Are School Absences Correlated with Influenza Surveillance Data in England? Results from Decipher My Data—A Research Project Conducted through Scientific Engagement with Schools
Events
Loading … Spinner

Mendeley | Further Information

{"title"=>"Are school absences correlated with influenza surveillance data in England? Results from decipher my data - A research project conducted through scientific engagement with schools", "type"=>"journal", "authors"=>[{"first_name"=>"Robert W.", "last_name"=>"Aldridge", "scopus_author_id"=>"55217361200"}, {"first_name"=>"Andrew C.", "last_name"=>"Hayward", "scopus_author_id"=>"35944648500"}, {"first_name"=>"Nigel", "last_name"=>"Field", "scopus_author_id"=>"57170036200"}, {"first_name"=>"Charlotte", "last_name"=>"Warren-Gash", "scopus_author_id"=>"23471079400"}, {"first_name"=>"Colette", "last_name"=>"Smith", "scopus_author_id"=>"56972817400"}, {"first_name"=>"Richard", "last_name"=>"Pebody", "scopus_author_id"=>"6603775780"}, {"first_name"=>"Declan", "last_name"=>"Fleming", "scopus_author_id"=>"56744090000"}, {"first_name"=>"Shane", "last_name"=>"McCracken", "scopus_author_id"=>"56744451600"}], "year"=>2016, "source"=>"PLoS ONE", "identifiers"=>{"scopus"=>"2-s2.0-84960852692", "sgr"=>"84960852692", "pmid"=>"26933880", "issn"=>"19326203", "pui"=>"608947579", "doi"=>"10.1371/journal.pone.0146964", "isbn"=>"1932-6203"}, "id"=>"dd88b686-54a5-3bf3-97c4-427f634741c2", "abstract"=>"BACKGROUND School aged children are a key link in the transmission of influenza. Most cases have little or no interaction with health services and are therefore missed by the majority of existing surveillance systems. As part of a public engagement with science project, this study aimed to establish a web-based system for the collection of routine school absence data and determine if school absence prevalence was correlated with established surveillance measures for circulating influenza. METHODS We collected data for two influenza seasons (2011/12 and 2012/13). The primary outcome was daily school absence prevalence (weighted to make it nationally representative) for children aged 11 to 16. School absence prevalence was triangulated graphically and through univariable linear regression to Royal College of General Practitioners (RCGP) influenza like illness (ILI) episode incidence rate, national microbiological surveillance data on the proportion of samples positive for influenza (A+B) and with Rhinovirus, RSV and laboratory confirmed cases of Norovirus. RESULTS 27 schools submitted data over two respiratory seasons. During the first season, levels of influenza measured by school absence prevalence and established surveillance were low. In the 2012/13 season, a peak of school absence prevalence occurred in week 51, and week 1 in RCGP ILI surveillance data. Linear regression showed a strong association between the school absence prevalence and RCGP ILI (All ages, and 5-14 year olds), laboratory confirmed cases of influenza A & B, and weak evidence for a linear association with Rhinovirus and Norovirus. INTERPRETATION This study provides initial evidence for using routine school illness absence prevalence as a novel tool for influenza surveillance. The network of web-based data collection platforms we established through active engagement provides an innovative model of conducting scientific research and could be used for a wide range of infectious disease studies in the future.", "link"=>"http://www.mendeley.com/research/school-absences-correlated-influenza-surveillance-data-england-results-decipher-data-research-projec", "reader_count"=>15, "reader_count_by_academic_status"=>{"Student > Doctoral Student"=>2, "Student > Ph. D. Student"=>4, "Student > Master"=>4, "Professor"=>2, "Researcher"=>2, "Unspecified"=>1}, "reader_count_by_user_role"=>{"Student > Doctoral Student"=>2, "Student > Ph. D. Student"=>4, "Student > Master"=>4, "Professor"=>2, "Researcher"=>2, "Unspecified"=>1}, "reader_count_by_subject_area"=>{"Agricultural and Biological Sciences"=>2, "Medicine and Dentistry"=>8, "Immunology and Microbiology"=>3, "Economics, Econometrics and Finance"=>1, "Unspecified"=>1}, "reader_count_by_subdiscipline"=>{"Medicine and Dentistry"=>{"Medicine and Dentistry"=>8}, "Immunology and Microbiology"=>{"Immunology and Microbiology"=>3}, "Economics, Econometrics and Finance"=>{"Economics, Econometrics and Finance"=>1}, "Agricultural and Biological Sciences"=>{"Agricultural and Biological Sciences"=>2}, "Unspecified"=>{"Unspecified"=>1}}, "reader_count_by_country"=>{"United Kingdom"=>1}, "group_count"=>1}

