Why Do Kestrels Soar?
Publication Date
December 21, 2015
Journal
PLOS ONE
Authors
Jesús Hernández Pliego, Carlos Rodríguez & Javier Bustamante
Volume
10
Issue
12
Pages
e0145402
DOI
http://doi.org/10.1371/journal.pone.0145402
Publisher URL
http://journals.plos.org/plosone/article?id=10.1371%2Fjournal.pone.0145402
PubMed
http://www.ncbi.nlm.nih.gov/pubmed/26689780
PubMed Central
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4687047
Europe PMC
http://europepmc.org/abstract/MED/26689780
Web of Science
000367092300071
Scopus
84956899151
Mendeley
http://www.mendeley.com/research/kestrels-soar
Events
Loading … Spinner

Mendeley | Further Information

{"title"=>"Why Do Kestrels Soar?", "type"=>"journal", "authors"=>[{"first_name"=>"Jesús", "last_name"=>"Hernández-Pliego", "scopus_author_id"=>"55524213700"}, {"first_name"=>"Carlos", "last_name"=>"Rodríguez", "scopus_author_id"=>"56080672900"}, {"first_name"=>"Javier", "last_name"=>"Bustamante", "scopus_author_id"=>"7006455612"}], "year"=>2015, "source"=>"PLoS ONE", "identifiers"=>{"sgr"=>"84956899151", "doi"=>"10.1371/journal.pone.0145402", "pmid"=>"26689780", "pui"=>"608028464", "issn"=>"19326203", "scopus"=>"2-s2.0-84956899151"}, "id"=>"b6591063-ee89-3418-a855-c0622dc894b6", "abstract"=>"Individuals allocate considerable amounts of energy to movement, which ultimately affects their ability to survive and reproduce. Birds fly by flapping their wings, which is dependent on the chemical energy produced by muscle work, or use soaring-gliding flight, in which chemical energy is replaced with energy harvested from moving air masses, such as thermals. Flapping flight requires more energy than soaring-gliding flight, and this difference in the use of energy increases with body mass. However, soaring-gliding results in lower speeds than flapping, especially for small species. Birds therefore face a trade-off between energy and time costs when deciding which flight strategy to use. Raptors are a group of large birds that typically soar. As relatively light weight raptors, falcons can either soar on weak thermals or fly by flapping with low energy costs. In this paper, we study the flight behavior of the insectivorous lesser kestrel (Falco naumanni) during foraging trips and the influence of solar radiation, which we have adopted as a proxy for thermal formation, on kestrel flight variables. We tracked 35 individuals from two colonies using high frequency GPS-dataloggers over four consecutive breeding seasons. Contrary to expectations, kestrels relied heavily on thermal soaring when foraging, especially during periods of high solar radiation. This produced a circadian pattern in the kestrel flight strategy that led to a spatial segregation of foraging areas. Kestrels flapped towards foraging areas close to the colony when thermals were not available. However, as soon as thermals were formed, they soared on them towards foraging areas far from the colony, especially when they were surrounded by poor foraging habitats. This reduced the chick provisioning rate at the colony. Given that lesser kestrels have a preference for feeding on large insects, and considering the average distance they cover to capture them during foraging trips, to commute using flapping flight would result in a negative energy balance for the family group. Our results show that lesser kestrels prioritize saving energy when foraging, suggesting that kestrels are more energy than time-constrained during the breeding season.", "link"=>"http://www.mendeley.com/research/kestrels-soar", "reader_count"=>27, "reader_count_by_academic_status"=>{"Unspecified"=>2, "Student > Doctoral Student"=>1, "Researcher"=>3, "Student > Ph. D. Student"=>10, "Student > Postgraduate"=>1, "Other"=>1, "Student > Master"=>5, "Student > Bachelor"=>2, "Lecturer"=>1, "Professor"=>1}, "reader_count_by_user_role"=>{"Unspecified"=>2, "Student > Doctoral Student"=>1, "Researcher"=>3, "Student > Ph. D. Student"=>10, "Student > Postgraduate"=>1, "Other"=>1, "Student > Master"=>5, "Student > Bachelor"=>2, "Lecturer"=>1, "Professor"=>1}, "reader_count_by_subject_area"=>{"Engineering"=>1, "Unspecified"=>2, "Environmental Science"=>5, "Agricultural and Biological Sciences"=>16, "Social Sciences"=>1, "Earth and Planetary Sciences"=>2}, "reader_count_by_subdiscipline"=>{"Engineering"=>{"Engineering"=>1}, "Social Sciences"=>{"Social Sciences"=>1}, "Earth and Planetary Sciences"=>{"Earth and Planetary Sciences"=>2}, "Agricultural and Biological Sciences"=>{"Agricultural and Biological Sciences"=>16}, "Unspecified"=>{"Unspecified"=>2}, "Environmental Science"=>{"Environmental Science"=>5}}, "reader_count_by_country"=>{"United States"=>1, "United Kingdom"=>2, "Germany"=>2, "Spain"=>1}, "group_count"=>0}

