Optimizing Experimental Design for Comparing Models of Brain Function
Publication Date
November 17, 2011
Journal
PLOS Computational Biology
Authors
Jean Daunizeau, Kerstin Preuschoff, Karl Friston & Klaas Stephan
Volume
7
Issue
11
Pages
e1002280
DOI
https://dx.plos.org/10.1371/journal.pcbi.1002280
Publisher URL
http://journals.plos.org/ploscompbiol/article?id=10.1371%2Fjournal.pcbi.1002280
PubMed
http://www.ncbi.nlm.nih.gov/pubmed/22125485
PubMed Central
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3219623
Europe PMC
http://europepmc.org/abstract/MED/22125485
Web of Science
000297263700026
Scopus
81355153795
Mendeley
http://www.mendeley.com/research/optimizing-experimental-design-comparing-models-brain-function-1
Events
Loading … Spinner

CiteULike | Further Information

Mendeley | Further Information

{"title"=>"Optimizing experimental design for comparing models of brain function", "type"=>"journal", "authors"=>[{"first_name"=>"Jean", "last_name"=>"Daunizeau", "scopus_author_id"=>"21742214400"}, {"first_name"=>"Kerstin", "last_name"=>"Preuschoff", "scopus_author_id"=>"14056955800"}, {"first_name"=>"Karl", "last_name"=>"Friston", "scopus_author_id"=>"36080215500"}, {"first_name"=>"Klaas", "last_name"=>"Stephan", "scopus_author_id"=>"7102375486"}], "year"=>2011, "source"=>"PLoS Computational Biology", "identifiers"=>{"scopus"=>"2-s2.0-81355153795", "sgr"=>"81355153795", "issn"=>"1553734X", "doi"=>"10.1371/journal.pcbi.1002280", "pmid"=>"22125485", "isbn"=>"1553-734x", "pui"=>"362947805"}, "id"=>"ac8c58a7-1760-3f44-a354-d528dffaec82", "abstract"=>"This article presents the first attempt to formalize the optimization of experimental design with the aim of comparing models of brain function based on neuroimaging data. We demonstrate our approach in the context of Dynamic Causal Modelling (DCM), which relates experimental manipulations to observed network dynamics (via hidden neuronal states) and provides an inference framework for selecting among candidate models. Here, we show how to optimize the sensitivity of model selection by choosing among experimental designs according to their respective model selection accuracy. Using Bayesian decision theory, we (i) derive the Laplace-Chernoff risk for model selection, (ii) disclose its relationship with classical design optimality criteria and (iii) assess its sensitivity to basic modelling assumptions. We then evaluate the approach when identifying brain networks using DCM. Monte-Carlo simulations and empirical analyses of fMRI data from a simple bimanual motor task in humans serve to demonstrate the relationship between network identification and the optimal experimental design. For example, we show that deciding whether there is a feedback connection requires shorter epoch durations, relative to asking whether there is experimentally induced change in a connection that is known to be present. Finally, we discuss limitations and potential extensions of this work.", "link"=>"http://www.mendeley.com/research/optimizing-experimental-design-comparing-models-brain-function-1", "reader_count"=>61, "reader_count_by_academic_status"=>{"Unspecified"=>2, "Professor > Associate Professor"=>3, "Researcher"=>17, "Student > Doctoral Student"=>1, "Student > Ph. D. Student"=>16, "Student > Postgraduate"=>4, "Other"=>2, "Student > Master"=>5, "Student > Bachelor"=>2, "Lecturer"=>2, "Lecturer > Senior Lecturer"=>1, "Professor"=>6}, "reader_count_by_user_role"=>{"Unspecified"=>2, "Professor > Associate Professor"=>3, "Researcher"=>17, "Student > Doctoral Student"=>1, "Student > Ph. D. Student"=>16, "Student > Postgraduate"=>4, "Other"=>2, "Student > Master"=>5, "Student > Bachelor"=>2, "Lecturer"=>2, "Lecturer > Senior Lecturer"=>1, "Professor"=>6}, "reader_count_by_subject_area"=>{"Unspecified"=>4, "Engineering"=>2, "Agricultural and Biological Sciences"=>10, "Medicine and Dentistry"=>5, "Neuroscience"=>9, "Sports and Recreations"=>1, "Business, Management and Accounting"=>1, "Physics and Astronomy"=>1, "Psychology"=>20, "Computer Science"=>6, "Economics, Econometrics and Finance"=>1, "Linguistics"=>1}, "reader_count_by_subdiscipline"=>{"Engineering"=>{"Engineering"=>2}, "Medicine and Dentistry"=>{"Medicine and Dentistry"=>5}, "Neuroscience"=>{"Neuroscience"=>9}, "Sports and Recreations"=>{"Sports and Recreations"=>1}, "Physics and Astronomy"=>{"Physics and Astronomy"=>1}, "Psychology"=>{"Psychology"=>20}, "Economics, Econometrics and Finance"=>{"Economics, Econometrics and Finance"=>1}, "Agricultural and Biological Sciences"=>{"Agricultural and Biological Sciences"=>10}, "Computer Science"=>{"Computer Science"=>6}, "Business, Management and Accounting"=>{"Business, Management and Accounting"=>1}, "Linguistics"=>{"Linguistics"=>1}, "Unspecified"=>{"Unspecified"=>4}}, "reader_count_by_country"=>{"Iran"=>1, "Japan"=>2, "United Kingdom"=>4, "Germany"=>3}, "group_count"=>3}

