A Paleolatitude Calculator for Paleoclimate Studies
Publication Date
June 10, 2015
Journal
PLOS ONE
Authors
Douwe J. J. Van Hinsbergen, Lennart V. De Groot, Sebastiaan J. Van Schaik, Wim Spakman, et al
Volume
10
Issue
6
Pages
e0126946
DOI
http://doi.org/10.1371/journal.pone.0126946
Publisher URL
http://journals.plos.org/plosone/article?id=10.1371%2Fjournal.pone.0126946
PubMed
http://www.ncbi.nlm.nih.gov/pubmed/26061262
PubMed Central
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4462584
Europe PMC
http://europepmc.org/abstract/MED/26061262
Web of Science
000355979500022
Scopus
84935485684
Mendeley
http://www.mendeley.com/research/paleolatitude-calculator-paleoclimate-studies
Events
Loading … Spinner

Mendeley | Further Information

{"title"=>"A paleolatitude calculator for paleoclimate studies", "type"=>"journal", "authors"=>[{"first_name"=>"Douwe J.J.", "last_name"=>"Van Hinsbergen", "scopus_author_id"=>"8560091600"}, {"first_name"=>"Lennart V.", "last_name"=>"De Groot", "scopus_author_id"=>"55097466900"}, {"first_name"=>"Sebastiaan J.", "last_name"=>"Van Schaik", "scopus_author_id"=>"56711129300"}, {"first_name"=>"Wim", "last_name"=>"Spakman", "scopus_author_id"=>"7004036932"}, {"first_name"=>"Peter K.", "last_name"=>"Bijl", "scopus_author_id"=>"24309428500"}, {"first_name"=>"Appy", "last_name"=>"Sluijs", "scopus_author_id"=>"8255159200"}, {"first_name"=>"Cor G.", "last_name"=>"Langereis", "scopus_author_id"=>"7004123729"}, {"first_name"=>"Henk", "last_name"=>"Brinkhuis", "scopus_author_id"=>"56267975000"}], "year"=>2015, "source"=>"PLoS ONE", "identifiers"=>{"pui"=>"605092229", "doi"=>"10.1371/journal.pone.0126946", "sgr"=>"84935485684", "scopus"=>"2-s2.0-84935485684", "pmid"=>"26061262", "issn"=>"19326203"}, "id"=>"a54540af-8ca9-38ce-a335-6f685a7e4ebd", "abstract"=>"Realistic appraisal of paleoclimatic information obtained from a particular location requires accurate knowledge of its paleolatitude defined relative to the Earth's spin-axis. This is crucial to, among others, correctly assess the amount of solar energy received at a location at the moment of sediment deposition. The paleolatitude of an arbitrary location can in principle be reconstructed from tectonic plate reconstructions that (1) restore the relative motions between plates based on (marine) magnetic anomalies, and (2) reconstruct all plates relative to the spin axis using a paleomagnetic reference frame based on a global apparent polar wander path. Whereas many studies do employ high-quality relative plate reconstructions, the necessity of using a paleomagnetic reference frame for climate studies rather than a mantle reference frame appears under-appreciated. In this paper, we briefly summarize the theory of plate tectonic reconstructions and their reference frames tailored towards applications of paleoclimate reconstruction, and show that using a mantle reference frame, which defines plate positions relative to the mantle, instead of a paleomagnetic reference frame may introduce errors in paleolatitude of more than 15° (>1500 km). This is because mantle reference frames cannot constrain, or are specifically corrected for the effects of true polar wander. We used the latest, state-of-the-art plate reconstructions to build a global plate circuit, and developed an online, user-friendly paleolatitude calculator for the last 200 million years by placing this plate circuit in three widely used global apparent polar wander paths. As a novelty, this calculator adds error bars to paleolatitude estimates that can be incorporated in climate modeling. The calculator is available at www.paleolatitude.org. We illustrate the use of the paleolatitude calculator by showing how an apparent wide spread in Eocene sea surface temperatures of southern high latitudes may be in part explained by a much wider paleolatitudinal distribution of sites than previously assumed.", "link"=>"http://www.mendeley.com/research/paleolatitude-calculator-paleoclimate-studies", "reader_count"=>102, "reader_count_by_academic_status"=>{"Unspecified"=>2, "Professor > Associate Professor"=>5, "Researcher"=>31, "Student > Doctoral Student"=>6, "Student > Ph. D. Student"=>24, "Student > Postgraduate"=>3, "Student > Master"=>15, "Other"=>4, "Student > Bachelor"=>8, "Lecturer"=>1, "Professor"=>3}, "reader_count_by_user_role"=>{"Unspecified"=>2, "Professor > Associate Professor"=>5, "Researcher"=>31, "Student > Doctoral Student"=>6, "Student > Ph. D. Student"=>24, "Student > Postgraduate"=>3, "Student > Master"=>15, "Other"=>4, "Student > Bachelor"=>8, "Lecturer"=>1, "Professor"=>3}, "reader_count_by_subject_area"=>{"Unspecified"=>9, "Environmental Science"=>14, "Agricultural and Biological Sciences"=>26, "Sports and Recreations"=>1, "Physics and Astronomy"=>2, "Chemistry"=>1, "Earth and Planetary Sciences"=>49}, "reader_count_by_subdiscipline"=>{"Chemistry"=>{"Chemistry"=>1}, "Sports and Recreations"=>{"Sports and Recreations"=>1}, "Physics and Astronomy"=>{"Physics and Astronomy"=>2}, "Earth and Planetary Sciences"=>{"Earth and Planetary Sciences"=>49}, "Agricultural and Biological Sciences"=>{"Agricultural and Biological Sciences"=>26}, "Unspecified"=>{"Unspecified"=>9}, "Environmental Science"=>{"Environmental Science"=>14}}, "reader_count_by_country"=>{"Canada"=>1, "Netherlands"=>4, "Argentina"=>2, "Ireland"=>1, "United Kingdom"=>1, "Italy"=>1, "Australia"=>1, "France"=>1, "Germany"=>1}, "group_count"=>5}

