Genome-wide Association Mapping Identifies a New Arsenate Reductase Enzyme Critical for Limiting Arsenic Accumulation in Plants
Events
Loading … Spinner

Mendeley | Further Information

{"title"=>"Genome-wide Association Mapping Identifies a New Arsenate Reductase Enzyme Critical for Limiting Arsenic Accumulation in Plants", "type"=>"journal", "authors"=>[{"first_name"=>"Dai Yin", "last_name"=>"Chao", "scopus_author_id"=>"8889884700"}, {"first_name"=>"Yi", "last_name"=>"Chen", "scopus_author_id"=>"55551434000"}, {"first_name"=>"Jiugeng", "last_name"=>"Chen", "scopus_author_id"=>"56201162700"}, {"first_name"=>"Shulin", "last_name"=>"Shi", "scopus_author_id"=>"56535759300"}, {"first_name"=>"Ziru", "last_name"=>"Chen", "scopus_author_id"=>"56535566800"}, {"first_name"=>"Chengcheng", "last_name"=>"Wang", "scopus_author_id"=>"56536075900"}, {"first_name"=>"John M.", "last_name"=>"Danku", "scopus_author_id"=>"23767945000"}, {"first_name"=>"Fang Jie", "last_name"=>"Zhao", "scopus_author_id"=>"7402050194"}, {"first_name"=>"David E.", "last_name"=>"Salt", "scopus_author_id"=>"7005540935"}], "year"=>2014, "source"=>"PLoS Biology", "identifiers"=>{"issn"=>"15457885", "scopus"=>"2-s2.0-84923326780", "pui"=>"602601603", "doi"=>"10.1371/journal.pbio.1002009", "isbn"=>"2011291798", "sgr"=>"84923326780", "pmid"=>"25464340"}, "id"=>"0ac1802c-e164-3931-ae01-e91fa9e73f62", "abstract"=>"Inorganic arsenic is a carcinogen, and its ingestion through foods such as rice presents a significant risk to human health. Plants chemically reduce arsenate to arsenite. Using genome-wide association (GWA) mapping of loci controlling natural variation in arsenic accumulation in Arabidopsis thaliana allowed us to identify the arsenate reductase required for this reduction, which we named High Arsenic Content 1 (HAC1). Complementation verified the identity of HAC1, and expression in Escherichia coli lacking a functional arsenate reductase confirmed the arsenate reductase activity of HAC1. The HAC1 protein accumulates in the epidermis, the outer cell layer of the root, and also in the pericycle cells surrounding the central vascular tissue. Plants lacking HAC1 lose their ability to efflux arsenite from roots, leading to both increased transport of arsenic into the central vascular tissue and on into the shoot. HAC1 therefore functions to reduce arsenate to arsenite in the outer cell layer of the root, facilitating efflux of arsenic as arsenite back into the soil to limit both its accumulation in the root and transport to the shoot. Arsenate reduction by HAC1 in the pericycle may play a role in limiting arsenic loading into the xylem. Loss of HAC1-encoded arsenic reduction leads to a significant increase in arsenic accumulation in shoots, causing an increased sensitivity to arsenate toxicity. We also confirmed the previous observation that the ACR2 arsenate reductase in A. thaliana plays no detectable role in arsenic metabolism. Furthermore, ACR2 does not interact epistatically with HAC1, since arsenic metabolism in the acr2 hac1 double mutant is disrupted in an identical manner to that described for the hac1 single mutant. Our identification of HAC1 and its associated natural variation provides an important new resource for the development of low arsenic-containing food such as rice.", "link"=>"http://www.mendeley.com/research/genomewide-association-mapping-identifies-new-arsenate-reductase-enzyme-critical-limiting-arsenic-ac", "reader_count"=>72, "reader_count_by_academic_status"=>{"Unspecified"=>2, "Professor > Associate Professor"=>9, "Researcher"=>25, "Student > Doctoral Student"=>5, "Student > Ph. D. Student"=>19, "Student > Postgraduate"=>2, "Student > Master"=>2, "Student > Bachelor"=>5, "Professor"=>3}, "reader_count_by_user_role"=>{"Unspecified"=>2, "Professor > Associate Professor"=>9, "Researcher"=>25, "Student > Doctoral Student"=>5, "Student > Ph. D. Student"=>19, "Student > Postgraduate"=>2, "Student > Master"=>2, "Student > Bachelor"=>5, "Professor"=>3}, "reader_count_by_subject_area"=>{"Unspecified"=>5, "Environmental Science"=>6, "Biochemistry, Genetics and Molecular Biology"=>7, "Agricultural and Biological Sciences"=>50, "Medicine and Dentistry"=>1, "Chemistry"=>1, "Social Sciences"=>1, "Immunology and Microbiology"=>1}, "reader_count_by_subdiscipline"=>{"Medicine and Dentistry"=>{"Medicine and Dentistry"=>1}, "Chemistry"=>{"Chemistry"=>1}, "Social Sciences"=>{"Social Sciences"=>1}, "Immunology and Microbiology"=>{"Immunology and Microbiology"=>1}, "Agricultural and Biological Sciences"=>{"Agricultural and Biological Sciences"=>50}, "Biochemistry, Genetics and Molecular Biology"=>{"Biochemistry, Genetics and Molecular Biology"=>7}, "Unspecified"=>{"Unspecified"=>5}, "Environmental Science"=>{"Environmental Science"=>6}}, "reader_count_by_country"=>{"Japan"=>1, "Poland"=>1, "Israel"=>1, "Chile"=>1, "India"=>2}, "group_count"=>2}

CrossRef

Scopus | Further Information

{"@_fa"=>"true", "link"=>[{"@_fa"=>"true", "@ref"=>"self", "@href"=>"https://api.elsevier.com/content/abstract/scopus_id/84923326780"}, {"@_fa"=>"true", "@ref"=>"author-affiliation", "@href"=>"https://api.elsevier.com/content/abstract/scopus_id/84923326780?field=author,affiliation"}, {"@_fa"=>"true", "@ref"=>"scopus", "@href"=>"https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=84923326780&origin=inward"}, {"@_fa"=>"true", "@ref"=>"scopus-citedby", "@href"=>"https://www.scopus.com/inward/citedby.uri?partnerID=HzOxMe3b&scp=84923326780&origin=inward"}], "prism:url"=>"https://api.elsevier.com/content/abstract/scopus_id/84923326780", "dc:identifier"=>"SCOPUS_ID:84923326780", "eid"=>"2-s2.0-84923326780", "dc:title"=>"Genome-wide Association Mapping Identifies a New Arsenate Reductase Enzyme Critical for Limiting Arsenic Accumulation in Plants", "dc:creator"=>"Chao D.Y.", "prism:publicationName"=>"PLoS Biology", "prism:issn"=>"15449173", "prism:eIssn"=>"15457885", "prism:volume"=>"12", "prism:issueIdentifier"=>"12", "prism:pageRange"=>nil, "prism:coverDate"=>"2014-01-01", "prism:coverDisplayDate"=>"2014", "prism:doi"=>"10.1371/journal.pbio.1002009", "citedby-count"=>"122", "affiliation"=>[{"@_fa"=>"true", "affilname"=>"Institute of Plant Physiology and Ecology, Shanghai Institute for Biological Sciences Chinese Academy of Sciences", "affiliation-city"=>"Shanghai", "affiliation-country"=>"China"}, {"@_fa"=>"true", "affilname"=>"University of Aberdeen", "affiliation-city"=>"Aberdeen", "affiliation-country"=>"United Kingdom"}], "pubmed-id"=>"25464340", "prism:aggregationType"=>"Journal", "subtype"=>"ar", "subtypeDescription"=>"Article", "article-number"=>"e1002009", "source-id"=>"12977", "openaccess"=>"1", "openaccessFlag"=>true}

Article Coverage Curated

Facebook

  • {"url"=>"http%3A%2F%2Fjournals.plos.org%2Fplosbiology%2Farticle%3Fid%3D10.1371%252Fjournal.pbio.1002009", "share_count"=>0, "like_count"=>2, "comment_count"=>0, "click_count"=>0, "total_count"=>2}