Scopus | Further Information

{"@_fa"=>"true", "link"=>[{"@_fa"=>"true", "@ref"=>"self", "@href"=>"https://api.elsevier.com/content/abstract/scopus_id/81355153795"}, {"@_fa"=>"true", "@ref"=>"author-affiliation", "@href"=>"https://api.elsevier.com/content/abstract/scopus_id/81355153795?field=author,affiliation"}, {"@_fa"=>"true", "@ref"=>"scopus", "@href"=>"https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=81355153795&origin=inward"}, {"@_fa"=>"true", "@ref"=>"scopus-citedby", "@href"=>"https://www.scopus.com/inward/citedby.uri?partnerID=HzOxMe3b&scp=81355153795&origin=inward"}], "prism:url"=>"https://api.elsevier.com/content/abstract/scopus_id/81355153795", "dc:identifier"=>"SCOPUS_ID:81355153795", "eid"=>"2-s2.0-81355153795", "dc:title"=>"Optimizing experimental design for comparing models of brain function", "dc:creator"=>"Daunizeau J.", "prism:publicationName"=>"PLoS Computational Biology", "prism:issn"=>"1553734X", "prism:eIssn"=>"15537358", "prism:volume"=>"7", "prism:issueIdentifier"=>"11", "prism:pageRange"=>nil, "prism:coverDate"=>"2011-11-01", "prism:coverDisplayDate"=>"November 2011", "prism:doi"=>"10.1371/journal.pcbi.1002280", "citedby-count"=>"30", "affiliation"=>[{"@_fa"=>"true", "affilname"=>"Wellcome Trust Centre for Neuroimaging", "affiliation-city"=>"London", "affiliation-country"=>"United Kingdom"}, {"@_fa"=>"true", "affilname"=>"University of Zurich", "affiliation-city"=>"Zurich", "affiliation-country"=>"Switzerland"}], "pubmed-id"=>"22125485", "prism:aggregationType"=>"Journal", "subtype"=>"ar", "subtypeDescription"=>"Article", "article-number"=>"e1002280", "source-id"=>"4000151810", "openaccess"=>"1", "openaccessFlag"=>true}

Facebook

  • {"url"=>"http%3A%2F%2Fjournals.plos.org%2Fploscompbiol%2Farticle%3Fid%3D10.1371%252Fjournal.pcbi.1002280", "share_count"=>0, "like_count"=>0, "comment_count"=>0, "click_count"=>0, "total_count"=>0}