CrossRef

Scopus | Further Information

{"@_fa"=>"true", "link"=>[{"@_fa"=>"true", "@ref"=>"self", "@href"=>"https://api.elsevier.com/content/abstract/scopus_id/84935485684"}, {"@_fa"=>"true", "@ref"=>"author-affiliation", "@href"=>"https://api.elsevier.com/content/abstract/scopus_id/84935485684?field=author,affiliation"}, {"@_fa"=>"true", "@ref"=>"scopus", "@href"=>"https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=84935485684&origin=inward"}, {"@_fa"=>"true", "@ref"=>"scopus-citedby", "@href"=>"https://www.scopus.com/inward/citedby.uri?partnerID=HzOxMe3b&scp=84935485684&origin=inward"}], "prism:url"=>"https://api.elsevier.com/content/abstract/scopus_id/84935485684", "dc:identifier"=>"SCOPUS_ID:84935485684", "eid"=>"2-s2.0-84935485684", "dc:title"=>"A paleolatitude calculator for paleoclimate studies", "dc:creator"=>"Van Hinsbergen D.", "prism:publicationName"=>"PLoS ONE", "prism:eIssn"=>"19326203", "prism:volume"=>"10", "prism:issueIdentifier"=>"6", "prism:pageRange"=>nil, "prism:coverDate"=>"2015-06-10", "prism:coverDisplayDate"=>"10 June 2015", "prism:doi"=>"10.1371/journal.pone.0126946", "citedby-count"=>"32", "affiliation"=>[{"@_fa"=>"true", "affilname"=>"Utrecht University", "affiliation-city"=>"Utrecht", "affiliation-country"=>"Netherlands"}], "pubmed-id"=>"26061262", "prism:aggregationType"=>"Journal", "subtype"=>"ar", "subtypeDescription"=>"Article", "article-number"=>"e0126946", "source-id"=>"10600153309"}

Facebook

  • {"url"=>"http%3A%2F%2Fjournals.plos.org%2Fplosone%2Farticle%3Fid%3D10.1371%252Fjournal.pone.0126946", "share_count"=>15, "like_count"=>51, "comment_count"=>4, "click_count"=>0, "total_count"=>70}

Journal Comments | Further Information

Twitter

Counter

  • {"month"=>"6", "year"=>"2015", "pdf_views"=>"142", "xml_views"=>"16", "html_views"=>"1385"}
  • {"month"=>"7", "year"=>"2015", "pdf_views"=>"22", "xml_views"=>"0", "html_views"=>"112"}
  • {"month"=>"8", "year"=>"2015", "pdf_views"=>"19", "xml_views"=>"0", "html_views"=>"129"}
  • {"month"=>"9", "year"=>"2015", "pdf_views"=>"33", "xml_views"=>"1", "html_views"=>"294"}
  • {"month"=>"10", "year"=>"2015", "pdf_views"=>"31", "xml_views"=>"0", "html_views"=>"183"}
  • {"month"=>"11", "year"=>"2015", "pdf_views"=>"15", "xml_views"=>"0", "html_views"=>"143"}
  • {"month"=>"12", "year"=>"2015", "pdf_views"=>"12", "xml_views"=>"0", "html_views"=>"100"}
  • {"month"=>"1", "year"=>"2016", "pdf_views"=>"18", "xml_views"=>"0", "html_views"=>"84"}
  • {"month"=>"2", "year"=>"2016", "pdf_views"=>"9", "xml_views"=>"0", "html_views"=>"111"}
  • {"month"=>"3", "year"=>"2016", "pdf_views"=>"13", "xml_views"=>"0", "html_views"=>"83"}
  • {"month"=>"4", "year"=>"2016", "pdf_views"=>"20", "xml_views"=>"0", "html_views"=>"98"}
  • {"month"=>"5", "year"=>"2016", "pdf_views"=>"24", "xml_views"=>"0", "html_views"=>"149"}
  • {"month"=>"6", "year"=>"2016", "pdf_views"=>"27", "xml_views"=>"0", "html_views"=>"89"}
  • {"month"=>"7", "year"=>"2016", "pdf_views"=>"14", "xml_views"=>"0", "html_views"=>"79"}
  • {"month"=>"8", "year"=>"2016", "pdf_views"=>"37", "xml_views"=>"0", "html_views"=>"104"}
  • {"month"=>"9", "year"=>"2016", "pdf_views"=>"22", "xml_views"=>"0", "html_views"=>"78"}
  • {"month"=>"10", "year"=>"2016", "pdf_views"=>"29", "xml_views"=>"0", "html_views"=>"105"}
  • {"month"=>"11", "year"=>"2016", "pdf_views"=>"7", "xml_views"=>"0", "html_views"=>"91"}
  • {"month"=>"12", "year"=>"2016", "pdf_views"=>"28", "xml_views"=>"2", "html_views"=>"85"}
  • {"month"=>"1", "year"=>"2017", "pdf_views"=>"23", "xml_views"=>"2", "html_views"=>"106"}
  • {"month"=>"2", "year"=>"2017", "pdf_views"=>"26", "xml_views"=>"1", "html_views"=>"93"}
  • {"month"=>"3", "year"=>"2017", "pdf_views"=>"17", "xml_views"=>"0", "html_views"=>"146"}
  • {"month"=>"4", "year"=>"2017", "pdf_views"=>"20", "xml_views"=>"2", "html_views"=>"131"}
  • {"month"=>"5", "year"=>"2017", "pdf_views"=>"13", "xml_views"=>"0", "html_views"=>"104"}
  • {"month"=>"6", "year"=>"2017", "pdf_views"=>"25", "xml_views"=>"1", "html_views"=>"125"}
  • {"month"=>"7", "year"=>"2017", "pdf_views"=>"36", "xml_views"=>"0", "html_views"=>"99"}
  • {"month"=>"8", "year"=>"2017", "pdf_views"=>"23", "xml_views"=>"3", "html_views"=>"121"}
  • {"month"=>"9", "year"=>"2017", "pdf_views"=>"17", "xml_views"=>"2", "html_views"=>"75"}
  • {"month"=>"10", "year"=>"2017", "pdf_views"=>"8", "xml_views"=>"0", "html_views"=>"63"}