CrossRef

DataCite | Further Information

Scopus | Further Information

{"@_fa"=>"true", "link"=>[{"@_fa"=>"true", "@ref"=>"self", "@href"=>"https://api.elsevier.com/content/abstract/scopus_id/84956899151"}, {"@_fa"=>"true", "@ref"=>"author-affiliation", "@href"=>"https://api.elsevier.com/content/abstract/scopus_id/84956899151?field=author,affiliation"}, {"@_fa"=>"true", "@ref"=>"scopus", "@href"=>"https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=84956899151&origin=inward"}, {"@_fa"=>"true", "@ref"=>"scopus-citedby", "@href"=>"https://www.scopus.com/inward/citedby.uri?partnerID=HzOxMe3b&scp=84956899151&origin=inward"}], "prism:url"=>"https://api.elsevier.com/content/abstract/scopus_id/84956899151", "dc:identifier"=>"SCOPUS_ID:84956899151", "eid"=>"2-s2.0-84956899151", "dc:title"=>"Why Do Kestrels Soar?", "dc:creator"=>"Hernández-Pliego J.", "prism:publicationName"=>"PLoS ONE", "prism:eIssn"=>"19326203", "prism:volume"=>"10", "prism:issueIdentifier"=>"12", "prism:pageRange"=>nil, "prism:coverDate"=>"2015-12-01", "prism:coverDisplayDate"=>"1 December 2015", "prism:doi"=>"10.1371/journal.pone.0145402", "citedby-count"=>"7", "affiliation"=>[{"@_fa"=>"true", "affilname"=>"CSIC- Estación Biológica de Doñana EBD", "affiliation-city"=>"Sevilla", "affiliation-country"=>"Spain"}], "pubmed-id"=>"26689780", "prism:aggregationType"=>"Journal", "subtype"=>"ar", "subtypeDescription"=>"Article", "article-number"=>"e0145402", "source-id"=>"10600153309"}

Facebook

  • {"url"=>"http%3A%2F%2Fjournals.plos.org%2Fplosone%2Farticle%3Fid%3D10.1371%252Fjournal.pone.0145402", "share_count"=>9, "like_count"=>28, "comment_count"=>4, "click_count"=>0, "total_count"=>41}