Scopus | Further Information

{"@_fa"=>"true", "link"=>[{"@_fa"=>"true", "@ref"=>"self", "@href"=>"https://api.elsevier.com/content/abstract/scopus_id/84960852692"}, {"@_fa"=>"true", "@ref"=>"author-affiliation", "@href"=>"https://api.elsevier.com/content/abstract/scopus_id/84960852692?field=author,affiliation"}, {"@_fa"=>"true", "@ref"=>"scopus", "@href"=>"https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=84960852692&origin=inward"}, {"@_fa"=>"true", "@ref"=>"scopus-citedby", "@href"=>"https://www.scopus.com/inward/citedby.uri?partnerID=HzOxMe3b&scp=84960852692&origin=inward"}], "prism:url"=>"https://api.elsevier.com/content/abstract/scopus_id/84960852692", "dc:identifier"=>"SCOPUS_ID:84960852692", "eid"=>"2-s2.0-84960852692", "dc:title"=>"Are school absences correlated with influenza surveillance data in England? Results from decipher my data - A research project conducted through scientific engagement with schools", "dc:creator"=>"Aldridge R.", "prism:publicationName"=>"PLoS ONE", "prism:eIssn"=>"19326203", "prism:volume"=>"11", "prism:issueIdentifier"=>"3", "prism:pageRange"=>nil, "prism:coverDate"=>"2016-03-01", "prism:coverDisplayDate"=>"March 2016", "prism:doi"=>"10.1371/journal.pone.0146964", "citedby-count"=>"0", "affiliation"=>[{"@_fa"=>"true", "affilname"=>"UCL", "affiliation-city"=>"London", "affiliation-country"=>"United Kingdom"}, {"@_fa"=>"true", "affilname"=>"UCL", "affiliation-city"=>"London", "affiliation-country"=>"United Kingdom"}], "prism:aggregationType"=>"Journal", "subtype"=>"ar", "subtypeDescription"=>"Article", "article-number"=>"e0146964", "source-id"=>"10600153309"}

Facebook

  • {"url"=>"http%3A%2F%2Fjournals.plos.org%2Fplosone%2Farticle%3Fid%3D10.1371%252Fjournal.pone.0146964", "share_count"=>1, "like_count"=>8, "comment_count"=>4, "click_count"=>0, "total_count"=>13}

Twitter

Counter

  • {"month"=>"3", "year"=>"2016", "pdf_views"=>"36", "xml_views"=>"0", "html_views"=>"557"}
  • {"month"=>"4", "year"=>"2016", "pdf_views"=>"8", "xml_views"=>"1", "html_views"=>"50"}
  • {"month"=>"5", "year"=>"2016", "pdf_views"=>"4", "xml_views"=>"0", "html_views"=>"44"}
  • {"month"=>"6", "year"=>"2016", "pdf_views"=>"4", "xml_views"=>"0", "html_views"=>"94"}
  • {"month"=>"7", "year"=>"2016", "pdf_views"=>"4", "xml_views"=>"0", "html_views"=>"27"}
  • {"month"=>"8", "year"=>"2016", "pdf_views"=>"5", "xml_views"=>"0", "html_views"=>"27"}
  • {"month"=>"9", "year"=>"2016", "pdf_views"=>"6", "xml_views"=>"0", "html_views"=>"97"}
  • {"month"=>"10", "year"=>"2016", "pdf_views"=>"7", "xml_views"=>"0", "html_views"=>"54"}
  • {"month"=>"11", "year"=>"2016", "pdf_views"=>"3", "xml_views"=>"0", "html_views"=>"51"}
  • {"month"=>"12", "year"=>"2016", "pdf_views"=>"0", "xml_views"=>"0", "html_views"=>"72"}
  • {"month"=>"1", "year"=>"2017", "pdf_views"=>"5", "xml_views"=>"0", "html_views"=>"55"}
  • {"month"=>"2", "year"=>"2017", "pdf_views"=>"6", "xml_views"=>"0", "html_views"=>"55"}
  • {"month"=>"3", "year"=>"2017", "pdf_views"=>"5", "xml_views"=>"0", "html_views"=>"66"}