Twitter

Counter

  • {"month"=>"12", "year"=>"2014", "pdf_views"=>"724", "xml_views"=>"24", "html_views"=>"4051"}
  • {"month"=>"1", "year"=>"2015", "pdf_views"=>"193", "xml_views"=>"10", "html_views"=>"1407"}
  • {"month"=>"2", "year"=>"2015", "pdf_views"=>"58", "xml_views"=>"0", "html_views"=>"380"}
  • {"month"=>"3", "year"=>"2015", "pdf_views"=>"80", "xml_views"=>"0", "html_views"=>"517"}
  • {"month"=>"4", "year"=>"2015", "pdf_views"=>"54", "xml_views"=>"3", "html_views"=>"441"}
  • {"month"=>"5", "year"=>"2015", "pdf_views"=>"59", "xml_views"=>"0", "html_views"=>"328"}
  • {"month"=>"6", "year"=>"2015", "pdf_views"=>"42", "xml_views"=>"0", "html_views"=>"355"}
  • {"month"=>"7", "year"=>"2015", "pdf_views"=>"41", "xml_views"=>"0", "html_views"=>"339"}
  • {"month"=>"8", "year"=>"2015", "pdf_views"=>"49", "xml_views"=>"0", "html_views"=>"367"}
  • {"month"=>"9", "year"=>"2015", "pdf_views"=>"27", "xml_views"=>"1", "html_views"=>"336"}
  • {"month"=>"10", "year"=>"2015", "pdf_views"=>"44", "xml_views"=>"0", "html_views"=>"300"}
  • {"month"=>"11", "year"=>"2015", "pdf_views"=>"32", "xml_views"=>"1", "html_views"=>"314"}
  • {"month"=>"12", "year"=>"2015", "pdf_views"=>"24", "xml_views"=>"0", "html_views"=>"265"}
  • {"month"=>"1", "year"=>"2016", "pdf_views"=>"31", "xml_views"=>"0", "html_views"=>"147"}
  • {"month"=>"2", "year"=>"2016", "pdf_views"=>"35", "xml_views"=>"0", "html_views"=>"141"}
  • {"month"=>"3", "year"=>"2016", "pdf_views"=>"20", "xml_views"=>"0", "html_views"=>"148"}
  • {"month"=>"4", "year"=>"2016", "pdf_views"=>"34", "xml_views"=>"0", "html_views"=>"144"}
  • {"month"=>"5", "year"=>"2016", "pdf_views"=>"46", "xml_views"=>"0", "html_views"=>"141"}
  • {"month"=>"6", "year"=>"2016", "pdf_views"=>"29", "xml_views"=>"0", "html_views"=>"137"}
  • {"month"=>"7", "year"=>"2016", "pdf_views"=>"26", "xml_views"=>"0", "html_views"=>"86"}
  • {"month"=>"8", "year"=>"2016", "pdf_views"=>"28", "xml_views"=>"0", "html_views"=>"88"}
  • {"month"=>"9", "year"=>"2016", "pdf_views"=>"40", "xml_views"=>"0", "html_views"=>"117"}
  • {"month"=>"10", "year"=>"2016", "pdf_views"=>"22", "xml_views"=>"0", "html_views"=>"71"}
  • {"month"=>"11", "year"=>"2016", "pdf_views"=>"9", "xml_views"=>"0", "html_views"=>"120"}
  • {"month"=>"12", "year"=>"2016", "pdf_views"=>"47", "xml_views"=>"0", "html_views"=>"85"}
  • {"month"=>"1", "year"=>"2017", "pdf_views"=>"14", "xml_views"=>"1", "html_views"=>"66"}
  • {"month"=>"2", "year"=>"2017", "pdf_views"=>"45", "xml_views"=>"0", "html_views"=>"174"}
  • {"month"=>"3", "year"=>"2017", "pdf_views"=>"49", "xml_views"=>"0", "html_views"=>"102"}
  • {"month"=>"4", "year"=>"2017", "pdf_views"=>"36", "xml_views"=>"1", "html_views"=>"105"}
  • {"month"=>"5", "year"=>"2017", "pdf_views"=>"18", "xml_views"=>"4", "html_views"=>"100"}
  • {"month"=>"6", "year"=>"2017", "pdf_views"=>"25", "xml_views"=>"3", "html_views"=>"137"}
  • {"month"=>"7", "year"=>"2017", "pdf_views"=>"25", "xml_views"=>"0", "html_views"=>"106"}
  • {"month"=>"8", "year"=>"2017", "pdf_views"=>"17", "xml_views"=>"0", "html_views"=>"65"}
  • {"month"=>"9", "year"=>"2017", "pdf_views"=>"16", "xml_views"=>"5", "html_views"=>"56"}
  • {"month"=>"10", "year"=>"2017", "pdf_views"=>"6", "xml_views"=>"0", "html_views"=>"53"}
  • {"month"=>"11", "year"=>"2017", "pdf_views"=>"14", "xml_views"=>"1", "html_views"=>"102"}
  • {"month"=>"12", "year"=>"2017", "pdf_views"=>"24", "xml_views"=>"0", "html_views"=>"78"}
  • {"month"=>"1", "year"=>"2018", "pdf_views"=>"27", "xml_views"=>"0", "html_views"=>"60"}
  • {"month"=>"2", "year"=>"2018", "pdf_views"=>"38", "xml_views"=>"3", "html_views"=>"45"}
  • {"month"=>"3", "year"=>"2018", "pdf_views"=>"24", "xml_views"=>"2", "html_views"=>"58"}
  • {"month"=>"4", "year"=>"2018", "pdf_views"=>"36", "xml_views"=>"2", "html_views"=>"109"}
  • {"month"=>"5", "year"=>"2018", "pdf_views"=>"25", "xml_views"=>"0", "html_views"=>"43"}
  • {"month"=>"6", "year"=>"2018", "pdf_views"=>"25", "xml_views"=>"1", "html_views"=>"53"}
  • {"month"=>"7", "year"=>"2018", "pdf_views"=>"22", "xml_views"=>"4", "html_views"=>"31"}
  • {"month"=>"8", "year"=>"2018", "pdf_views"=>"15", "xml_views"=>"2", "html_views"=>"47"}
  • {"month"=>"9", "year"=>"2018", "pdf_views"=>"26", "xml_views"=>"2", "html_views"=>"37"}
  • {"month"=>"10", "year"=>"2018", "pdf_views"=>"40", "xml_views"=>"4", "html_views"=>"72"}
  • {"month"=>"11", "year"=>"2018", "pdf_views"=>"29", "xml_views"=>"1", "html_views"=>"39"}
  • {"month"=>"12", "year"=>"2018", "pdf_views"=>"34", "xml_views"=>"1", "html_views"=>"54"}
  • {"month"=>"1", "year"=>"2019", "pdf_views"=>"9", "xml_views"=>"0", "html_views"=>"24"}
  • {"month"=>"2", "year"=>"2019", "pdf_views"=>"22", "xml_views"=>"0", "html_views"=>"56"}
  • {"month"=>"3", "year"=>"2019", "pdf_views"=>"31", "xml_views"=>"1", "html_views"=>"47"}
  • {"month"=>"4", "year"=>"2019", "pdf_views"=>"42", "xml_views"=>"0", "html_views"=>"41"}
  • {"month"=>"5", "year"=>"2019", "pdf_views"=>"37", "xml_views"=>"0", "html_views"=>"31"}
  • {"month"=>"6", "year"=>"2019", "pdf_views"=>"35", "xml_views"=>"0", "html_views"=>"38"}
  • {"month"=>"7", "year"=>"2019", "pdf_views"=>"28", "xml_views"=>"0", "html_views"=>"28"}
  • {"month"=>"8", "year"=>"2019", "pdf_views"=>"37", "xml_views"=>"0", "html_views"=>"46"}
  • {"month"=>"9", "year"=>"2019", "pdf_views"=>"35", "xml_views"=>"0", "html_views"=>"42"}
  • {"month"=>"10", "year"=>"2019", "pdf_views"=>"30", "xml_views"=>"0", "html_views"=>"33"}
  • {"month"=>"11", "year"=>"2019", "pdf_views"=>"24", "xml_views"=>"1", "html_views"=>"33"}
  • {"month"=>"12", "year"=>"2019", "pdf_views"=>"54", "xml_views"=>"2", "html_views"=>"34"}
  • {"month"=>"1", "year"=>"2020", "pdf_views"=>"38", "xml_views"=>"2", "html_views"=>"18"}
  • {"month"=>"2", "year"=>"2020", "pdf_views"=>"30", "xml_views"=>"1", "html_views"=>"21"}
  • {"month"=>"3", "year"=>"2020", "pdf_views"=>"46", "xml_views"=>"1", "html_views"=>"17"}
  • {"month"=>"4", "year"=>"2020", "pdf_views"=>"63", "xml_views"=>"0", "html_views"=>"35"}
  • {"month"=>"5", "year"=>"2020", "pdf_views"=>"68", "xml_views"=>"0", "html_views"=>"27"}
  • {"month"=>"6", "year"=>"2020", "pdf_views"=>"32", "xml_views"=>"0", "html_views"=>"23"}
  • {"month"=>"7", "year"=>"2020", "pdf_views"=>"49", "xml_views"=>"4", "html_views"=>"43"}
  • {"month"=>"8", "year"=>"2020", "pdf_views"=>"17", "xml_views"=>"0", "html_views"=>"19"}
  • {"month"=>"9", "year"=>"2020", "pdf_views"=>"62", "xml_views"=>"1", "html_views"=>"25"}
  • {"month"=>"10", "year"=>"2020", "pdf_views"=>"47", "xml_views"=>"1", "html_views"=>"12"}