Twitter

Counter

  • {"month"=>"12", "year"=>"2015", "pdf_views"=>"40", "xml_views"=>"3", "html_views"=>"330"}
  • {"month"=>"1", "year"=>"2016", "pdf_views"=>"42", "xml_views"=>"0", "html_views"=>"269"}
  • {"month"=>"2", "year"=>"2016", "pdf_views"=>"4", "xml_views"=>"0", "html_views"=>"68"}
  • {"month"=>"3", "year"=>"2016", "pdf_views"=>"9", "xml_views"=>"0", "html_views"=>"56"}
  • {"month"=>"4", "year"=>"2016", "pdf_views"=>"7", "xml_views"=>"0", "html_views"=>"65"}
  • {"month"=>"5", "year"=>"2016", "pdf_views"=>"6", "xml_views"=>"0", "html_views"=>"15"}
  • {"month"=>"6", "year"=>"2016", "pdf_views"=>"8", "xml_views"=>"0", "html_views"=>"90"}
  • {"month"=>"7", "year"=>"2016", "pdf_views"=>"3", "xml_views"=>"0", "html_views"=>"78"}
  • {"month"=>"8", "year"=>"2016", "pdf_views"=>"0", "xml_views"=>"0", "html_views"=>"21"}
  • {"month"=>"9", "year"=>"2016", "pdf_views"=>"6", "xml_views"=>"0", "html_views"=>"39"}
  • {"month"=>"10", "year"=>"2016", "pdf_views"=>"7", "xml_views"=>"0", "html_views"=>"31"}
  • {"month"=>"11", "year"=>"2016", "pdf_views"=>"2", "xml_views"=>"0", "html_views"=>"65"}
  • {"month"=>"12", "year"=>"2016", "pdf_views"=>"2", "xml_views"=>"0", "html_views"=>"33"}
  • {"month"=>"1", "year"=>"2017", "pdf_views"=>"2", "xml_views"=>"0", "html_views"=>"38"}
  • {"month"=>"2", "year"=>"2017", "pdf_views"=>"4", "xml_views"=>"2", "html_views"=>"50"}
  • {"month"=>"3", "year"=>"2017", "pdf_views"=>"6", "xml_views"=>"1", "html_views"=>"40"}
  • {"month"=>"4", "year"=>"2017", "pdf_views"=>"14", "xml_views"=>"0", "html_views"=>"73"}
  • {"month"=>"5", "year"=>"2017", "pdf_views"=>"15", "xml_views"=>"1", "html_views"=>"61"}
  • {"month"=>"6", "year"=>"2017", "pdf_views"=>"8", "xml_views"=>"2", "html_views"=>"53"}
  • {"month"=>"7", "year"=>"2017", "pdf_views"=>"46", "xml_views"=>"32", "html_views"=>"40"}
  • {"month"=>"8", "year"=>"2017", "pdf_views"=>"1", "xml_views"=>"1", "html_views"=>"31"}
  • {"month"=>"9", "year"=>"2017", "pdf_views"=>"0", "xml_views"=>"2", "html_views"=>"47"}
  • {"month"=>"10", "year"=>"2017", "pdf_views"=>"13", "xml_views"=>"8", "html_views"=>"24"}