Figshare

  • {"files"=>["https://ndownloader.figshare.com/files/2104820"], "description"=>"<p>(A) Example of a plate circuit. The motion of India versus Eurasia cannot be directly constrained since these plates are bounded by a destructive plate boundary (trench). Relative motions between these plates can be reconstructed by restoring the opening history of the North Atlantic ocean between Eurasia and North America, the Central Atlantic Ocean between Africa and North America, and the Indian Ocean between India and Africa. With the relative positions of all these plates known through time, a paleomagnetic pole of one of these plates can be used to constrain all of these plates relative to the geodynamo. (B) schematic outline of plate and mantle motions and reference frames. Plates move relative to the mantle (plate tectonics), and plates and mantle together can undergo phases of motion relative to the liquid outer core (true polar wander). Both processes lead to motion of a rock record relative to the Earth’s spin axis, and hence both influence the angle of insolation that is relevant for paleoclimate study. Mantle reference frames <i>A-C</i> (see text for explanation of these frames) can only reconstruct plate motion relative to the mantle, but cannot reconstruct true polar wander. These frames are therefore used for analysis of geodynamics, but should not be used for paleoclimate studies. Instead, a paleomagnetic reference frame should be used. On geological timescales, the geodynamo coincides with the Earth’s spin axis. The orientation of the paleomagnetic field in a rock can be used to restore a rock record into its original paleolatitude relative to the spin axis.</p>", "links"=>[], "tags"=>["plate circuit", "Eocene sea surface temperatures", "tectonic plate reconstructions", "plate reconstructions", "paleolatitude", "mantle reference frame", "mantle reference frames", "Paleoclimate Studies Realistic appraisal", "plate tectonic reconstructions", "paleomagnetic reference frame"], "article_id"=>1444520, "categories"=>["Uncategorised"], "users"=>["Douwe J. J. van Hinsbergen", "Lennart V. de Groot", "Sebastiaan J. van Schaik", "Wim Spakman", "Peter K. Bijl", "Appy Sluijs", "Cor G. Langereis", "Henk Brinkhuis"], "doi"=>"https://dx.doi.org/10.1371/journal.pone.0126946.g001", "stats"=>{"downloads"=>3, "page_views"=>10, "likes"=>0}, "figshare_url"=>"https://figshare.com/articles/_A_Paleolatitude_Calculator_for_Paleoclimate_Studies_Fig_1_/1444520", "title"=>"A Paleolatitude Calculator for Paleoclimate Studies - Fig 1", "pos_in_sequence"=>0, "defined_type"=>1, "published_date"=>"2015-06-10 02:44:05"}
  • {"files"=>["https://ndownloader.figshare.com/files/2104821"], "description"=>"<p>(A) Map with the main lithospheric fragments that have moved independently relative to surrounding fragments in the past 200 Ma. (B) Plate circuit of all fragments shown in A. Rotation parameters relative to South Africa (701) are given for all fragments in Online Appendices 1–3. Names of all elements are given in <a href=\"http://www.plosone.org/article/info:doi/10.1371/journal.pone.0126946#pone.0126946.t001\" target=\"_blank\">Table 1</a>. Rotation parameters are taken from (i) ref [<a href=\"http://www.plosone.org/article/info:doi/10.1371/journal.pone.0126946#pone.0126946.ref020\" target=\"_blank\">20</a>], or ref [<a href=\"http://www.plosone.org/article/info:doi/10.1371/journal.pone.0126946#pone.0126946.ref018\" target=\"_blank\">18</a>], or ref [<a href=\"http://www.plosone.org/article/info:doi/10.1371/journal.pone.0126946#pone.0126946.ref034\" target=\"_blank\">34</a>], depending on the reference frame; (ii) ref [<a href=\"http://www.plosone.org/article/info:doi/10.1371/journal.pone.0126946#pone.0126946.ref014\" target=\"_blank\">14</a>]; (iii) ref [<a href=\"http://www.plosone.org/article/info:doi/10.1371/journal.pone.0126946#pone.0126946.ref058\" target=\"_blank\">58</a>–<a href=\"http://www.plosone.org/article/info:doi/10.1371/journal.pone.0126946#pone.0126946.ref060\" target=\"_blank\">60</a>]; (iv) ref [<a href=\"http://www.plosone.org/article/info:doi/10.1371/journal.pone.0126946#pone.0126946.ref067\" target=\"_blank\">67</a>]; (v) ref [<a href=\"http://www.plosone.org/article/info:doi/10.1371/journal.pone.0126946#pone.0126946.ref057\" target=\"_blank\">57</a>]; (vi) ref [<a href=\"http://www.plosone.org/article/info:doi/10.1371/journal.pone.0126946#pone.0126946.ref061\" target=\"_blank\">61</a>]; (vii) ref [<a href=\"http://www.plosone.org/article/info:doi/10.1371/journal.pone.0126946#pone.0126946.ref062\" target=\"_blank\">62</a>]. Italic number 1–14 indicate the locations of the sites used for a case study on Eocene meridional temperature, see <a href=\"http://www.plosone.org/article/info:doi/10.1371/journal.pone.0126946#pone.0126946.g005\" target=\"_blank\">Fig 5</a>, and <a href=\"http://www.plosone.org/article/info:doi/10.1371/journal.pone.0126946#pone.0126946.t002\" target=\"_blank\">Table 2</a>.