Figshare

  • {"files"=>["https://ndownloader.figshare.com/files/1813769"], "description"=>"<p>(<b><i>A</i></b>) The frequency distribution of leaf arsenic concentrations in 349 <i>A. thaliana</i> accessions. Arrows indicate leaf arsenic concentration of accessions highlighted in the text. (<b><i>B</i></b>) Leaf arsenic concentration in <i>A. thaliana</i> accession Col-0, Kr-0, and their F1 progeny. Data represent the mean leaf arsenic concentration ± SE (<i>n</i> = 7–12). (<b><i>C</i></b>) The frequency distribution of leaf arsenic concentrations in F2 progeny of a cross between Kr-0 and Col-0. Red box indicates F2 plants used to create the low arsenic pool for XAM; Green box indicates F2 plants used to create the high arsenic pool for XAM. All leaf arsenic concentration data are accessible using the digital object identifiers (DOIs) 10.4231/T9H41PBV and 10.4231/T9QN64N6 (see <a href=\"http://dx.doi.org/\" target=\"_blank\">http://dx.doi.org/</a>) and available in <a href=\"http://www.plosbiology.org/article/info:doi/10.1371/journal.pbio.1002009#pbio.1002009.s011\" target=\"_blank\">Data S1</a>.</p>", "links"=>[], "tags"=>["arsenate reductase", "HAC 1", "New Arsenate Reductase Enzyme Critical", "arsenic accumulation", "gwa", "HAC 1 protein", "arsenic metabolism", "acr 2 hac 1", "cell layer", "ACR 2 arsenate reductase", "arsenate reductase activity", "arsenite"], "article_id"=>1257353, "categories"=>["Uncategorised"], "users"=>["Dai-Yin Chao", "Yi Chen", "Jiugeng Chen", "Shulin Shi", "Ziru Chen", "Chengcheng Wang", "John M. Danku", "Fang-Jie Zhao", "David E. Salt"], "doi"=>["https://dx.doi.org/10.1371/journal.pbio.1002009.g001"], "stats"=>{"downloads"=>0, "page_views"=>0, "likes"=>0}, "figshare_url"=>"https://figshare.com/articles/_High_leaf_arsenic_concentration_in_A_thaliana_Kr_0_is_controlled_by_a_single_recessive_locus_/1257353", "title"=>"High leaf arsenic concentration in <i>A. thaliana</i> Kr-0 is controlled by a single recessive locus.", "pos_in_sequence"=>0, "defined_type"=>1, "published_date"=>"2014-12-02 03:32:06"}
  • {"files"=>["https://ndownloader.figshare.com/files/1813770"], "description"=>"<p>(<b><i>A</i></b>) Genome-wide association analysis of leaf arsenic concentration at 213,497 SNPs across 377 <i>A. thaliana</i> accessions using a mixed model analysis with correction for population structure. (<b><i>B</i></b>) A detailed plot of the peak region on chromosome 2 is shown with the location of <i>HAC1</i> indicated by the vertical red line. (<b><i>C</i></b>) DNA microarray-based bulk segregant analysis of the high leaf arsenic phenotype of Kr-0 using phenotyped F2 progeny from a Kr-0×Col-0 cross genotyped using the 256K AtSNPtilling microarray. Lines represent allele frequency differences between high and low leaf arsenic pools of F2 plants at SNPs known to be polymorphic between Kr-0 and Col-0 (Solid line = sense strand probes, dashed line = antisense strand probes). (<b><i>D</i></b>) The causal gene was mapped between CAPS makers CS8901K and CS9249K using 315 F2 plants. (<b><i>E</i></b>) Fine mapping narrowed <i>hac1</i> down to a 40 kb interval between markers CS9M and CS9040 using 1,321 F2 plants. Numbers below the horizontal line in (<i>D</i>) and (<i>E</i>) represent the number of recombinants between the indicated marker and <i>hac1</i>. (<b><i>F</i></b>) Gene structure of different <i>HAC1</i> alleles. Arrows indicate T-DNA insertion sites for <i>hac1-1</i> (GABI_868F11) <i>and hac1-2</i> (SM_3_38332). Grey boxes indicate exons, and black lines indicate introns. The causal polymorphism in Kr-0 is shown to the right. (<b><i>G</i></b>) Leaf arsenic concentrations of different <i>HAC1</i> alleles and their F1 progenies indicate through deficiency complementation that <i>HAC1</i> is the causal gene for the high leaf arsenic in Kr-0. (<b><i>H</i></b>) Kr-0 was transformed with the Col-0 genomic DNA fragment of <i>HAC1</i> (including 1.5Kb promoter sequence) and shown to complement the high leaf arsenic of Kr-0 to Col-0 levels in five independent transgenic lines (represented by numbers above the line in the x-axis legend), confirming <i>HAC1</i> is the causal gene for high leaf arsenic in Kr-0. Data in (<i>G</i>) and (<i>H</i>) represents the means ± S.E. (<i>n</i> = 4–12 independent plants per genotype). Letters above bars indicate statistically different groups using a one-way ANOVA followed by least significant difference (LSD) test at the probability of <i>p</i><0.05. All leaf arsenic concentration data are accessible using the digital object identifiers (DOIs) 10.4231/T9H41PBV and 10.4231/T9VD6WCJ (see <a href=\"http://dx.doi.org/\" target=\"_blank\">http://dx.doi.org/</a>) and available in <a href=\"http://www.plosbiology.org/article/info:doi/10.1371/journal.pbio.1002009#pbio.1002009.s012\" target=\"_blank\">Data S2</a>.</p>", "links"=>[], "tags"=>["arsenate reductase", "HAC 1", "New Arsenate Reductase Enzyme Critical", "arsenic accumulation", "gwa", "HAC 1 protein", "arsenic metabolism", "acr 2 hac 1", "cell layer", "ACR 2 arsenate reductase", "arsenate reductase activity", "arsenite"], "article_id"=>1257355, "categories"=>["Uncategorised"], "users"=>["Dai-Yin Chao", "Yi Chen", "Jiugeng Chen", "Shulin Shi", "Ziru Chen", "Chengcheng Wang", "John M. Danku", "Fang-Jie Zhao", "David E. Salt"], "doi"=>["https://dx.doi.org/10.1371/journal.pbio.1002009.g002"], "stats"=>{"downloads"=>0, "page_views"=>0, "likes"=>0}, "figshare_url"=>"https://figshare.com/articles/_The_High_Arsenic_Content_1_HAC1_gene_controls_natural_variation_in_leaf_arsenic_in_A_thaliana_/1257355", "title"=>"The <i>High Arsenic Content 1 (HAC1)</i> gene controls natural variation in leaf arsenic in <i>A. thaliana</i>.", "pos_in_sequence"=>0, "defined_type"=>1, "published_date"=>"2014-12-02 03:32:06"}
  • {"files"=>["https://ndownloader.figshare.com/files/1813774"], "description"=>"<p>When grown in hydroponic media containing 5 µM arsenate, both Kr-0 and the two <i>hac1</i> null alleles show a clear increase in arsenate accumulation in shoots (<b><i>A</i></b>) and roots (<b><i>B</i></b>), and arsenite accumulation in shoots (<b><i>C</i></b>) but not in roots (<b><i>D</i></b>). Letters above bars indicate statistically different groups using a one-way ANOVA followed by least significant difference (LSD) test at the probability of <i>p</i><0.05. Data represent means ± S.E. (<i>n</i> = 4). Raw data available in <a href=\"http://www.plosbiology.org/article/info:doi/10.1371/journal.pbio.1002009#pbio.1002009.s013\" target=\"_blank\">Data S3</a>.</p>", "links"=>[], "tags"=>["arsenate reductase", "HAC 1", "New Arsenate Reductase Enzyme Critical", "arsenic accumulation", "gwa", "HAC 1 protein", "arsenic metabolism", "acr 2 hac 1", "cell layer", "ACR 2 arsenate reductase", "arsenate reductase activity", "arsenite"], "article_id"=>1257359, "categories"=>["Uncategorised"], "users"=>["Dai-Yin Chao", "Yi Chen", "Jiugeng Chen", "Shulin Shi", "Ziru Chen", "Chengcheng Wang", "John M. Danku", "Fang-Jie Zhao", "David E. Salt"], "doi"=>["https://dx.doi.org/10.1371/journal.pbio.1002009.g003"], "stats"=>{"downloads"=>0, "page_views"=>0, "likes"=>0}, "figshare_url"=>"https://figshare.com/articles/_HAC1_plays_a_central_role_in_limiting_arsenic_accumulation_during_arsenate_exposure_/1257359", "title"=>"<i>HAC1</i> plays a central role in limiting arsenic accumulation during arsenate exposure.", "pos_in_sequence"=>0, "defined_type"=>1, "published_date"=>"2014-12-02 03:32:06"}