Figshare

  • {"files"=>["https://ndownloader.figshare.com/files/4803955"], "description"=>"<p>Number of schools submitting absence data each week.</p>", "links"=>[], "tags"=>["Norovirus.Results 27 schools", "RCGP ILI surveillance data", "school absence prevalence", "School Absences Correlated", "surveillance measures", "week 1", "surveillance data", "novel tool", "influenza surveillance", "Scientific Engagement", "Linear regression", "school absence data", "health services", "Influenza Surveillance Data", "episode incidence rate", "16. School absence prevalence", "General Practitioners", "surveillance systems", "disease studies", "Norovirus.InterpretationThis study", "school illness absence prevalence", "RCGP ILI", "Schools BackgroundSchool", "Royal College", "science project", "RSV"], "article_id"=>3090673, "categories"=>["Neuroscience", "Biotechnology", "Evolutionary Biology", "Environmental Sciences not elsewhere classified", "Immunology", "Cancer", "Science Policy", "Infectious Diseases", "Virology", "Computational Biology"], "users"=>["Robert W. Aldridge", "Andrew C. Hayward", "Nigel Field", "Charlotte Warren-Gash", "Colette Smith", "Richard Pebody", "Declan Fleming", "Shane McCracken"], "doi"=>"https://dx.doi.org/10.1371/journal.pone.0146964.g001", "stats"=>{"downloads"=>0, "page_views"=>0, "likes"=>0}, "figshare_url"=>"https://figshare.com/articles/Number_of_schools_submitting_absence_data_each_week_/3090673", "title"=>"Number of schools submitting absence data each week.", "pos_in_sequence"=>0, "defined_type"=>1, "published_date"=>"2016-03-02 07:12:28"}
  • {"files"=>["https://ndownloader.figshare.com/files/4804027"], "description"=>"<p>Univariable linear regression models examining association between weighted school absence prevalence (years 7–11) and surveillance data for respiratory infections and Norovirus.</p>", "links"=>[], "tags"=>["Norovirus.Results 27 schools", "RCGP ILI surveillance data", "school absence prevalence", "School Absences Correlated", "surveillance measures", "week 1", "surveillance data", "novel tool", "influenza surveillance", "Scientific Engagement", "Linear regression", "school absence data", "health services", "Influenza Surveillance Data", "episode incidence rate", "16. School absence prevalence", "General Practitioners", "surveillance systems", "disease studies", "Norovirus.InterpretationThis study", "school illness absence prevalence", "RCGP ILI", "Schools BackgroundSchool", "Royal College", "science project", "RSV"], "article_id"=>3090730, "categories"=>["Neuroscience", "Biotechnology", "Evolutionary Biology", "Environmental Sciences not elsewhere classified", "Immunology", "Cancer", "Science Policy", "Infectious Diseases", "Virology", "Computational Biology"], "users"=>["Robert W. Aldridge", "Andrew C. Hayward", "Nigel Field", "Charlotte Warren-Gash", "Colette Smith", "Richard Pebody", "Declan Fleming", "Shane McCracken"], "doi"=>"https://dx.doi.org/10.1371/journal.pone.0146964.t001", "stats"=>{"downloads"=>0, "page_views"=>0, "likes"=>0}, "figshare_url"=>"https://figshare.com/articles/Univariable_linear_regression_models_examining_association_between_weighted_school_absence_prevalence_years_7_11_and_surveillance_data_for_respiratory_infections_and_Norovirus_/3090730", "title"=>"Univariable linear regression models examining association between weighted school absence prevalence (years 7–11) and surveillance data for respiratory infections and Norovirus.", "pos_in_sequence"=>0, "defined_type"=>3, "published_date"=>"2016-03-02 07:12:28"}
  • {"files"=>["https://ndownloader.figshare.com/files/4803967"], "description"=>"<p>Fig 2 note: data underlying this graph are available at UCL Discovery.[<a href=\"http://www.plosone.org/article/info:doi/10.1371/journal.pone.0146964#pone.0146964.ref014\" target=\"_blank\">14</a>]</p>", "links"=>[], "tags"=>["Norovirus.Results 27 schools", "RCGP ILI surveillance data", "school absence prevalence", "School Absences Correlated", "surveillance measures", "week 1", "surveillance data", "novel tool", "influenza surveillance", "Scientific Engagement", "Linear regression", "school absence data", "health services", "Influenza Surveillance Data", "episode incidence rate", "16. School absence prevalence", "General Practitioners", "surveillance systems", "disease studies", "Norovirus.InterpretationThis study", "school illness absence prevalence", "RCGP ILI", "Schools BackgroundSchool", "Royal College", "science project", "RSV"], "article_id"=>3090691, "categories"=>["Neuroscience", "Biotechnology", "Evolutionary Biology", "Environmental Sciences not elsewhere classified", "Immunology", "Cancer", "Science Policy", "Infectious Diseases", "Virology", "Computational Biology"], "users"=>["Robert