Figshare

  • {"files"=>["https://ndownloader.figshare.com/files/2613162"], "description"=>"<p>The dashed lines represent the median value of flight variables. Sample size = 2142 foraging trips.</p>", "links"=>[], "tags"=>["thermal", "light weight raptors", "chemical energy", "foraging trips", "kestrel flight variables", "kestrel flight strategy", "foraging areas"], "article_id"=>1627808, "categories"=>["Uncategorised"], "users"=>["Jesús Hernández-Pliego", "Carlos Rodríguez", "Javier Bustamante"], "doi"=>"https://dx.doi.org/10.1371/journal.pone.0145402.g006", "stats"=>{"downloads"=>1, "page_views"=>0, "likes"=>0}, "figshare_url"=>"https://figshare.com/articles/_Frequency_distributions_of_maximum_distance_left_panels_and_duration_right_panels_of_lesser_kestrel_foraging_trips_from_the_Silo_colony_upper_panels_and_the_EBD_colony_lower_panels_/1627808", "title"=>"Frequency distributions of maximum distance (left panels) and duration (right panels) of lesser kestrel foraging trips from the Silo colony (upper panels) and the EBD colony (lower panels).", "pos_in_sequence"=>0, "defined_type"=>1, "published_date"=>"2015-12-23 10:06:32"}
  • {"files"=>["https://ndownloader.figshare.com/files/2613164"], "description"=>"<p>Penalized smoothing splines of 1 and 2.72 degrees of freedom were adjusted to solar radiation for the Silo and the EBD colonies, respectively. Grey shading represents the standard error of the mean effect. Sample size = 2142 foraging trips.</p>", "links"=>[], "tags"=>["thermal", "light weight raptors", "chemical energy", "foraging trips", "kestrel flight variables", "kestrel flight strategy", "foraging areas"], "article_id"=>1627810, "categories"=>["Uncategorised"], "users"=>["Jesús Hernández-Pliego", "Carlos Rodríguez", "Javier Bustamante"], "doi"=>"https://dx.doi.org/10.1371/journal.pone.0145402.g007", "stats"=>{"downloads"=>1, "page_views"=>0, "likes"=>0}, "figshare_url"=>"https://figshare.com/articles/_Partial_effects_of_solar_radiation_on_maximum_distance_from_the_colony_of_lesser_kestrel_foraging_trips_for_individuals_from_the_Silo_colony_upper_panel_and_from_the_EBD_colony_lower_panel_/1627810", "title"=>"Partial effects of solar radiation on maximum distance from the colony of lesser kestrel foraging trips for individuals from the Silo colony (upper panel) and from the EBD colony (lower panel).", "pos_in_sequence"=>0, "defined_type"=>1, "published_date"=>"2015-12-23 10:06:32"}
  • {"files"=>["https://ndownloader.figshare.com/files/2613166"], "description"=>"<p>Penalized smoothing splines of 1 and 2.52 degrees of freedom were adjusted to solar radiation for the Silo and the EBD colonies, respectively. Grey shading represents the standard error of the mean effect. Sample size = 2142 foraging trips.</p>", "links"=>[], "tags"=>["thermal", "light weight raptors", "chemical energy", "foraging trips", "kestrel flight variables", "kestrel flight strategy", "foraging areas"], "article_id"=>1627812, "categories"=>["Uncategorised"], "users"=>["Jesús Hernández-Pliego", "Carlos Rodríguez", "Javier Bustamante"], "doi"=>"https://dx.doi.org/10.1371/journal.pone.0145402.g008", "stats"=>{"downloads"=>0, "page_views"=>0, "likes"=>0}, "figshare_url"=>"https://figshare.com/articles/_Partial_effects_of_solar_radiation_on_duration_of_lesser_kestrel_foraging_trips_for_individuals_from_the_Silo_colony_upper_panel_and_from_the_EBD_colony_lower_panel_/1627812", "title"=>"Partial effects of solar radiation on duration of lesser kestrel foraging trips for individuals from the Silo colony (upper panel) and from the EBD colony (lower panel).", "pos_in_sequence"=>0, "defined_type"=>1, "published_date"=>"2015-12-23 10:06:32"}