</p>", "links"=>[], "tags"=>["plate circuit", "Eocene sea surface temperatures", "tectonic plate reconstructions", "plate reconstructions", "paleolatitude", "mantle reference frame", "mantle reference frames", "Paleoclimate Studies Realistic appraisal", "plate tectonic reconstructions", "paleomagnetic reference frame"], "article_id"=>1444521, "categories"=>["Uncategorised"], "users"=>["Douwe J. J. van Hinsbergen", "Lennart V. de Groot", "Sebastiaan J. van Schaik", "Wim Spakman", "Peter K. Bijl", "Appy Sluijs", "Cor G. Langereis", "Henk Brinkhuis"], "doi"=>"https://dx.doi.org/10.1371/journal.pone.0126946.g002", "stats"=>{"downloads"=>5, "page_views"=>23, "likes"=>0}, "figshare_url"=>"https://figshare.com/articles/_A_Paleolatitude_Calculator_for_Paleoclimate_Studies_Fig_2_/1444521", "title"=>"A Paleolatitude Calculator for Paleoclimate Studies - Fig 2", "pos_in_sequence"=>0, "defined_type"=>1, "published_date"=>"2015-06-10 02:44:05"}
  • {"files"=>["https://ndownloader.figshare.com/files/2104822"], "description"=>"<p>In the top panel, site latitude and longitude is required (in decimal degrees), the age of the site, and the lower and upper age bounds. Center panel shows the paleolatitude with error bars in the period between the upper and lower bounds. The option ‘compute for full age range’ will calculate a paleolatitude curve using the full age range of the plate (fragment) on which the chosen site is located, which will appear in the center panel. Second tab in the center panel will provide a table with an output file for paleolatitudes with error bounds in the chosen time interval. Note that at the location of this site (e.g., close to a mid-ocean ridge) the plate may not have existed throughout this entire history. The bottom panel shows the location of the site on the modern topographic world map, as well as the plate (fragment) on which the site is located. Reprinted from <a href=\"http://www.paleolatitude.org\" target=\"_blank\">www.paleolatitude.org</a> under a CC BY license, with permission from S.J. van Schaik, original copyright 2014.</p>", "links"=>[], "tags"=>["plate circuit", "Eocene sea surface temperatures", "tectonic plate reconstructions", "plate reconstructions", "paleolatitude", "mantle reference frame", "mantle reference frames", "Paleoclimate Studies Realistic appraisal", "plate tectonic reconstructions", "paleomagnetic reference frame"], "article_id"=>1444522, "categories"=>["Uncategorised"], "users"=>["Douwe J. J. van Hinsbergen", "Lennart V. de Groot", "Sebastiaan J. van Schaik", "Wim Spakman", "Peter K. Bijl", "Appy Sluijs", "Cor G. Langereis", "Henk Brinkhuis"], "doi"=>"https://dx.doi.org/10.1371/journal.pone.0126946.g003", "stats"=>{"downloads"=>1, "page_views"=>14, "likes"=>0}, "figshare_url"=>"https://figshare.com/articles/_Screen_shot_of_www_paleolatitude_org_/1444522", "title"=>"Screen shot of www.paleolatitude.org.", "pos_in_sequence"=>0, "defined_type"=>1, "published_date"=>"2015-06-10 02:44:05"}
  • {"files"=>["https://ndownloader.figshare.com/files/2104823"], "description"=>"<p>Reconstruction made in <i>GPlates</i> from Seton and colleagues [<a href=\"http://www.plosone.org/article/info:doi/10.1371/journal.pone.0126946#pone.0126946.ref014\" target=\"_blank\">14</a>], with modifications as indicated in the main text, placed in the paleomagnetic reference frame of Torsvik and colleagues [<a href=\"http://www.plosone.org/article/info:doi/10.1371/journal.pone.0126946#pone.0126946.ref020\" target=\"_blank\">20</a>]. Absolute paleolongitude of the global plate motion chain is unconstrained, and irrelevant for paleoclimate reconstructions. Meridians are spaced with 30 degree intervals. Italic numbers 1–14 indicate the reconstructed locations of the sites used for a case study on Eocene meridional temperature, see <a href=\"http://www.plosone.org/article/info:doi/10.1371/journal.pone.0126946#pone.0126946.g005\" target=\"_blank\">Fig 5</a>, and <a href=\"http://www.plosone.org/article/info:doi/10.1371/journal.pone.0126946#pone.0126946.t002\" target=\"_blank\">Table 2</a>.</p>", "links"=>[], "tags"=>["plate circuit", "Eocene sea surface temperatures", "tectonic plate reconstructions", "plate reconstructions", "paleolatitude", "mantle reference frame", "mantle reference frames", "Paleoclimate Studies Realistic appraisal", "plate tectonic reconstructions", "paleomagnetic reference frame"], "article_id"=>1444523, "categories"=>["Uncategorised"], "users"=>["Douwe J. J. van Hinsbergen", "Lennart V. de Groot", "Sebastiaan J. van Schaik", "Wim Spakman", "Peter K. Bijl", "Appy Sluijs", "Cor G. Langereis", "Henk Brinkhuis"], "doi"=>"https://dx.doi.org/10.1371/journal.pone.0126946.g004", "stats"=>{"downloads"=>2, "page_views"=>22, "likes"=>0}, "figshare_url"=>"https://figshare.com/articles/_Plate_reconstruction_at_50_Ma_around_the_moment_of_the_Early_Eocene_Climate_Optimum_with_the_sites_used_for_sea_surface_temperature_estimates_in_Figs_1_and_5_/1444523", "title"=>"Plate reconstruction at 50 Ma, around the moment of the Early Eocene Climate Optimum, with the sites used for sea surface temperature estimates in Figs 1 and 5.", "pos_in_sequence"=>0, "defined_type"=>1, "published_date"=>"2015-06-10 02:44:05"}