  • {"files"=>["https://ndownloader.figshare.com/files/1813778"], "description"=>"<p><i>HAC1</i> from <i>A. thaliana</i> suppresses the arsenate sensitivity of <i>E. coli</i> lacking the ArsC arsenate reductase. Strains were grown at 16°C and cell density measured at an optical density of 600 nm after 72 hr growth in different concentrations of arsenate (<b><i>A</i></b>). WT = <i>E. coli</i> wild type (W3110); <i>ΔarsC = arsC</i> mutant in WC3110; Vector = empty pCold-TF; <i>HAC1</i> = pCold-TF vector containing the <i>A. thaliana HAC1</i> gene (pCold-TF-<i>HAC1</i>). (<b><i>B</i></b>) After growth of <i>ΔarsC</i> transformed with pCold-TF-<i>HAC1</i> in media containing 10 µM arsenate for 72 hr arsenite was detected in the culture solution. However, arsenite was not detected after growth of <i>ΔarsC</i> transformed with pCold-TF empty vector. EV = empty pCold-TF; n.d = not detected. (<b><i>C</i></b>) Arsenate reductase activity in cell free extracts of <i>E. coli ΔarsC</i> mutant transformed with pCold-TF (EV) or pCold-TF-<i>HAC1</i> (<i>HAC1</i>). Arsenate reductase activity estimated as the oxidation of NADPH followed by a loss of absorbance at 340 nm. Data represents means ± S.E. (<i>n</i> = 3). Asterisks above bars in (<b>C</b>) represent a statistically significant difference (<i>p</i><0.01), calculated using a Student's <i>t</i>-test. Raw data available in <a href=\"http://www.plosbiology.org/article/info:doi/10.1371/journal.pbio.1002009#pbio.1002009.s014\" target=\"_blank\">Data S4</a>.</p>", "links"=>[], "tags"=>["arsenate reductase", "HAC 1", "New Arsenate Reductase Enzyme Critical", "arsenic accumulation", "gwa", "HAC 1 protein", "arsenic metabolism", "acr 2 hac 1", "cell layer", "ACR 2 arsenate reductase", "arsenate reductase activity", "arsenite"], "article_id"=>1257363, "categories"=>["Uncategorised"], "users"=>["Dai-Yin Chao", "Yi Chen", "Jiugeng Chen", "Shulin Shi", "Ziru Chen", "Chengcheng Wang", "John M. Danku", "Fang-Jie Zhao", "David E. Salt"], "doi"=>["https://dx.doi.org/10.1371/journal.pbio.1002009.g004"], "stats"=>{"downloads"=>0, "page_views"=>0, "likes"=>0}, "figshare_url"=>"https://figshare.com/articles/_HAC1_encodes_an_arsenate_reductase_/1257363", "title"=>"<i>HAC1</i> encodes an arsenate reductase.", "pos_in_sequence"=>0, "defined_type"=>1, "published_date"=>"2014-12-02 03:32:06"}
  • {"files"=>["https://ndownloader.figshare.com/files/1813789"], "description"=>"<p>(<b><i>A</i></b>) A dendrogram showing the relationship among genes encoding arsenate reductase in <i>A. thaliana</i>, rice, yeast, and <i>E. coli</i>. Numbers at nodes show bootstrap values obtained from 1,000 replicate analyses. (<b><i>B</i></b>) Sequence alignment of <i>ACR2</i> and <i>HAC</i> genes. Asterisk represents the Leu<sup>53</sup> converted into a Thr and followed by a stop codon in the <i>HAC1</i> Kr-0 allele. Dashed box represents the conserved catalytic site in the ACR2-like arsenate reductases. Gene codes for sequences used to generate the dendrogram are as follows; <i>OsHAC1-1</i> LOC_Os02g01220; <i>OsHAC1-2</i> LOC_Os04g17660; <i>OsACR2-1</i> LOC_Os10g39860; <i>OsACR2-2</i> LOC_Os03g01770; <i>AtACR2</i> AT5G03455; <i>ScHAC1</i> YOR285W; <i>PvACR2</i> DQ310370; <i>arsC</i> YP_005275964.</p>", "links"=>[], "tags"=>["arsenate reductase", "HAC 1", "New Arsenate Reductase Enzyme Critical", "arsenic accumulation", "gwa", "HAC 1 protein", "arsenic metabolism", "acr 2 hac 1", "cell layer", "ACR 2 arsenate reductase", "arsenate reductase activity", "arsenite"], "article_id"=>1257374, "categories"=>["Uncategorised"], "users"=>["Dai-Yin Chao", "Yi Chen", "Jiugeng Chen", "Shulin Shi", "Ziru Chen", "Chengcheng Wang", "John M. Danku", "Fang-Jie Zhao", "David E. Salt"], "doi"=>["https://dx.doi.org/10.1371/journal.pbio.1002009.g005"], "stats"=>{"downloads"=>0, "page_views"=>0, "likes"=>0}, "figshare_url"=>"https://figshare.com/articles/_Sequence_analysis_of_HAC_and_ACR2_genes_from_plants_and_yeast_/1257374", "title"=>"Sequence analysis of <i>HAC</i> and <i>ACR2</i> genes from plants and yeast.", "pos_in_sequence"=>0, "defined_type"=>1, "published_date"=>"2014-12-02 03:32:06"}
  • {"files"=>["https://ndownloader.figshare.com/files/1813795"], "description"=>"<p>(<b><i>A</i></b>) Reciprocal grafting determines that the high leaf arsenic phenotype of Kr-0 is driven by the root. Col-0 NG = non-grafted Col-0; Kr-0 NG = non-grafted Kr-0; Col-0<sub>S</sub>/Col-0<sub>R</sub> = Col-0 self grafted; Kr-0<sub>S</sub>/Kr-0<sub>R</sub> = Kr-0 self grafted; Kr-0<sub>S</sub>/Col-0<sub>R</sub> = Kr-0 shoot grafted onto a Col-0 root; Col-0<sub>S</sub>/Kr-0<sub>R</sub> = Col-0 shoot grafted onto a Kr-0 root. (<b><i>B</i></b>) Quantitative real-time RT-PCR indicates <i>HAC1</i> is predominantly expressed in <i>A. thaliana</i> roots. Expression of <i>HAC1</i> was calculated as 2<sup>−ΔCT</sup> relative to <i>UBC</i> (At5g25760). (<b><i>C</i></b><b>–</b><b><i>E</i></b>) Root specific expression of <i>HAC1</i> revealed by accumulation of the HAC1-GFP fusion protein driven by expression of <i>HAC1-GFP</i> by the <i>HAC1</i> native promoter in Col-0 wild type, imaged using a confocal microscope showing GFP fluorescence (<b><i>C</i></b>), bright light (<b><i>D</i></b>), and an overlay (<b><i>E</i></b>). Scale bar = 50 µm. Letters above bars in (<b><i>A</i></b>) indicate statistically different using a one-way ANOVA followed by least significant difference (LSD) test at the probability of <i>p</i><0.05. Asterisks above bars in (<b><i>B</i></b>) represent a significant difference (<i>p</i><0.01) using a Student's <i>t</i>-test. Data (<b><i>A</i></b> and <b><i>B</i></b>) represent means ± S.E. (<i>n</i> = 7–13 [<b><i>A</i></b>] and n = 4 [<b><i>B</i></b>]). Raw data available in <a href=\"http://www.plosbiology.org/article/info:doi/10.1371/journal.pbio.1002009#pbio.1002009.s015\" target=\"_blank\">Data S5</a>.</p>", "links"=>[], "tags"=>["arsenate reductase", "HAC 1", "New Arsenate Reductase Enzyme Critical", "arsenic accumulation", "gwa", "HAC 1 protein", "arsenic metabolism", "acr 2 hac 1", "cell layer", "ACR 2 arsenate reductase", "arsenate reductase activity", "arsenite"], "article_id"=>1257380, "categories"=>["Uncategorised"], "users"=>["Dai-Yin Chao", "Yi Chen", "Jiugeng Chen", "Shulin Shi", "Ziru Chen", "Chengcheng Wang", "John M. Danku", "Fang-Jie Zhao", "David E. Salt"], "doi"=>["https://dx.doi.org/10.1371/journal.pbio.1002009.g006"], "stats"=>{"downloads"=>0, "page_views"=>0, "likes"=>0}, "figshare_url"=>"https://figshare.com/articles/_HAC1_functions_in_the_roots_to_limit_arsenic_accumulation_in_shoots_/1257380", "title"=>"<i>HAC1</i> functions in the roots to limit arsenic accumulation in shoots.", "pos_in_sequence"=>0, "defined_type"=>1, "published_date"=>"2014-12-02 03:32:06"}
  • {"files"=>["https://ndownloader.figshare.com/files/1813796"], "description"=>"<p>Wild-type Col-0 plants were grown on agar solidified medium and, seven days after germination, were transferred to agar solidified medium containing various concentrations of arsenate (<b><i>A</i></b>) or arsenite (<b><i>B</i></b>), and after an additional three days, roots were harvested and <i>HAC1</i> expression level determined using quantitative real-time RT-PCR. Exposure to arsenate increased the steady state levels of <i>HAC1</i> mRNA in roots above the untreated control at all arsenate concentrations tested. However, similar treatment with arsenite reduced the steady state levels of <i>HAC1</i> mRNA in roots (<b><i>B</i></b>) at all concentrations tested. Letters above bars indicate statistically different groups using a one-way ANOVA followed by least significant difference (LSD) test at the probability of <i>p</i><0.05. Data represent means ± S.E. (<i>n</i> = 3). Raw data available in <a href=\"http://www.plosbiology.org/article/info:doi/10.1371/journal.pbio.1002009#pbio.1002009.s016\" target=\"_blank\">Data S6</a>.</p>", "links"=>[], "tags"=>["arsenate reductase", "HAC 1", "New Arsenate Reductase Enzyme Critical", "arsenic accumulation", "gwa", "HAC 1 protein", "arsenic metabolism", "acr 2 hac 1", "cell layer", "ACR 2 arsenate reductase", "arsenate reductase activity", "arsenite"], "article_id"=>1257381, "categories"=>["Uncategorised"], "users"=>["Dai-Yin Chao", "Yi Chen", "Jiugeng Chen", "Shulin Shi", "Ziru Chen", "Chengcheng Wang", "John M. Danku", "Fang-Jie Zhao", "David E. Salt"], "doi"=>["https://dx.doi.org/10.1371/journal.pbio.1002009.g007"], "stats"=>{"downloads"=>0, "page_views"=>0, "likes"=>0}, "figshare_url"=>"https://figshare.com/articles/_HAC1_in_roots_is_both_constitutively_expressed_and_induced_by_arsenate_/1257381", "title"=>"<i>HAC1</i> in roots is both constitutively expressed and induced by arsenate.", "pos_in_sequence"=>0, "defined_type"=>1, "published_date"=>"2014-12-02 03:32:06"}