W. Aldridge", "Andrew C. Hayward", "Nigel Field", "Charlotte Warren-Gash", "Colette Smith", "Richard Pebody", "Declan Fleming", "Shane McCracken"], "doi"=>"https://dx.doi.org/10.1371/journal.pone.0146964.g002", "stats"=>{"downloads"=>0, "page_views"=>0, "likes"=>0}, "figshare_url"=>"https://figshare.com/articles/Daily_school_absence_prevalence_years_7_11_weekly_influenza_like_illness_consultation_rates_to_sentinel_general_practices_in_England_all_ages_and_weekly_proportion_of_samples_positive_for_influenza_A_B_all_ages_from_Respiratory_Datamart_/3090691", "title"=>"Daily school absence prevalence (years 7–11), weekly influenza like illness consultation rates to sentinel general practices in England (all ages), and weekly proportion of samples positive for influenza A & B (all ages) from Respiratory Datamart.", "pos_in_sequence"=>0, "defined_type"=>1, "published_date"=>"2016-03-02 07:12:28"}
  • {"files"=>["https://ndownloader.figshare.com/files/4803982"], "description"=>"<p>Fig 3 Note: Rhinovirus data for weeks 40 (69%) and 41 (55%) in 2011/12 season plotted at 50% to preserve axis scales. Data underlying this graph are available at UCL Discovery.[<a href=\"http://www.plosone.org/article/info:doi/10.1371/journal.pone.0146964#pone.0146964.ref014\" target=\"_blank\">14</a>]</p>", "links"=>[], "tags"=>["Norovirus.Results 27 schools", "RCGP ILI surveillance data", "school absence prevalence", "School Absences Correlated", "surveillance measures", "week 1", "surveillance data", "novel tool", "influenza surveillance", "Scientific Engagement", "Linear regression", "school absence data", "health services", "Influenza Surveillance Data", "episode incidence rate", "16. School absence prevalence", "General Practitioners", "surveillance systems", "disease studies", "Norovirus.InterpretationThis study", "school illness absence prevalence", "RCGP ILI", "Schools BackgroundSchool", "Royal College", "science project", "RSV"], "article_id"=>3090700, "categories"=>["Neuroscience", "Biotechnology", "Evolutionary Biology", "Environmental Sciences not elsewhere classified", "Immunology", "Cancer", "Science Policy", "Infectious Diseases", "Virology", "Computational Biology"], "users"=>["Robert W. Aldridge", "Andrew C. Hayward", "Nigel Field", "Charlotte Warren-Gash", "Colette Smith", "Richard Pebody", "Declan Fleming", "Shane McCracken"], "doi"=>"https://dx.doi.org/10.1371/journal.pone.0146964.g003", "stats"=>{"downloads"=>0, "page_views"=>0, "likes"=>0}, "figshare_url"=>"https://figshare.com/articles/Daily_school_absence_prevalence_years_7_11_and_the_weekly_proportion_of_samples_positive_for_RSV_and_Rhinovirus_from_Respiratory_Datamart_/3090700", "title"=>"Daily school absence prevalence (years 7–11) and the weekly proportion of samples positive for RSV and Rhinovirus from Respiratory Datamart.", "pos_in_sequence"=>0, "defined_type"=>1, "published_date"=>"2016-03-02 07:12:28"}
  • {"files"=>["https://ndownloader.figshare.com/files/4804003"], "description"=>"<p>Fig 4 Note: Data underlying this graph are available at UCL Discovery.[<a href=\"http://www.plosone.org/article/info:doi/10.1371/journal.pone.0146964#pone.0146964.ref014\" target=\"_blank\">14</a>]</p>", "links"=>[], "tags"=>["Norovirus.Results 27 schools", "RCGP ILI surveillance data", "school absence prevalence", "School Absences Correlated", "surveillance measures", "week 1", "surveillance data", "novel tool", "influenza surveillance", "Scientific Engagement", "Linear regression", "school absence data", "health services", "Influenza Surveillance Data", "episode incidence rate", "16. School absence prevalence", "General Practitioners", "surveillance systems", "disease studies", "Norovirus.InterpretationThis study", "school illness absence prevalence", "RCGP ILI", "Schools BackgroundSchool", "Royal College", "science project", "RSV"], "article_id"=>3090721, "categories"=>["Neuroscience", "Biotechnology", "Evolutionary Biology", "Environmental Sciences not elsewhere classified", "Immunology", "Cancer", "Science Policy", "Infectious Diseases", "Virology", "Computational Biology"], "users"=>["Robert W. Aldridge", "Andrew C. Hayward", "Nigel Field", "Charlotte Warren-Gash", "Colette Smith", "Richard Pebody", "Declan Fleming", "Shane McCracken"], "doi"=>"https://dx.doi.org/10.1371/journal.pone.0146964.g004", "stats"=>{"downloads"=>0, "page_views"=>0, "likes"=>0}, "figshare_url"=>"https://figshare.com/articles/Daily_school_absence_prevalence_years_7_11_and_the_weekly_number_of_laboratory_confirmed_cases_of_Norovirus_/3090721", "title"=>"Daily school absence prevalence (years 7–11) and the weekly number of laboratory confirmed cases of Norovirus.", "pos_in_sequence"=>0, "defined_type"=>1, "published_date"=>"2016-03-02 07:12:28"}