  • {"files"=>["https://ndownloader.figshare.com/files/2613222"], "description"=>"<div><p>Individuals allocate considerable amounts of energy to movement, which ultimately affects their ability to survive and reproduce. Birds fly by flapping their wings, which is dependent on the chemical energy produced by muscle work, or use soaring-gliding flight, in which chemical energy is replaced with energy harvested from moving air masses, such as thermals. Flapping flight requires more energy than soaring-gliding flight, and this difference in the use of energy increases with body mass. However, soaring-gliding results in lower speeds than flapping, especially for small species. Birds therefore face a trade-off between energy and time costs when deciding which flight strategy to use. Raptors are a group of large birds that typically soar. As relatively light weight raptors, falcons can either soar on weak thermals or fly by flapping with low energy costs. In this paper, we study the flight behavior of the insectivorous lesser kestrel (<i>Falco naumanni</i>) during foraging trips and the influence of solar radiation, which we have adopted as a proxy for thermal formation, on kestrel flight variables. We tracked 35 individuals from two colonies using high frequency GPS-dataloggers over four consecutive breeding seasons. Contrary to expectations, kestrels relied heavily on thermal soaring when foraging, especially during periods of high solar radiation. This produced a circadian pattern in the kestrel flight strategy that led to a spatial segregation of foraging areas. Kestrels flapped towards foraging areas close to the colony when thermals were not available. However, as soon as thermals were formed, they soared on them towards foraging areas far from the colony, especially when they were surrounded by poor foraging habitats. This reduced the chick provisioning rate at the colony. Given that lesser kestrels have a preference for feeding on large insects, and considering the average distance they cover to capture them during foraging trips, to commute using flapping flight would result in a negative energy balance for the family group. Our results show that lesser kestrels prioritize saving energy when foraging, suggesting that kestrels are more energy than time-constrained during the breeding season.</p></div>", "links"=>[], "tags"=>["thermal", "light weight raptors", "chemical energy", "foraging trips", "kestrel flight variables", "kestrel flight strategy", "foraging areas"], "article_id"=>1627856, "categories"=>["Uncategorised"], "users"=>["Jesús Hernández-Pliego", "Carlos Rodríguez", "Javier Bustamante"], "doi"=>"https://dx.doi.org/10.1371/journal.pone.0145402", "stats"=>{"downloads"=>2, "page_views"=>61, "likes"=>0}, "figshare_url"=>"https://figshare.com/articles/_Why_Do_Kestrels_Soar_/1627856", "title"=>"Why Do Kestrels Soar?", "pos_in_sequence"=>0, "defined_type"=>2, "published_date"=>"2015-12-23 10:06:34"}
  • {"files"=>["https://ndownloader.figshare.com/files/2613151"], "description"=>"<p>The white star indicates the location of the colony in each panel. Good foraging habitats for the lesser kestrel are represented by shades of yellow and poor foraging habitats represented by shades of blue.</p>", "links"=>[], "tags"=>["thermal", "light weight raptors", "chemical energy", "foraging trips", "kestrel flight variables", "kestrel flight strategy", "foraging areas"], "article_id"=>1627800, "categories"=>["Uncategorised"], "users"=>["Jesús Hernández-Pliego", "Carlos Rodríguez", "Javier Bustamante"], "doi"=>"https://dx.doi.org/10.1371/journal.pone.0145402.g001", "stats"=>{"downloads"=>1, "page_views"=>0, "likes"=>0}, "figshare_url"=>"https://figshare.com/articles/_Land_uses_within_a_4_km_buffer_around_the_two_study_colonies_Silo_colony_A_and_EBD_colony_B_/1627800", "title"=>"Land uses within a 4 km-buffer around the two study colonies: Silo colony (A) and EBD colony (B).", "pos_in_sequence"=>0, "defined_type"=>1, "published_date"=>"2015-12-23 10:06:31"}