  • {"files"=>["https://ndownloader.figshare.com/files/1813799"], "description"=>"<p>Both Kr-0 and the two <i>hac1</i> null alleles show a clear reduction in efflux of arsenite from roots compared to Col-0 after 24 and 48 hr exposure to arsenate in the hydroponic nutrient solution (<b><i>A</i></b>), whereas there is no difference in arsenate uptake from the same solution (<b><i>B</i></b>). All lines were grown hydroponically for 3 wk, and 5 µM arsenate were added for analysis thereafter. The uptake of arsenate and efflux of arsenite was calculated from changes in their concentration in the hydroponic growth media. Letters above bars indicate statistically different groups using a one-way ANOVA followed by least significant difference (LSD) test at the probability of <i>p</i><0.05. Data represent means ± S.E. (<i>n</i> = 4). Raw data available in <a href=\"http://www.plosbiology.org/article/info:doi/10.1371/journal.pbio.1002009#pbio.1002009.s017\" target=\"_blank\">Data S7</a>.</p>", "links"=>[], "tags"=>["arsenate reductase", "HAC 1", "New Arsenate Reductase Enzyme Critical", "arsenic accumulation", "gwa", "HAC 1 protein", "arsenic metabolism", "acr 2 hac 1", "cell layer", "ACR 2 arsenate reductase", "arsenate reductase activity", "arsenite"], "article_id"=>1257384, "categories"=>["Uncategorised"], "users"=>["Dai-Yin Chao", "Yi Chen", "Jiugeng Chen", "Shulin Shi", "Ziru Chen", "Chengcheng Wang", "John M. Danku", "Fang-Jie Zhao", "David E. Salt"], "doi"=>["https://dx.doi.org/10.1371/journal.pbio.1002009.g008"], "stats"=>{"downloads"=>0, "page_views"=>0, "likes"=>0}, "figshare_url"=>"https://figshare.com/articles/_HAC1_plays_a_central_role_in_arsenic_efflux_/1257384", "title"=>"<i>HAC1</i> plays a central role in arsenic efflux.", "pos_in_sequence"=>0, "defined_type"=>1, "published_date"=>"2014-12-02 03:32:06"}
  • {"files"=>["https://ndownloader.figshare.com/files/1813802"], "description"=>"<p>Synchrotron μ-XRF mapping of arsenic in root cross sections. Plants were exposed to 10 µM arsenate for 10 days in hydroponic solution. Root sections at approximately 2 cm from the tip were cut and prepared with high pressure freezing and freeze substitution and sectioned at 7 µm thickness. μ-XRF was performed at the UK Diamond Light Source with a beam size and step size = 2 µm and X-ray fluorescence detected using a silicon drift detector. (<b><i>A</i></b>) Both calcium (red) and arsenic (green) are imaged in wild-type Col-0 and both <i>hac1</i> mutant alleles to allow the localization of arsenic to be observed in relation to the overall cellular structure of the root marked by calcium within the cell walls. (<b><i>B</i></b>) Quantification of arsenic accumulation across the root section in the same samples shown in (<b><i>A</i></b>). Ep, epidermis; Co, cortex: St, stele.</p>", "links"=>[], "tags"=>["arsenate reductase", "HAC 1", "New Arsenate Reductase Enzyme Critical", "arsenic accumulation", "gwa", "HAC 1 protein", "arsenic metabolism", "acr 2 hac 1", "cell layer", "ACR 2 arsenate reductase", "arsenate reductase activity", "arsenite"], "article_id"=>1257387, "categories"=>["Uncategorised"], "users"=>["Dai-Yin Chao", "Yi Chen", "Jiugeng Chen", "Shulin Shi", "Ziru Chen", "Chengcheng Wang", "John M. Danku", "Fang-Jie Zhao", "David E. Salt"], "doi"=>["https://dx.doi.org/10.1371/journal.pbio.1002009.g009"], "stats"=>{"downloads"=>0, "page_views"=>0, "likes"=>0}, "figshare_url"=>"https://figshare.com/articles/_HAC1_is_required_to_limit_arsenic_accumulation_in_the_stele_/1257387", "title"=>"<i>HAC1</i> is required to limit arsenic accumulation in the stele.", "pos_in_sequence"=>0, "defined_type"=>1, "published_date"=>"2014-12-02 03:32:06"}
  • {"files"=>["https://ndownloader.figshare.com/files/1813805"], "description"=>"<p>Both Col-0 wild-type and the two <i>hac1</i> null alleles were grown in agar solidified nutrient medium containing 0 µM (<b><i>A</i></b>) and 100 µM (<b><i>C</i></b>) arsenate, and after 12 days a representative photograph taken. Plants were also grown in the same conditions on nutrient medium containing a range of arsenate concentrations and the root length (<b><i>B</i></b>) and shoot fresh weight (<b><i>D</i></b>) determined after 12 days of growth. Letters above bars in (<b><i>B</i></b>, <b><i>D</i></b>) indicate statistically different groups within treatments using a one-way ANOVA followed by least significant difference (LSD) test at the probability of <i>p</i><0.05. Data represent means ± S.E. (<i>n</i> = 4). Raw data available in <a href=\"http://www.plosbiology.org/article/info:doi/10.1371/journal.pbio.1002009#pbio.1002009.s018\" target=\"_blank\">Data S8</a>.</p>", "links"=>[], "tags"=>["arsenate reductase", "HAC 1", "New Arsenate Reductase Enzyme Critical", "arsenic accumulation", "gwa", "HAC 1 protein", "arsenic metabolism", "acr 2 hac 1", "cell layer", "ACR 2 arsenate reductase", "arsenate reductase activity", "arsenite"], "article_id"=>1257390, "categories"=>["Uncategorised"], "users"=>["Dai-Yin Chao", "Yi Chen", "Jiugeng Chen", "Shulin Shi", "Ziru Chen", "Chengcheng Wang", "John M. Danku", "Fang-Jie Zhao", "David E. Salt"], "doi"=>["https://dx.doi.org/10.1371/journal.pbio.1002009.g010"], "stats"=>{"downloads"=>0, "page_views"=>0, "likes"=>0}, "figshare_url"=>"https://figshare.com/articles/_Loss_of_function_of_HAC1_confers_increased_sensitivity_to_arsenate_/1257390", "title"=>"Loss-of-function of <i>HAC1</i> confers increased sensitivity to arsenate.", "pos_in_sequence"=>0, "defined_type"=>1, "published_date"=>"2014-12-02 03:32:06"}
  • {"files"=>["https://ndownloader.figshare.com/files/1813811"], "description"=>"<p>Wild-type Col-0, single <i>acr2-2</i> and <i>hac1-2</i> mutants and the <i>acr2-2 hac1-2</i> double mutant were grown hydroponically for 3 wk and 5 µM arsenate were added for analysis thereafter. Accumulation of arsenate and arsenite was monitored in both roots (<b><i>A</i></b>) and shoots (<b><i>B</i></b>) for all genotypes. The uptake of arsenate (<b><i>C</i></b>) and efflux of arsenite (<b><i>D</i></b>) was also monitored and calculated from changes in their concentrations in the hydroponic growth media. Letters above bars indicate statistically different groups using a one-way ANOVA followed by least significant difference (LSD) test at the probability of <i>p</i><0.05. Data represent means ± S.E. (<i>n</i> = 4). Raw data available in <a href=\"http://www.plosbiology.org/article/info:doi/10.1371/journal.pbio.1002009#pbio.1002009.s019\" target=\"_blank\">Data S9</a>.</p>", "links"=>[], "tags"=>["arsenate reductase", "HAC 1", "New Arsenate Reductase Enzyme Critical", "arsenic accumulation", "gwa", "HAC 1 protein", "arsenic metabolism", "acr 2 hac 1", "cell layer", "ACR 2 arsenate reductase", "arsenate reductase activity", "arsenite"], "article_id"=>1257392, "categories"=>["Uncategorised"], "users"=>["Dai-Yin Chao", "Yi Chen", "Jiugeng Chen", "Shulin Shi", "Ziru Chen", "Chengcheng Wang", "John M. Danku", "Fang-Jie Zhao", "David E. Salt"], "doi"=>["https://dx.doi.org/10.1371/journal.pbio.1002009.g011"], "stats"=>{"downloads"=>0, "page_views"=>0, "likes"=>0}, "figshare_url"=>"https://figshare.com/articles/_HAC1_and_ACR2_do_not_interact_additively_as_part_of_the_metabolism_of_arsenic_/1257392", "title"=>"<i>HAC1</i> and <i>ACR2</i> do not interact additively as part of the metabolism of arsenic.", "pos_in_sequence"=>0, "defined_type"=>1, "published_date"=>"2014-12-02 03:32:06"}