PMC Usage Stats | Further Information

  • {"unique-ip"=>"11", "full-text"=>"9", "pdf"=>"5", "abstract"=>"0", "scanned-summary"=>"0", "scanned-page-browse"=>"0", "figure"=>"2", "supp-data"=>"0", "cited-by"=>"0", "year"=>"2016", "month"=>"3"}
  • {"unique-ip"=>"11", "full-text"=>"11", "pdf"=>"5", "abstract"=>"0", "scanned-summary"=>"0", "scanned-page-browse"=>"0", "figure"=>"1", "supp-data"=>"0", "cited-by"=>"0", "year"=>"2016", "month"=>"4"}
  • {"unique-ip"=>"19", "full-text"=>"15", "pdf"=>"10", "abstract"=>"0", "scanned-summary"=>"0", "scanned-page-browse"=>"0", "figure"=>"0", "supp-data"=>"0", "cited-by"=>"0", "year"=>"2016", "month"=>"5"}
  • {"unique-ip"=>"23", "full-text"=>"14", "pdf"=>"10", "abstract"=>"0", "scanned-summary"=>"0", "scanned-page-browse"=>"0", "figure"=>"1", "supp-data"=>"0", "cited-by"=>"0", "year"=>"2016", "month"=>"6"}
  • {"unique-ip"=>"12", "full-text"=>"11", "pdf"=>"1", "abstract"=>"0", "scanned-summary"=>"0", "scanned-page-browse"=>"0", "figure"=>"0", "supp-data"=>"0", "cited-by"=>"0", "year"=>"2016", "month"=>"7"}
  • {"unique-ip"=>"8", "full-text"=>"7", "pdf"=>"4", "abstract"=>"0", "scanned-summary"=>"0", "scanned-page-browse"=>"0", "figure"=>"0", "supp-data"=>"0", "cited-by"=>"0", "year"=>"2016", "month"=>"9"}
  • {"unique-ip"=>"8", "full-text"=>"5", "pdf"=>"5", "abstract"=>"0", "scanned-summary"=>"0", "scanned-page-browse"=>"0", "figure"=>"0", "supp-data"=>"0", "cited-by"=>"0", "year"=>"2016", "month"=>"10"}
  • {"unique-ip"=>"9", "full-text"=>"9", "pdf"=>"3", "abstract"=>"0", "scanned-summary"=>"0", "scanned-page-browse"=>"0", "figure"=>"0", "supp-data"=>"0", "cited-by"=>"0", "year"=>"2016", "month"=>"11"}
  • {"unique-ip"=>"10", "full-text"=>"10", "pdf"=>"4", "abstract"=>"0", "scanned-summary"=>"0", "scanned-page-browse"=>"0", "figure"=>"0", "supp-data"=>"0", "cited-by"=>"0", "year"=>"2017", "month"=>"1"}

Relative Metric

{"start_date"=>"2016-01-01T00:00:00Z", "end_date"=>"2016-12-31T00:00:00Z", "subject_areas"=>[]}
Loading … Spinner
There are currently no alerts