  • {"files"=>["https://ndownloader.figshare.com/files/2104824"], "description"=>"<p>See text for full derivation of data. TEX<sub>86</sub>-derived SSTs (squares) were recalibrated to TEX<sub>86</sub>-H following Kim and colleagues [<a href=\"http://www.plosone.org/article/info:doi/10.1371/journal.pone.0126946#pone.0126946.ref094\" target=\"_blank\">94</a>]. (A) with paleolatitudes as published by Bijl and colleagues [<a href=\"http://www.plosone.org/article/info:doi/10.1371/journal.pone.0126946#pone.0126946.ref002\" target=\"_blank\">2</a>] and references therein, (B) with paleolatitudes and error bars using the paleolatitude calculator provided with this paper (<a href=\"http://www.paleolatitude.org\" target=\"_blank\">www.paleolatitude.org</a>), in the default reference frame of Torsvik et al. [<a href=\"http://www.plosone.org/article/info:doi/10.1371/journal.pone.0126946#pone.0126946.ref020\" target=\"_blank\">20</a>]. (C) comparison of paleolatitudes of the same paleotemperature data using paleomagnetic reference frames of Torsvik et al. [<a href=\"http://www.plosone.org/article/info:doi/10.1371/journal.pone.0126946#pone.0126946.ref020\" target=\"_blank\">20</a>], Besse and Courtillot [<a href=\"http://www.plosone.org/article/info:doi/10.1371/journal.pone.0126946#pone.0126946.ref018\" target=\"_blank\">18</a>] and Kent and Irving [<a href=\"http://www.plosone.org/article/info:doi/10.1371/journal.pone.0126946#pone.0126946.ref034\" target=\"_blank\">34</a>]. For data, see <a href=\"http://www.plosone.org/article/info:doi/10.1371/journal.pone.0126946#pone.0126946.t002\" target=\"_blank\">Table 2</a>, for present-day locations see <a href=\"http://www.plosone.org/article/info:doi/10.1371/journal.pone.0126946#pone.0126946.g002\" target=\"_blank\">Fig 2</a>, for reconstructed locations at 50 Ma see <a href=\"http://www.plosone.org/article/info:doi/10.1371/journal.pone.0126946#pone.0126946.g004\" target=\"_blank\">Fig 4</a>.</p>", "links"=>[], "tags"=>["plate circuit", "Eocene sea surface temperatures", "tectonic plate reconstructions", "plate reconstructions", "paleolatitude", "mantle reference frame", "mantle reference frames", "Paleoclimate Studies Realistic appraisal", "plate tectonic reconstructions", "paleomagnetic reference frame"], "article_id"=>1444524, "categories"=>["Uncategorised"], "users"=>["Douwe J. J. van Hinsbergen", "Lennart V. de Groot", "Sebastiaan J. van Schaik", "Wim Spakman", "Peter K. Bijl", "Appy Sluijs", "Cor G. Langereis", "Henk Brinkhuis"], "doi"=>"https://dx.doi.org/10.1371/journal.pone.0126946.g005", "stats"=>{"downloads"=>4, "page_views"=>18, "likes"=>0}, "figshare_url"=>"https://figshare.com/articles/_Latitudinal_sea_surface_temperature_SST_gradients_for_the_early_orange_and_middle_blue_Eocene_modified_from_Bijl_and_colleagues_2_/1444524", "title"=>"Latitudinal sea surface temperature (SST) gradients for the early- (orange) and middle (blue) Eocene (modified from Bijl and colleagues [2]).", "pos_in_sequence"=>0, "defined_type"=>1, "published_date"=>"2015-06-10 02:44:05"}
  • {"files"=>["https://ndownloader.figshare.com/files/2104825"], "description"=>"<p>Euler poles for all polygons relative to South Africa are given in <a href=\"http://www.plosone.org/article/info:doi/10.1371/journal.pone.0126946#pone.0126946.s001\" target=\"_blank\">S1</a>, <a href=\"http://www.plosone.org/article/info:doi/10.1371/journal.pone.0126946#pone.0126946.s002\" target=\"_blank\">S2</a>, and <a href=\"http://www.plosone.org/article/info:doi/10.1371/journal.pone.0126946#pone.0126946.s003\" target=\"_blank\">S3</a> Tables.</p><p>List of codes and associated polygons representing plates or plate fragments used to build the global plate motion chain of <a href=\"http://www.plosone.org/article/info:doi/10.1371/journal.pone.0126946#pone.0126946.g002\" target=\"_blank\">Fig 2</a>.</p>", "links"=>[], "tags"=>["plate circuit", "Eocene sea surface temperatures", "tectonic plate reconstructions", "plate reconstructions", "paleolatitude", "mantle reference frame", "mantle reference frames", "Paleoclimate Studies Realistic appraisal", "plate tectonic reconstructions", "paleomagnetic reference frame"], "article_id"=>1444525, "categories"=>["Uncategorised"], "users"=>["Douwe J. J. van Hinsbergen", "Lennart V. de Groot", "Sebastiaan J. van Schaik", "Wim Spakman", "Peter K. Bijl", "Appy Sluijs", "Cor G. Langereis", "Henk Brinkhuis"], "doi"=>"https://dx.doi.org/10.1371/journal.pone.0126946.t001", "stats"=>{"downloads"=>10, "page_views"=>12, "likes"=>0}, "figshare_url"=>"https://figshare.com/articles/_List_of_codes_and_associated_polygons_representing_plates_or_plate_fragments_used_to_build_the_global_plate_motion_chain_of_Fig_2_/1444525", "title"=>"List of codes and associated polygons representing plates or plate fragments used to build the global plate motion chain of Fig 2.", "pos_in_sequence"=>0, "defined_type"=>3, "published_date"=>"2015-06-10 02:44:05"}