  • {"files"=>["https://ndownloader.figshare.com/files/1813815"], "description"=>"<p>Wild-type Col-0 and single <i>acr2-2</i> and <i>hac1-2</i> mutants and the <i>acr2-2 hac1-2</i> double mutant were grown on agar solidified nutrient medium containing 0 µM (<b><i>A</i></b>) and 100 µM (<b><i>C</i></b>) arsenate and after 12 days a representative photograph taken. Plant were also grown in the same conditions on nutrient medium containing a range of arsenate concentrations and the root length (<b><i>B</i></b>) and shoot fresh weight (<b><i>D</i></b>) determined after 12 days of growth. Letters above bars in (<b><i>B</i></b>, <b><i>D</i></b>) indicate statistically different groups within treatments using a one-way ANOVA followed by least significant difference (LSD) test at the probability of <i>p</i><0.05. Data represent means ± S.E. (<i>n</i> = 4). Raw data available in <a href=\"http://www.plosbiology.org/article/info:doi/10.1371/journal.pbio.1002009#pbio.1002009.s020\" target=\"_blank\">Data S10</a>.</p>", "links"=>[], "tags"=>["arsenate reductase", "HAC 1", "New Arsenate Reductase Enzyme Critical", "arsenic accumulation", "gwa", "HAC 1 protein", "arsenic metabolism", "acr 2 hac 1", "cell layer", "ACR 2 arsenate reductase", "arsenate reductase activity", "arsenite"], "article_id"=>1257396, "categories"=>["Uncategorised"], "users"=>["Dai-Yin Chao", "Yi Chen", "Jiugeng Chen", "Shulin Shi", "Ziru Chen", "Chengcheng Wang", "John M. Danku", "Fang-Jie Zhao", "David E. Salt"], "doi"=>["https://dx.doi.org/10.1371/journal.pbio.1002009.g012"], "stats"=>{"downloads"=>0, "page_views"=>0, "likes"=>0}, "figshare_url"=>"https://figshare.com/articles/_HAC1_and_ACR2_do_not_interact_epistatically_as_part_of_the_arsenic_resistance_mechanism_/1257396", "title"=>"<i>HAC1</i> and <i>ACR2</i> do not interact epistatically as part of the arsenic resistance mechanism.", "pos_in_sequence"=>0, "defined_type"=>1, "published_date"=>"2014-12-02 03:32:06"}
  • {"files"=>["https://ndownloader.figshare.com/files/1813817"], "description"=>"<p>A model and proposed function of HAC1 in the chemical transformations and transport processes arsenic undergoes during its radial transport from the soil, across the root and into the central vascular system for transport to the shoot. Pt, phosphate transporter; E, effluxer; U, unknown arsenate reductase; PC<sub>n</sub>-As<sup>III</sup>, phytochelatin-arsenite complex, V, vacuole.</p>", "links"=>[], "tags"=>["arsenate reductase", "HAC 1", "New Arsenate Reductase Enzyme Critical", "arsenic accumulation", "gwa", "HAC 1 protein", "arsenic metabolism", "acr 2 hac 1", "cell layer", "ACR 2 arsenate reductase", "arsenate reductase activity", "arsenite"], "article_id"=>1257398, "categories"=>["Uncategorised"], "users"=>["Dai-Yin Chao", "Yi Chen", "Jiugeng Chen", "Shulin Shi", "Ziru Chen", "Chengcheng Wang", "John M. Danku", "Fang-Jie Zhao", "David E. Salt"], "doi"=>["https://dx.doi.org/10.1371/journal.pbio.1002009.g013"], "stats"=>{"downloads"=>0, "page_views"=>0, "likes"=>0}, "figshare_url"=>"https://figshare.com/articles/_Schematic_of_the_proposed_role_of_HAC1_in_arsenate_metabolism_in_roots_/1257398", "title"=>"Schematic of the proposed role of HAC1 in arsenate metabolism in roots.", "pos_in_sequence"=>0, "defined_type"=>1, "published_date"=>"2014-12-02 03:32:06"}
  • {"files"=>["https://ndownloader.figshare.com/files/1813842", "https://ndownloader.figshare.com/files/1813843", "https://ndownloader.figshare.com/files/1813844", "https://ndownloader.figshare.com/files/1813845", "https://ndownloader.figshare.com/files/1813846", "https://ndownloader.figshare.com/files/1813847", "https://ndownloader.figshare.com/files/1813848", "https://ndownloader.figshare.com/files/1813849", "https://ndownloader.figshare.com/files/1813850", "https://ndownloader.figshare.com/files/1813851", "https://ndownloader.figshare.com/files/1813852", "https://ndownloader.figshare.com/files/1813853", "https://ndownloader.figshare.com/files/1813854", "https://ndownloader.figshare.com/files/1813855", "https://ndownloader.figshare.com/files/1813856", "https://ndownloader.figshare.com/files/1813857", "https://ndownloader.figshare.com/files/1813858", "https://ndownloader.figshare.com/files/1813859", "https://ndownloader.figshare.com/files/1813860", "https://ndownloader.figshare.com/files/1813861", "https://ndownloader.figshare.com/files/1813862", "https://ndownloader.figshare.com/files/1813863", "https://ndownloader.figshare.com/files/1813864"], "description"=>"<div><p>Inorganic arsenic is a carcinogen, and its ingestion through foods such as rice presents a significant risk to human health. Plants chemically reduce arsenate to arsenite. Using genome-wide association (GWA) mapping of loci controlling natural variation in arsenic accumulation in <i>Arabidopsis thaliana</i> allowed us to identify the arsenate reductase required for this reduction, which we named High Arsenic Content 1 (HAC1). Complementation verified the identity of <i>HAC1</i>, and expression in <i>Escherichia coli</i> lacking a functional arsenate reductase confirmed the arsenate reductase activity of HAC1. The HAC1 protein accumulates in the epidermis, the outer cell layer of the root, and also in the pericycle cells surrounding the central vascular tissue. Plants lacking <i>HAC1</i> lose their ability to efflux arsenite from roots, leading to both increased transport of arsenic into the central vascular tissue and on into the shoot. HAC1 therefore functions to reduce arsenate to arsenite in the outer cell layer of the root, facilitating efflux of arsenic as arsenite back into the soil to limit both its accumulation in the root and transport to the shoot. Arsenate reduction by HAC1 in the pericycle may play a role in limiting arsenic loading into the xylem. Loss of <i>HAC1</i>-encoded arsenic reduction leads to a significant increase in arsenic accumulation in shoots, causing an increased sensitivity to arsenate toxicity. We also confirmed the previous observation that the ACR2 arsenate reductase in <i>A. thaliana</i> plays no detectable role in arsenic metabolism. Furthermore, <i>ACR2</i> does not interact epistatically with <i>HAC1</i>, since arsenic metabolism in the <i>acr2 hac1</i> double mutant is disrupted in an identical manner to that described for the <i>hac1</i> single mutant. Our identification of <i>HAC1</i> and its associated natural variation provides an important new resource for the development of low arsenic-containing food such as rice.</p></div>", "links"=>[], "tags"=>["arsenate reductase", "HAC 1", "New Arsenate Reductase Enzyme Critical", "arsenic accumulation", "gwa", "HAC 1 protein", "arsenic metabolism", "acr 2 hac 1", "cell layer", "ACR 2 arsenate reductase", "arsenate reductase activity", "arsenite"], "article_id"=>1257421, "categories"=>["Uncategorised"], "users"=>["Dai-Yin Chao", "Yi Chen", "Jiugeng Chen", "Shulin Shi", "Ziru Chen", "Chengcheng Wang", "John M. Danku", "Fang-Jie Zhao", "David E. Salt"], "doi"=>["https://dx.doi.org/10.1371/journal.pbio.1002009.s001", "https://dx.doi.org/10.1371/journal.pbio.1002009.s002", "https://dx.doi.org/10.1371/journal.pbio.1002009.s003", "https://dx.doi.org/10.1371/journal.pbio.1002009.s004", "https://dx.doi.org/10.1371/journal.pbio.1002009.s005", "https://dx.doi.org/10.1371/journal.pbio.1002009.s006", "https://dx.doi.org/10.1371/journal.pbio.1002009.s007", "https://dx.doi.org/10.1371/journal.pbio.1002009.s008", "https://dx.doi.org/10.1371/journal.pbio.1002009.s009", "https://dx.doi.org/10.1371/journal.pbio.1002009.s010", "https://dx.doi.org/10.1371/journal.pbio.1002009.s011", "https://dx.doi.org/10.1371/journal.pbio.1002009.s012", "https://dx.doi.org/10.1371/journal.pbio.1002009.s013", "https://dx.doi.org/10.1371/journal.pbio.1002009.s014", "https://dx.doi.org/10.1371/journal.pbio.1002009.s015", "https://dx.doi.org/10.1371/journal.pbio.1002009.s016", "https://dx.doi.org/10.1371/journal.pbio.1002009.s017", "https://dx.doi.org/10.1371/journal.pbio.1002009.s018", "https://dx.doi.org/10.1371/journal.pbio.1002009.s019", "https://dx.doi.org/10.1371/journal.pbio.1002009.s020", "https://dx.doi.org/10.1371/journal.pbio.1002009.s021", "https://dx.doi.org/10.1371/journal.pbio.1002009.s022", "https://dx.doi.org/10.1371/journal.pbio.1002009.s023"], "stats"=>{"downloads"=>0, "page_views"=>0, "likes"=>0}, "figshare_url"=>"https://figshare.com/articles/_Genome_wide_Association_Mapping_Identifies_a_New_Arsenate_Reductase_Enzyme_Critical_for_Limiting_Arsenic_Accumulation_in_Plants_/1257421", "title"=>"Genome-wide Association Mapping Identifies a New Arsenate Reductase Enzyme Critical for Limiting Arsenic Accumulation in Plants", "pos_in_sequence"=>0, "defined_type"=>4, "published_date"=>"2014-12-02 03:32:06"}