  • {"files"=>["https://ndownloader.figshare.com/files/2613153"], "description"=>"<p>(A) The white star represents the breeding colony. Each location of the path is colored according to flight altitude above ground level. Black arrows indicate movement direction. Red and blue boxes mark thermal soaring events. (B) Zoomed view of the thermal soaring event included in the red box. Locations are represented by triangles pointing to the direction of movement and its color indicates the circling direction either clockwise (red) or counterclockwise (blue). (C) Altitude and (D) climb speed profiles of the foraging trip. Red and blue shaded areas represent the thermal soaring events included in the boxes of panel A.</p>", "links"=>[], "tags"=>["thermal", "light weight raptors", "chemical energy", "foraging trips", "kestrel flight variables", "kestrel flight strategy", "foraging areas"], "article_id"=>1627802, "categories"=>["Uncategorised"], "users"=>["Jesús Hernández-Pliego", "Carlos Rodríguez", "Javier Bustamante"], "doi"=>"https://dx.doi.org/10.1371/journal.pone.0145402.g002", "stats"=>{"downloads"=>1, "page_views"=>0, "likes"=>0}, "figshare_url"=>"https://figshare.com/articles/_Track_of_a_lesser_kestrel_foraging_trip_using_thermal_soaring_along_the_commuting_flights_/1627802", "title"=>"Track of a lesser kestrel foraging trip using thermal soaring along the commuting flights.", "pos_in_sequence"=>0, "defined_type"=>1, "published_date"=>"2015-12-23 10:06:32"}
  • {"files"=>["https://ndownloader.figshare.com/files/2613155"], "description"=>"<p>Solar radiation is presented in categories of 200 Wh/m<sup>2</sup>. Numbers of commuting flights, tracking hours and tracked lesser kestrels per category are indicated above the bars.</p>", "links"=>[], "tags"=>["thermal", "light weight raptors", "chemical energy", "foraging trips", "kestrel flight variables", "kestrel flight strategy", "foraging areas"], "article_id"=>1627804, "categories"=>["Uncategorised"], "users"=>["Jesús Hernández-Pliego", "Carlos Rodríguez", "Javier Bustamante"], "doi"=>"https://dx.doi.org/10.1371/journal.pone.0145402.g003", "stats"=>{"downloads"=>2, "page_views"=>0, "likes"=>0}, "figshare_url"=>"https://figshare.com/articles/_Relative_frequency_of_commuting_flights_recorded_at_1_second_intervals_with_and_without_thermal_soaring_events_in_relation_to_solar_radiation_/1627804", "title"=>"Relative frequency of commuting flights recorded at 1-second intervals with and without thermal soaring events in relation to solar radiation.", "pos_in_sequence"=>0, "defined_type"=>1, "published_date"=>"2015-12-23 10:06:32"}
  • {"files"=>["https://ndownloader.figshare.com/files/2613160"], "description"=>"<p>Circles represent the observed maximum altitude of commuting flights and the solid line represents the model prediction. Sample size = 2891 commuting flights.</p>", "links"=>[], "tags"=>["thermal", "light weight raptors", "chemical energy", "foraging trips", "kestrel flight variables", "kestrel flight strategy", "foraging areas"], "article_id"=>1627806, "categories"=>["Uncategorised"], "users"=>["Jesús Hernández-Pliego", "Carlos Rodríguez", "Javier Bustamante"], "doi"=>"https://dx.doi.org/10.1371/journal.pone.0145402.g004", "stats"=>{"downloads"=>1, "page_views"=>0, "likes"=>0}, "figshare_url"=>"https://figshare.com/articles/_Effect_of_solar_radiation_on_maximum_flight_altitude_of_lesser_kestrels_along_commuting_flights_predicted_by_the_GLMM_/1627806", "title"=>"Effect of solar radiation on maximum flight altitude of lesser kestrels along commuting flights predicted by the GLMM.", "pos_in_sequence"=>0, "defined_type"=>1, "published_date"=>"2015-12-23 10:06:34"}
  • {"files"=>["https://ndownloader.figshare.com/files/2613161"], "description"=>"<p>A penalized smoothing spline of 3.12 degrees of freedom was adjusted to solar radiation. Grey shading represents the standard error of the mean effect. Sample size = 2891 commuting flights.</p>", "links"=>[], "tags"=>["thermal", "light weight raptors", "chemical energy", "foraging trips", "kestrel flight variables", "kestrel flight strategy", "foraging areas"], "article_id"=>1627807, "categories"=>["Uncategorised"], "users"=>["Jesús Hernández-Pliego", "Carlos Rodríguez", "Javier Bustamante"], "doi"=>"https://dx.doi.org/10.1371/journal.pone.0145402.g005", "stats"=>{"downloads"=>1, "page_views"=>0, "likes"=>0}, "figshare_url"=>"https://figshare.com/articles/_Partial_effect_of_solar_radiation_in_the_model_fitted_to_mean_cross_country_speed_of_lesser_kestrel_commuting_flights_/1627807", "title"=>"Partial effect of solar radiation in the model fitted to mean cross-country speed of lesser kestrel commuting flights.", "pos_in_sequence"=>0, "defined_type"=>1, "published_date"=>"2015-12-23 10:06:33"}