  • {"files"=>["https://ndownloader.figshare.com/files/2104826"], "description"=>"<p>Published paleolatitudes refer to values published by the original authors. Values in column paleolatitude.org and error are calculated using methods presented in this paper.</p><p>Locations, ages, sea surface temperature calculations with standard deviation, and paleolatitude values for sites used to calculate meridional temperature profiles for time slices in the Early (55–48 Ma) and Middle Eocene (45–39 Ma).</p>", "links"=>[], "tags"=>["plate circuit", "Eocene sea surface temperatures", "tectonic plate reconstructions", "plate reconstructions", "paleolatitude", "mantle reference frame", "mantle reference frames", "Paleoclimate Studies Realistic appraisal", "plate tectonic reconstructions", "paleomagnetic reference frame"], "article_id"=>1444526, "categories"=>["Uncategorised"], "users"=>["Douwe J. J. van Hinsbergen", "Lennart V. de Groot", "Sebastiaan J. van Schaik", "Wim Spakman", "Peter K. Bijl", "Appy Sluijs", "Cor G. Langereis", "Henk Brinkhuis"], "doi"=>"https://dx.doi.org/10.1371/journal.pone.0126946.t002", "stats"=>{"downloads"=>1, "page_views"=>18, "likes"=>0}, "figshare_url"=>"https://figshare.com/articles/_Locations_ages_sea_surface_temperature_calculations_with_standard_deviation_and_paleolatitude_values_for_sites_used_to_calculate_meridional_temperature_profiles_for_time_slices_in_the_Early_55_8211_48_Ma_and_Middle_Eocene_45_8211_39_Ma_/1444526", "title"=>"Locations, ages, sea surface temperature calculations with standard deviation, and paleolatitude values for sites used to calculate meridional temperature profiles for time slices in the Early (55–48 Ma) and Middle Eocene (45–39 Ma).", "pos_in_sequence"=>0, "defined_type"=>3, "published_date"=>"2015-06-10 02:44:05"}
  • {"files"=>["https://ndownloader.figshare.com/files/2104833", "https://ndownloader.figshare.com/files/2104834", "https://ndownloader.figshare.com/files/2104836", "https://ndownloader.figshare.com/files/2104837", "https://ndownloader.figshare.com/files/2104838"], "description"=>"<div><p>Realistic appraisal of paleoclimatic information obtained from a particular location requires accurate knowledge of its paleolatitude defined relative to the Earth’s spin-axis. This is crucial to, among others, correctly assess the amount of solar energy received at a location at the moment of sediment deposition. The paleolatitude of an arbitrary location can in principle be reconstructed from tectonic plate reconstructions that (1) restore the relative motions between plates based on (marine) magnetic anomalies, and (2) reconstruct all plates relative to the spin axis using a paleomagnetic reference frame based on a global apparent polar wander path. Whereas many studies do employ high-quality relative plate reconstructions, the necessity of using a paleomagnetic reference frame for climate studies rather than a mantle reference frame appears under-appreciated. In this paper, we briefly summarize the theory of plate tectonic reconstructions and their reference frames tailored towards applications of paleoclimate reconstruction, and show that using a mantle reference frame, which defines plate positions relative to the mantle, instead of a paleomagnetic reference frame may introduce errors in paleolatitude of more than 15° (>1500 km). This is because mantle reference frames cannot constrain, or are specifically corrected for the effects of true polar wander. We used the latest, state-of-the-art plate reconstructions to build a global plate circuit, and developed an online, user-friendly paleolatitude calculator for the last 200 million years by placing this plate circuit in three widely used global apparent polar wander paths. As a novelty, this calculator adds error bars to paleolatitude estimates that can be incorporated in climate modeling. The calculator is available at <a href=\"http://www.paleolatitude.org\" target=\"_blank\">www.paleolatitude.org</a>. We illustrate the use of the paleolatitude calculator by showing how an apparent wide spread in Eocene sea surface temperatures of southern high latitudes may be in part explained by a much wider paleolatitudinal distribution of sites than previously assumed.</p></div>", "links"=>[], "tags"=>["plate circuit", "Eocene sea surface temperatures", "tectonic plate reconstructions", "plate reconstructions", "paleolatitude", "mantle reference frame", "mantle reference frames", "Paleoclimate Studies Realistic appraisal", "plate tectonic reconstructions", "paleomagnetic reference frame"], "article_id"=>1444531, "categories"=>["Uncategorised"], "users"=>["Douwe J. J. van Hinsbergen", "Lennart V. de Groot", "Sebastiaan J. van Schaik", "Wim Spakman", "Peter K. Bijl", "Appy Sluijs", "Cor G. Langereis", "Henk Brinkhuis"], "doi"=>["https://dx.doi.org/10.1371/journal.pone.0126946.s001", "https://dx.doi.org/10.1371/journal.pone.0126946.s002", "https://dx.doi.org/10.1371/journal.pone.0126946.s003", "https://dx.doi.org/10.1371/journal.pone.0126946.s004", "https://dx.doi.org/10.1371/journal.pone.0126946.s005"], "stats"=>{"downloads"=>6, "page_views"=>6, "likes"=>0}, "figshare_url"=>"https://figshare.com/articles/_A_Paleolatitude_Calculator_for_Paleoclimate_Studies_/1444531", "title"=>"A Paleolatitude Calculator for Paleoclimate Studies", "pos_in_sequence"=>0, "defined_type"=>4, "published_date"=>"2015-06-10 02:44:05"}