PMC Usage Stats | Further Information

  • {"unique-ip"=>"34", "full-text"=>"30", "pdf"=>"23", "abstract"=>"0", "scanned-summary"=>"0", "scanned-page-browse"=>"0", "figure"=>"21", "supp-data"=>"12", "cited-by"=>"0", "year"=>"2014", "month"=>"12"}
  • {"unique-ip"=>"54", "full-text"=>"41", "pdf"=>"22", "abstract"=>"0", "scanned-summary"=>"0", "scanned-page-browse"=>"0", "figure"=>"45", "supp-data"=>"1", "cited-by"=>"0", "year"=>"2015", "month"=>"1"}
  • {"unique-ip"=>"26", "full-text"=>"30", "pdf"=>"16", "abstract"=>"0", "scanned-summary"=>"0", "scanned-page-browse"=>"0", "figure"=>"4", "supp-data"=>"0", "cited-by"=>"0", "year"=>"2015", "month"=>"2"}
  • {"unique-ip"=>"39", "full-text"=>"80", "pdf"=>"17", "abstract"=>"0", "scanned-summary"=>"0", "scanned-page-browse"=>"0", "figure"=>"5", "supp-data"=>"1", "cited-by"=>"0", "year"=>"2015", "month"=>"3"}
  • {"unique-ip"=>"43", "full-text"=>"46", "pdf"=>"26", "abstract"=>"0", "scanned-summary"=>"0", "scanned-page-browse"=>"0", "figure"=>"12", "supp-data"=>"10", "cited-by"=>"0", "year"=>"2015", "month"=>"4"}
  • {"unique-ip"=>"34", "full-text"=>"56", "pdf"=>"10", "abstract"=>"0", "scanned-summary"=>"0", "scanned-page-browse"=>"0", "figure"=>"20", "supp-data"=>"3", "cited-by"=>"0", "year"=>"2015", "month"=>"5"}
  • {"unique-ip"=>"27", "full-text"=>"26", "pdf"=>"11", "abstract"=>"0", "scanned-summary"=>"0", "scanned-page-browse"=>"0", "figure"=>"5", "supp-data"=>"0", "cited-by"=>"0", "year"=>"2015", "month"=>"6"}
  • {"unique-ip"=>"24", "full-text"=>"31", "pdf"=>"7", "abstract"=>"0", "scanned-summary"=>"0", "scanned-page-browse"=>"0", "figure"=>"4", "supp-data"=>"0", "cited-by"=>"0", "year"=>"2015", "month"=>"7"}
  • {"unique-ip"=>"54", "full-text"=>"28", "pdf"=>"13", "abstract"=>"0", "scanned-summary"=>"0", "scanned-page-browse"=>"0", "figure"=>"16", "supp-data"=>"24", "cited-by"=>"0", "year"=>"2015", "month"=>"8"}
  • {"unique-ip"=>"32", "full-text"=>"31", "pdf"=>"10", "abstract"=>"0", "scanned-summary"=>"0", "scanned-page-browse"=>"0", "figure"=>"11", "supp-data"=>"2", "cited-by"=>"0", "year"=>"2015", "month"=>"9"}
  • {"unique-ip"=>"26", "full-text"=>"25", "pdf"=>"16", "abstract"=>"0", "scanned-summary"=>"0", "scanned-page-browse"=>"0", "figure"=>"3", "supp-data"=>"0", "cited-by"=>"0", "year"=>"2015", "month"=>"10"}
  • {"unique-ip"=>"41", "full-text"=>"35", "pdf"=>"20", "abstract"=>"0", "scanned-summary"=>"0", "scanned-page-browse"=>"0", "figure"=>"2", "supp-data"=>"2", "cited-by"=>"1", "year"=>"2015", "month"=>"11"}
  • {"unique-ip"=>"16", "full-text"=>"15", "pdf"=>"8", "abstract"=>"0", "scanned-summary"=>"0", "scanned-page-browse"=>"0", "figure"=>"4", "supp-data"=>"0", "cited-by"=>"0", "year"=>"2015", "month"=>"12"}
  • {"unique-ip"=>"23", "full-text"=>"23", "pdf"=>"8", "abstract"=>"0", "scanned-summary"=>"0", "scanned-page-browse"=>"0", "figure"=>"4", "supp-data"=>"0", "cited-by"=>"0", "year"=>"2016", "month"=>"1"}
  • {"unique-ip"=>"16", "full-text"=>"14", "pdf"=>"7", "abstract"=>"0", "scanned-summary"=>"0", "scanned-page-browse"=>"0", "figure"=>"8", "supp-data"=>"1", "cited-by"=>"0", "year"=>"2016", "month"=>"2"}
  • {"unique-ip"=>"13", "full-text"=>"14", "pdf"=>"5", "abstract"=>"0", "scanned-summary"=>"0", "scanned-page-browse"=>"0", "figure"=>"1", "supp-data"=>"0", "cited-by"=>"0", "year"=>"2016", "month"=>"4"}
  • {"unique-ip"=>"15", "full-text"=>"18", "pdf"=>"7", "abstract"=>"0", "scanned-summary"=>"0", "scanned-page-browse"=>"0", "figure"=>"10", "supp-data"=>"6", "cited-by"=>"0", "year"=>"2016", "month"=>"3"}
  • {"unique-ip"=>"28", "full-text"=>"26", "pdf"=>"12", "abstract"=>"0", "scanned-summary"=>"0", "scanned-page-browse"=>"0", "figure"=>"15", "supp-data"=>"6", "cited-by"=>"0", "year"=>"2016", "month"=>"5"}
  • {"unique-ip"=>"20", "full-text"=>"18", "pdf"=>"7", "abstract"=>"0", "scanned-summary"=>"0", "scanned-page-browse"=>"0", "figure"=>"4", "supp-data"=>"1", "cited-by"=>"0", "year"=>"2016", "month"=>"6"}
  • {"unique-ip"=>"19", "full-text"=>"17", "pdf"=>"7", "abstract"=>"0", "scanned-summary"=>"0", "scanned-page-browse"=>"0", "figure"=>"1", "supp-data"=>"0", "cited-by"=>"0", "year"=>"2016", "month"=>"7"}
  • {"unique-ip"=>"17", "full-text"=>"14", "pdf"=>"10", "abstract"=>"0", "scanned-summary"=>"0", "scanned-page-browse"=>"0", "figure"=>"2", "supp-data"=>"0", "cited-by"=>"0", "year"=>"2016", "month"=>"8"}
  • {"unique-ip"=>"18", "full-text"=>"25", "pdf"=>"5", "abstract"=>"0", "scanned-summary"=>"0", "scanned-page-browse"=>"0", "figure"=>"7", "supp-data"=>"0", "cited-by"=>"0", "year"=>"2016", "month"=>"9"}
  • {"unique-ip"=>"19", "full-text"=>"19", "pdf"=>"11", "abstract"=>"0", "scanned-summary"=>"0", "scanned-page-browse"=>"0", "figure"=>"2", "supp-data"=>"0", "cited-by"=>"0", "year"=>"2016", "month"=>"10"}
  • {"unique-ip"=>"25", "full-text"=>"29", "pdf"=>"6", "abstract"=>"0", "scanned-summary"=>"0", "scanned-page-browse"=>"0", "figure"=>"10", "supp-data"=>"1", "cited-by"=>"0", "year"=>"2016", "month"=>"11"}
  • {"unique-ip"=>"12", "full-text"=>"12", "pdf"=>"4", "abstract"=>"0", "scanned-summary"=>"0", "scanned-page-browse"=>"0", "figure"=>"10", "supp-data"=>"1", "cited-by"=>"0", "year"=>"2016", "month"=>"12"}
  • {"unique-ip"=>"14", "full-text"=>"9", "pdf"=>"4", "abstract"=>"0", "scanned-summary"=>"0", "scanned-page-browse"=>"0", "figure"=>"2", "supp-data"=>"8", "cited-by"=>"1", "year"=>"2017", "month"=>"1"}
  • {"unique-ip"=>"29", "full-text"=>"18", "pdf"=>"14", "abstract"=>"0", "scanned-summary"=>"0", "scanned-page-browse"=>"0", "figure"=>"14", "supp-data"=>"8", "cited-by"=>"1", "year"=>"2017", "month"=>"2"}
  • {"unique-ip"=>"16", "full-text"=>"21", "pdf"=>"6", "abstract"=>"0", "scanned-summary"=>"0", "scanned-page-browse"=>"0", "figure"=>"5", "supp-data"=>"0", "cited-by"=>"0", "year"=>"2017", "month"=>"3"}
  • {"unique-ip"=>"22", "full-text"=>"32", "pdf"=>"6", "abstract"=>"0", "scanned-summary"=>"0", "scanned-page-browse"=>"0", "figure"=>"2", "supp-data"=>"0", "cited-by"=>"0", "year"=>"2017", "month"=>"4"}
  • {"unique-ip"=>"14", "full-text"=>"14", "pdf"=>"5", "abstract"=>"0", "scanned-summary"=>"0", "scanned-page-browse"=>"0", "figure"=>"3", "supp-data"=>"0", "cited-by"=>"0", "year"=>"2017", "month"=>"5"}
  • {"unique-ip"=>"13", "full-text"=>"15", "pdf"=>"1", "abstract"=>"0", "scanned-summary"=>"0", "scanned-page-browse"=>"0", "figure"=>"14", "supp-data"=>"6", "cited-by"=>"0", "year"=>"2017", "month"=>"6"}
  • {"unique-ip"=>"8", "full-text"=>"15", "pdf"=>"3", "abstract"=>"0", "scanned-summary"=>"0", "scanned-page-browse"=>"0", "figure"=>"1", "supp-data"=>"3", "cited-by"=>"0", "year"=>"2017", "month"=>"7"}