PMC Usage Stats | Further Information

  • {"unique-ip"=>"12", "full-text"=>"12", "pdf"=>"3", "abstract"=>"0", "scanned-summary"=>"0", "scanned-page-browse"=>"0", "figure"=>"4", "supp-data"=>"1", "cited-by"=>"0", "year"=>"2016", "month"=>"2"}
  • {"unique-ip"=>"18", "full-text"=>"15", "pdf"=>"7", "abstract"=>"0", "scanned-summary"=>"0", "scanned-page-browse"=>"0", "figure"=>"7", "supp-data"=>"16", "cited-by"=>"0", "year"=>"2016", "month"=>"1"}
  • {"unique-ip"=>"27", "full-text"=>"25", "pdf"=>"8", "abstract"=>"0", "scanned-summary"=>"0", "scanned-page-browse"=>"0", "figure"=>"5", "supp-data"=>"3", "cited-by"=>"0", "year"=>"2016", "month"=>"3"}
  • {"unique-ip"=>"11", "full-text"=>"7", "pdf"=>"1", "abstract"=>"0", "scanned-summary"=>"0", "scanned-page-browse"=>"0", "figure"=>"8", "supp-data"=>"7", "cited-by"=>"0", "year"=>"2016", "month"=>"4"}
  • {"unique-ip"=>"8", "full-text"=>"9", "pdf"=>"1", "abstract"=>"0", "scanned-summary"=>"0", "scanned-page-browse"=>"0", "figure"=>"0", "supp-data"=>"0", "cited-by"=>"0", "year"=>"2016", "month"=>"5"}
  • {"unique-ip"=>"3", "full-text"=>"3", "pdf"=>"0", "abstract"=>"0", "scanned-summary"=>"0", "scanned-page-browse"=>"0", "figure"=>"0", "supp-data"=>"0", "cited-by"=>"0", "year"=>"2016", "month"=>"6"}
  • {"unique-ip"=>"10", "full-text"=>"4", "pdf"=>"1", "abstract"=>"0", "scanned-summary"=>"0", "scanned-page-browse"=>"0", "figure"=>"5", "supp-data"=>"0", "cited-by"=>"0", "year"=>"2016", "month"=>"7"}
  • {"unique-ip"=>"4", "full-text"=>"3", "pdf"=>"1", "abstract"=>"0", "scanned-summary"=>"0", "scanned-page-browse"=>"0", "figure"=>"0", "supp-data"=>"0", "cited-by"=>"0", "year"=>"2016", "month"=>"8"}
  • {"unique-ip"=>"6", "full-text"=>"6", "pdf"=>"0", "abstract"=>"0", "scanned-summary"=>"0", "scanned-page-browse"=>"0", "figure"=>"4", "supp-data"=>"0", "cited-by"=>"0", "year"=>"2016", "month"=>"9"}
  • {"unique-ip"=>"19", "full-text"=>"35", "pdf"=>"2", "abstract"=>"0", "scanned-summary"=>"0", "scanned-page-browse"=>"0", "figure"=>"16", "supp-data"=>"6", "cited-by"=>"0", "year"=>"2016", "month"=>"10"}
  • {"unique-ip"=>"10", "full-text"=>"17", "pdf"=>"0", "abstract"=>"0", "scanned-summary"=>"0", "scanned-page-browse"=>"0", "figure"=>"17", "supp-data"=>"1", "cited-by"=>"0", "year"=>"2016", "month"=>"11"}
  • {"unique-ip"=>"12", "full-text"=>"14", "pdf"=>"1", "abstract"=>"0", "scanned-summary"=>"0", "scanned-page-browse"=>"0", "figure"=>"11", "supp-data"=>"0", "cited-by"=>"0", "year"=>"2016", "month"=>"12"}
  • {"unique-ip"=>"11", "full-text"=>"5", "pdf"=>"0", "abstract"=>"0", "scanned-summary"=>"0", "scanned-page-browse"=>"0", "figure"=>"0", "supp-data"=>"0", "cited-by"=>"0", "year"=>"2017", "month"=>"1"}
  • {"unique-ip"=>"2", "full-text"=>"1", "pdf"=>"2", "abstract"=>"0", "scanned-summary"=>"0", "scanned-page-browse"=>"0", "figure"=>"0", "supp-data"=>"0", "cited-by"=>"0", "year"=>"2017", "month"=>"2"}
  • {"unique-ip"=>"1", "full-text"=>"1", "pdf"=>"0", "abstract"=>"0", "scanned-summary"=>"0", "scanned-page-browse"=>"0", "figure"=>"0", "supp-data"=>"0", "cited-by"=>"0", "year"=>"2017", "month"=>"3"}
  • {"unique-ip"=>"10", "full-text"=>"7", "pdf"=>"3", "abstract"=>"0", "scanned-summary"=>"0", "scanned-page-browse"=>"0", "figure"=>"0", "supp-data"=>"0", "cited-by"=>"0", "year"=>"2017", "month"=>"4"}
  • {"unique-ip"=>"5", "full-text"=>"5", "pdf"=>"1", "abstract"=>"0", "scanned-summary"=>"0", "scanned-page-browse"=>"0", "figure"=>"1", "supp-data"=>"0", "cited-by"=>"0", "year"=>"2017", "month"=>"5"}
  • {"unique-ip"=>"5", "full-text"=>"5", "pdf"=>"0", "abstract"=>"0", "scanned-summary"=>"0", "scanned-page-browse"=>"0", "figure"=>"0", "supp-data"=>"0", "cited-by"=>"0", "year"=>"2017", "month"=>"6"}
  • {"unique-ip"=>"1", "full-text"=>"1", "pdf"=>"0", "abstract"=>"0", "scanned-summary"=>"0", "scanned-page-browse"=>"0", "figure"=>"0", "supp-data"=>"0", "cited-by"=>"0", "year"=>"2017", "month"=>"7"}
  • {"unique-ip"=>"5", "full-text"=>"5", "pdf"=>"1", "abstract"=>"0", "scanned-summary"=>"0", "scanned-page-browse"=>"0", "figure"=>"0", "supp-data"=>"0", "cited-by"=>"0", "year"=>"2017", "month"=>"8"}
  • {"unique-ip"=>"2", "full-text"=>"2", "pdf"=>"1", "abstract"=>"0", "scanned-summary"=>"0", "scanned-page-browse"=>"0", "figure"=>"0", "supp-data"=>"0", "cited-by"=>"0", "year"=>"2017", "month"=>"9"}

Relative Metric

{"start_date"=>"2015-01-01T00:00:00Z", "end_date"=>"2015-12-31T00:00:00Z", "subject_areas"=>[]}
Loading … Spinner
There are currently no alerts