page-browse"=>"0", "figure"=>"3", "supp-data"=>"0", "cited-by"=>"0", "year"=>"2016", "month"=>"9"}
  • {"unique-ip"=>"11", "full-text"=>"11", "pdf"=>"1", "abstract"=>"0", "scanned-summary"=>"0", "scanned-page-browse"=>"0", "figure"=>"0", "supp-data"=>"0", "cited-by"=>"0", "year"=>"2016", "month"=>"10"}
  • {"unique-ip"=>"9", "full-text"=>"7", "pdf"=>"1", "abstract"=>"0", "scanned-summary"=>"0", "scanned-page-browse"=>"0", "figure"=>"1", "supp-data"=>"0", "cited-by"=>"0", "year"=>"2016", "month"=>"11"}
  • {"unique-ip"=>"9", "full-text"=>"9", "pdf"=>"3", "abstract"=>"0", "scanned-summary"=>"0", "scanned-page-browse"=>"0", "figure"=>"3", "supp-data"=>"0", "cited-by"=>"0", "year"=>"2016", "month"=>"12"}
  • {"unique-ip"=>"5", "full-text"=>"5", "pdf"=>"1", "abstract"=>"0", "scanned-summary"=>"0", "scanned-page-browse"=>"0", "figure"=>"1", "supp-data"=>"0", "cited-by"=>"0", "year"=>"2017", "month"=>"1"}
  • {"unique-ip"=>"8", "full-text"=>"8", "pdf"=>"2", "abstract"=>"0", "scanned-summary"=>"0", "scanned-page-browse"=>"0", "figure"=>"0", "supp-data"=>"0", "cited-by"=>"1", "year"=>"2017", "month"=>"2"}
  • {"unique-ip"=>"14", "full-text"=>"15", "pdf"=>"7", "abstract"=>"0", "scanned-summary"=>"0", "scanned-page-browse"=>"0", "figure"=>"0", "supp-data"=>"0", "cited-by"=>"0", "year"=>"2017", "month"=>"3"}
  • {"unique-ip"=>"7", "full-text"=>"7", "pdf"=>"1", "abstract"=>"0", "scanned-summary"=>"0", "scanned-page-browse"=>"0", "figure"=>"0", "supp-data"=>"0", "cited-by"=>"0", "year"=>"2017", "month"=>"4"}
  • {"unique-ip"=>"6", "full-text"=>"9", "pdf"=>"2", "abstract"=>"0", "scanned-summary"=>"0", "scanned-page-browse"=>"0", "figure"=>"0", "supp-data"=>"0", "cited-by"=>"1", "year"=>"2017", "month"=>"5"}
  • {"unique-ip"=>"9", "full-text"=>"9", "pdf"=>"4", "abstract"=>"0", "scanned-summary"=>"0", "scanned-page-browse"=>"0", "figure"=>"0", "supp-data"=>"0", "cited-by"=>"0", "year"=>"2017", "month"=>"6"}
  • {"unique-ip"=>"1", "full-text"=>"1", "pdf"=>"0", "abstract"=>"0", "scanned-summary"=>"0", "scanned-page-browse"=>"0", "figure"=>"0", "supp-data"=>"0", "cited-by"=>"0", "year"=>"2017", "month"=>"7"}
  • {"unique-ip"=>"7", "full-text"=>"7", "pdf"=>"0", "abstract"=>"0", "scanned-summary"=>"0", "scanned-page-browse"=>"0", "figure"=>"0", "supp-data"=>"0", "cited-by"=>"0", "year"=>"2017", "month"=>"8"}
  • {"unique-ip"=>"9", "full-text"=>"10", "pdf"=>"2", "abstract"=>"0", "scanned-summary"=>"0", "scanned-page-browse"=>"0", "figure"=>"0", "supp-data"=>"0", "cited-by"=>"0", "year"=>"2017", "month"=>"9"}

Relative Metric

{"start_date"=>"2014-01-01T00:00:00Z", "end_date"=>"2014-12-31T00:00:00Z", "subject_areas"=>[{"subject_area"=>"/Biology and life sciences", "average_usage"=>[291]}, {"subject_area"=>"/Biology and life sciences/Cell biology", "average_usage"=>[286]}, {"subject_area"=>"/Biology and life sciences/Computational biology", "average_usage"=>[341, 529]}, {"subject_area"=>"/Engineering and technology", "average_usage"=>[282]}, {"subject_area"=>"/Engineering and technology/Nanotechnology", "average_usage"=>[230, 417]}, {"subject_area"=>"/Physical sciences", "average_usage"=>[271]}]}
Loading … Spinner
There are currently no alerts