  • {"unique-ip"=>"19", "full-text"=>"23", "pdf"=>"7", "abstract"=>"0", "scanned-summary"=>"0", "scanned-page-browse"=>"0", "figure"=>"0", "supp-data"=>"1", "cited-by"=>"0", "year"=>"2017", "month"=>"8"}
  • {"unique-ip"=>"16", "full-text"=>"21", "pdf"=>"7", "abstract"=>"0", "scanned-summary"=>"0", "scanned-page-browse"=>"0", "figure"=>"8", "supp-data"=>"1", "cited-by"=>"0", "year"=>"2017", "month"=>"9"}
  • {"unique-ip"=>"19", "full-text"=>"19", "pdf"=>"8", "abstract"=>"0", "scanned-summary"=>"0", "scanned-page-browse"=>"0", "figure"=>"0", "supp-data"=>"0", "cited-by"=>"0", "year"=>"2017", "month"=>"10"}
  • {"unique-ip"=>"28", "full-text"=>"30", "pdf"=>"11", "abstract"=>"0", "scanned-summary"=>"0", "scanned-page-browse"=>"0", "figure"=>"4", "supp-data"=>"3", "cited-by"=>"0", "year"=>"2017", "month"=>"11"}
  • {"unique-ip"=>"15", "full-text"=>"16", "pdf"=>"6", "abstract"=>"0", "scanned-summary"=>"0", "scanned-page-browse"=>"0", "figure"=>"2", "supp-data"=>"0", "cited-by"=>"0", "year"=>"2017", "month"=>"12"}
  • {"unique-ip"=>"11", "full-text"=>"11", "pdf"=>"6", "abstract"=>"0", "scanned-summary"=>"0", "scanned-page-browse"=>"0", "figure"=>"1", "supp-data"=>"0", "cited-by"=>"0", "year"=>"2018", "month"=>"1"}
  • {"unique-ip"=>"1", "full-text"=>"1", "pdf"=>"1", "abstract"=>"0", "scanned-summary"=>"0", "scanned-page-browse"=>"0", "figure"=>"0", "supp-data"=>"0", "cited-by"=>"0", "year"=>"2018", "month"=>"2"}
  • {"unique-ip"=>"19", "full-text"=>"23", "pdf"=>"14", "abstract"=>"0", "scanned-summary"=>"0", "scanned-page-browse"=>"0", "figure"=>"0", "supp-data"=>"1", "cited-by"=>"0", "year"=>"2018", "month"=>"3"}
  • {"unique-ip"=>"23", "full-text"=>"18", "pdf"=>"6", "scanned-summary"=>"0", "scanned-page-browse"=>"0", "figure"=>"12", "supp-data"=>"3", "cited-by"=>"0", "year"=>"2019", "month"=>"1"}
  • {"unique-ip"=>"13", "full-text"=>"16", "pdf"=>"2", "scanned-summary"=>"0", "scanned-page-browse"=>"0", "figure"=>"0", "supp-data"=>"3", "cited-by"=>"0", "year"=>"2018", "month"=>"6"}
  • {"unique-ip"=>"12", "full-text"=>"10", "pdf"=>"5", "scanned-summary"=>"0", "scanned-page-browse"=>"0", "figure"=>"0", "supp-data"=>"0", "cited-by"=>"0", "year"=>"2018", "month"=>"4"}
  • {"unique-ip"=>"13", "full-text"=>"12", "pdf"=>"8", "scanned-summary"=>"0", "scanned-page-browse"=>"0", "figure"=>"0", "supp-data"=>"0", "cited-by"=>"0", "year"=>"2018", "month"=>"5"}
  • {"unique-ip"=>"21", "full-text"=>"14", "pdf"=>"6", "scanned-summary"=>"0", "scanned-page-browse"=>"0", "figure"=>"10", "supp-data"=>"9", "cited-by"=>"0", "year"=>"2018", "month"=>"7"}
  • {"unique-ip"=>"19", "full-text"=>"16", "pdf"=>"3", "scanned-summary"=>"0", "scanned-page-browse"=>"0", "figure"=>"9", "supp-data"=>"0", "cited-by"=>"0", "year"=>"2018", "month"=>"8"}
  • {"unique-ip"=>"46", "full-text"=>"10", "pdf"=>"5", "scanned-summary"=>"0", "scanned-page-browse"=>"0", "figure"=>"37", "supp-data"=>"0", "cited-by"=>"0", "year"=>"2018", "month"=>"9"}
  • {"unique-ip"=>"43", "full-text"=>"22", "pdf"=>"10", "scanned-summary"=>"0", "scanned-page-browse"=>"0", "figure"=>"32", "supp-data"=>"6", "cited-by"=>"0", "year"=>"2018", "month"=>"10"}
  • {"unique-ip"=>"40", "full-text"=>"21", "pdf"=>"5", "scanned-summary"=>"0", "scanned-page-browse"=>"0", "figure"=>"25", "supp-data"=>"7", "cited-by"=>"0", "year"=>"2018", "month"=>"11"}
  • {"unique-ip"=>"32", "full-text"=>"37", "pdf"=>"2", "scanned-summary"=>"0", "scanned-page-browse"=>"0", "figure"=>"8", "supp-data"=>"3", "cited-by"=>"1", "year"=>"2018", "month"=>"12"}
  • {"unique-ip"=>"25", "full-text"=>"12", "pdf"=>"7", "scanned-summary"=>"0", "scanned-page-browse"=>"0", "figure"=>"15", "supp-data"=>"5", "cited-by"=>"0", "year"=>"2019", "month"=>"2"}
  • {"unique-ip"=>"14", "full-text"=>"8", "pdf"=>"5", "scanned-summary"=>"0", "scanned-page-browse"=>"0", "figure"=>"5", "supp-data"=>"0", "cited-by"=>"0", "year"=>"2019", "month"=>"3"}
  • {"unique-ip"=>"22", "full-text"=>"33", "pdf"=>"6", "scanned-summary"=>"0", "scanned-page-browse"=>"0", "figure"=>"1", "supp-data"=>"2", "cited-by"=>"0", "year"=>"2019", "month"=>"4"}
  • {"unique-ip"=>"18", "full-text"=>"18", "pdf"=>"5", "scanned-summary"=>"0", "scanned-page-browse"=>"0", "figure"=>"2", "supp-data"=>"0", "cited-by"=>"0", "year"=>"2019", "month"=>"5"}
  • {"unique-ip"=>"24", "full-text"=>"16", "pdf"=>"4", "scanned-summary"=>"0", "scanned-page-browse"=>"0", "figure"=>"26", "supp-data"=>"0", "cited-by"=>"0", "year"=>"2019", "month"=>"8"}
  • {"unique-ip"=>"14", "full-text"=>"13", "pdf"=>"6", "scanned-summary"=>"0", "scanned-page-browse"=>"0", "figure"=>"0", "supp-data"=>"1", "cited-by"=>"0", "year"=>"2019", "month"=>"9"}
  • {"unique-ip"=>"19", "full-text"=>"19", "pdf"=>"7", "scanned-summary"=>"0", "scanned-page-browse"=>"0", "figure"=>"1", "supp-data"=>"0", "cited-by"=>"0", "year"=>"2019", "month"=>"10"}
  • {"unique-ip"=>"18", "full-text"=>"12", "pdf"=>"9", "scanned-summary"=>"0", "scanned-page-browse"=>"0", "figure"=>"1", "supp-data"=>"0", "cited-by"=>"0", "year"=>"2019", "month"=>"12"}
  • {"unique-ip"=>"16", "full-text"=>"12", "pdf"=>"7", "scanned-summary"=>"0", "scanned-page-browse"=>"0", "figure"=>"1", "supp-data"=>"92", "cited-by"=>"0", "year"=>"2020", "month"=>"2"}
  • {"unique-ip"=>"12", "full-text"=>"36", "pdf"=>"6", "scanned-summary"=>"0", "scanned-page-browse"=>"0", "figure"=>"0", "supp-data"=>"1", "cited-by"=>"0", "year"=>"2020", "month"=>"3"}
  • {"unique-ip"=>"23", "full-text"=>"15", "pdf"=>"11", "scanned-summary"=>"0", "scanned-page-browse"=>"0", "figure"=>"3", "supp-data"=>"0", "cited-by"=>"0", "year"=>"2020", "month"=>"4"}
  • {"unique-ip"=>"7", "full-text"=>"5", "pdf"=>"4", "scanned-summary"=>"0", "scanned-page-browse"=>"0", "figure"=>"2", "supp-data"=>"0", "cited-by"=>"0", "year"=>"2020", "month"=>"5"}
  • {"unique-ip"=>"9", "full-text"=>"7", "pdf"=>"3", "scanned-summary"=>"0", "scanned-page-browse"=>"0", "figure"=>"2", "supp-data"=>"0", "cited-by"=>"0", "year"=>"2020", "month"=>"6"}
  • {"unique-ip"=>"15", "full-text"=>"12", "pdf"=>"4", "scanned-summary"=>"0", "scanned-page-browse"=>"0", "figure"=>"1", "supp-data"=>"14", "cited-by"=>"0", "year"=>"2020", "month"=>"7"}
  • {"unique-ip"=>"34", "full-text"=>"17", "pdf"=>"8", "scanned-summary"=>"0", "scanned-page-browse"=>"0", "figure"=>"0", "supp-data"=>"52", "cited-by"=>"0", "year"=>"2020", "month"=>"8"}
  • {"unique-ip"=>"14", "full-text"=>"15", "pdf"=>"2", "scanned-summary"=>"0", "scanned-page-browse"=>"0", "figure"=>"0", "supp-data"=>"1", "cited-by"=>"0", "year"=>"2020", "month"=>"9"}

Relative Metric

{"start_date"=>"2014-01-01T00:00:00Z", "end_date"=>"2014-12-31T00:00:00Z", "subject_areas"=>[]}
Loading … Spinner
There are currently no alerts