PMC Usage Stats | Further Information

  • {"unique-ip"=>"13", "full-text"=>"11", "pdf"=>"3", "abstract"=>"0", "scanned-summary"=>"0", "scanned-page-browse"=>"0", "figure"=>"0", "supp-data"=>"0", "cited-by"=>"0", "year"=>"2015", "month"=>"7"}
  • {"unique-ip"=>"22", "full-text"=>"18", "pdf"=>"4", "abstract"=>"0", "scanned-summary"=>"0", "scanned-page-browse"=>"0", "figure"=>"0", "supp-data"=>"10", "cited-by"=>"0", "year"=>"2015", "month"=>"8"}
  • {"unique-ip"=>"21", "full-text"=>"22", "pdf"=>"1", "abstract"=>"0", "scanned-summary"=>"0", "scanned-page-browse"=>"0", "figure"=>"1", "supp-data"=>"0", "cited-by"=>"0", "year"=>"2015", "month"=>"9"}
  • {"unique-ip"=>"16", "full-text"=>"15", "pdf"=>"2", "abstract"=>"0", "scanned-summary"=>"0", "scanned-page-browse"=>"0", "figure"=>"4", "supp-data"=>"4", "cited-by"=>"0", "year"=>"2015", "month"=>"10"}
  • {"unique-ip"=>"31", "full-text"=>"21", "pdf"=>"10", "abstract"=>"0", "scanned-summary"=>"0", "scanned-page-browse"=>"0", "figure"=>"5", "supp-data"=>"0", "cited-by"=>"0", "year"=>"2016", "month"=>"1"}
  • {"unique-ip"=>"21", "full-text"=>"19", "pdf"=>"3", "abstract"=>"0", "scanned-summary"=>"0", "scanned-page-browse"=>"0", "figure"=>"0", "supp-data"=>"0", "cited-by"=>"0", "year"=>"2016", "month"=>"2"}
  • {"unique-ip"=>"35", "full-text"=>"34", "pdf"=>"7", "abstract"=>"0", "scanned-summary"=>"0", "scanned-page-browse"=>"0", "figure"=>"4", "supp-data"=>"0", "cited-by"=>"0", "year"=>"2015", "month"=>"11"}
  • {"unique-ip"=>"36", "full-text"=>"36", "pdf"=>"7", "abstract"=>"0", "scanned-summary"=>"0", "scanned-page-browse"=>"0", "figure"=>"4", "supp-data"=>"4", "cited-by"=>"0", "year"=>"2015", "month"=>"12"}
  • {"unique-ip"=>"26", "full-text"=>"30", "pdf"=>"2", "abstract"=>"0", "scanned-summary"=>"0", "scanned-page-browse"=>"0", "figure"=>"1", "supp-data"=>"0", "cited-by"=>"0", "year"=>"2016", "month"=>"3"}
  • {"unique-ip"=>"28", "full-text"=>"30", "pdf"=>"1", "abstract"=>"0", "scanned-summary"=>"0", "scanned-page-browse"=>"0", "figure"=>"1", "supp-data"=>"0", "cited-by"=>"0", "year"=>"2016", "month"=>"4"}
  • {"unique-ip"=>"30", "full-text"=>"32", "pdf"=>"2", "abstract"=>"0", "scanned-summary"=>"0", "scanned-page-browse"=>"0", "figure"=>"1", "supp-data"=>"0", "cited-by"=>"0", "year"=>"2016", "month"=>"5"}
  • {"unique-ip"=>"19", "full-text"=>"18", "pdf"=>"6", "abstract"=>"0", "scanned-summary"=>"0", "scanned-page-browse"=>"0", "figure"=>"0", "supp-data"=>"1", "cited-by"=>"0", "year"=>"2016", "month"=>"6"}
  • {"unique-ip"=>"14", "full-text"=>"21", "pdf"=>"0", "abstract"=>"0", "scanned-summary"=>"0", "scanned-page-browse"=>"0", "figure"=>"1", "supp-data"=>"0", "cited-by"=>"0", "year"=>"2016", "month"=>"7"}
  • {"unique-ip"=>"18", "full-text"=>"17", "pdf"=>"1", "abstract"=>"0", "scanned-summary"=>"0", "scanned-page-browse"=>"0", "figure"=>"0", "supp-data"=>"0", "cited-by"=>"0", "year"=>"2016", "month"=>"8"}
  • {"unique-ip"=>"36", "full-text"=>"39", "pdf"=>"8", "abstract"=>"0", "scanned-summary"=>"0", "scanned-page-browse"=>"0", "figure"=>"3", "supp-data"=>"3", "cited-by"=>"0", "year"=>"2016", "month"=>"9"}
  • {"unique-ip"=>"40", "full-text"=>"44", "pdf"=>"3", "abstract"=>"0", "scanned-summary"=>"0", "scanned-page-browse"=>"0", "figure"=>"1", "supp-data"=>"0", "cited-by"=>"0", "year"=>"2016", "month"=>"10"}
  • {"unique-ip"=>"34", "full-text"=>"41", "pdf"=>"3", "abstract"=>"0", "scanned-summary"=>"0", "scanned-page-browse"=>"0", "figure"=>"3", "supp-data"=>"6", "cited-by"=>"0", "year"=>"2016", "month"=>"11"}
  • {"unique-ip"=>"32", "full-text"=>"35", "pdf"=>"0", "abstract"=>"0", "scanned-summary"=>"0", "scanned-page-browse"=>"0", "figure"=>"5", "supp-data"=>"1", "cited-by"=>"0", "year"=>"2016", "month"=>"12"}
  • {"unique-ip"=>"49", "full-text"=>"52", "pdf"=>"0", "abstract"=>"0", "scanned-summary"=>"0", "scanned-page-browse"=>"0", "figure"=>"3", "supp-data"=>"0", "cited-by"=>"0", "year"=>"2017", "month"=>"1"}
  • {"unique-ip"=>"23", "full-text"=>"24", "pdf"=>"2", "abstract"=>"0", "scanned-summary"=>"0", "scanned-page-browse"=>"0", "figure"=>"3", "supp-data"=>"0", "cited-by"=>"0", "year"=>"2017", "month"=>"2"}
  • {"unique-ip"=>"52", "full-text"=>"59", "pdf"=>"0", "abstract"=>"0", "scanned-summary"=>"0", "scanned-page-browse"=>"0", "figure"=>"3", "supp-data"=>"0", "cited-by"=>"0", "year"=>"2017", "month"=>"3"}
  • {"unique-ip"=>"70", "full-text"=>"77", "pdf"=>"0", "abstract"=>"0", "scanned-summary"=>"0", "scanned-page-browse"=>"0", "figure"=>"2", "supp-data"=>"0", "cited-by"=>"0", "year"=>"2017", "month"=>"4"}
  • {"unique-ip"=>"28", "full-text"=>"33", "pdf"=>"5", "abstract"=>"0", "scanned-summary"=>"0", "scanned-page-browse"=>"0", "figure"=>"5", "supp-data"=>"1", "cited-by"=>"0", "year"=>"2017", "month"=>"5"}
  • {"unique-ip"=>"27", "full-text"=>"27", "pdf"=>"6", "abstract"=>"0", "scanned-summary"=>"0", "scanned-page-browse"=>"0", "figure"=>"7", "supp-data"=>"1", "cited-by"=>"0", "year"=>"2017", "month"=>"6"}
  • {"unique-ip"=>"18", "full-text"=>"19", "pdf"=>"0", "abstract"=>"0", "scanned-summary"=>"0", "scanned-page-browse"=>"0", "figure"=>"1", "supp-data"=>"0", "cited-by"=>"0", "year"=>"2017", "month"=>"7"}
  • {"unique-ip"=>"29", "full-text"=>"38", "pdf"=>"2", "abstract"=>"0", "scanned-summary"=>"0", "scanned-page-browse"=>"0", "figure"=>"1", "supp-data"=>"0", "cited-by"=>"0", "year"=>"2017", "month"=>"8"}
  • {"unique-ip"=>"40", "full-text"=>"43", "pdf"=>"2", "abstract"=>"0", "scanned-summary"=>"0", "scanned-page-browse"=>"0", "figure"=>"7", "supp-data"=>"0", "cited-by"=>"0", "year"=>"2017", "month"=>"9"}

Relative Metric

{"start_date"=>"2015-01-01T00:00:00Z", "end_date"=>"2015-12-31T00:00:00Z", "subject_areas"=>[]}
Loading … Spinner
There are currently no alerts