Counter

  • {"month"=>"11", "year"=>"2011", "pdf_views"=>"116", "xml_views"=>"23", "html_views"=>"518"}
  • {"month"=>"12", "year"=>"2011", "pdf_views"=>"77", "xml_views"=>"7", "html_views"=>"368"}
  • {"month"=>"1", "year"=>"2012", "pdf_views"=>"45", "xml_views"=>"1", "html_views"=>"176"}
  • {"month"=>"2", "year"=>"2012", "pdf_views"=>"37", "xml_views"=>"0", "html_views"=>"153"}
  • {"month"=>"3", "year"=>"2012", "pdf_views"=>"44", "xml_views"=>"2", "html_views"=>"168"}
  • {"month"=>"4", "year"=>"2012", "pdf_views"=>"20", "xml_views"=>"1", "html_views"=>"82"}
  • {"month"=>"5", "year"=>"2012", "pdf_views"=>"32", "xml_views"=>"0", "html_views"=>"106"}
  • {"month"=>"6", "year"=>"2012", "pdf_views"=>"20", "xml_views"=>"1", "html_views"=>"69"}
  • {"month"=>"7", "year"=>"2012", "pdf_views"=>"17", "xml_views"=>"0", "html_views"=>"46"}
  • {"month"=>"8", "year"=>"2012", "pdf_views"=>"17", "xml_views"=>"5", "html_views"=>"62"}
  • {"month"=>"9", "year"=>"2012", "pdf_views"=>"13", "xml_views"=>"0", "html_views"=>"68"}
  • {"month"=>"10", "year"=>"2012", "pdf_views"=>"19", "xml_views"=>"0", "html_views"=>"95"}
  • {"month"=>"11", "year"=>"2012", "pdf_views"=>"22", "xml_views"=>"0", "html_views"=>"96"}
  • {"month"=>"12", "year"=>"2012", "pdf_views"=>"13", "xml_views"=>"0", "html_views"=>"74"}
  • {"month"=>"1", "year"=>"2013", "pdf_views"=>"20", "xml_views"=>"0", "html_views"=>"81"}
  • {"month"=>"2", "year"=>"2013", "pdf_views"=>"19", "xml_views"=>"2", "html_views"=>"405"}
  • {"month"=>"3", "year"=>"2013", "pdf_views"=>"15", "xml_views"=>"0", "html_views"=>"69"}
  • {"month"=>"4", "year"=>"2013", "pdf_views"=>"13", "xml_views"=>"0", "html_views"=>"72"}
  • {"month"=>"5", "year"=>"2013", "pdf_views"=>"14", "xml_views"=>"1", "html_views"=>"46"}
  • {"month"=>"6", "year"=>"2013", "pdf_views"=>"15", "xml_views"=>"0", "html_views"=>"69"}
  • {"month"=>"7", "year"=>"2013", "pdf_views"=>"21", "xml_views"=>"0", "html_views"=>"60"}
  • {"month"=>"8", "year"=>"2013", "pdf_views"=>"32", "xml_views"=>"0", "html_views"=>"46"}
  • {"month"=>"9", "year"=>"2013", "pdf_views"=>"24", "xml_views"=>"2", "html_views"=>"118"}
  • {"month"=>"10", "year"=>"2013", "pdf_views"=>"17", "xml_views"=>"1", "html_views"=>"96"}
  • {"month"=>"11", "year"=>"2013", "pdf_views"=>"10", "xml_views"=>"2", "html_views"=>"50"}
  • {"month"=>"12", "year"=>"2013", "pdf_views"=>"10", "xml_views"=>"1", "html_views"=>"67"}
  • {"month"=>"1", "year"=>"2014", "pdf_views"=>"26", "xml_views"=>"0", "html_views"=>"71"}
  • {"month"=>"2", "year"=>"2014", "pdf_views"=>"12", "xml_views"=>"0", "html_views"=>"53"}
  • {"month"=>"3", "year"=>"2014", "pdf_views"=>"7", "xml_views"=>"1", "html_views"=>"48"}
  • {"month"=>"4", "year"=>"2014", "pdf_views"=>"5", "xml_views"=>"1", "html_views"=>"42"}
  • {"month"=>"5", "year"=>"2014", "pdf_views"=>"3", "xml_views"=>"0", "html_views"=>"54"}
  • {"month"=>"6", "year"=>"2014", "pdf_views"=>"11", "xml_views"=>"0", "html_views"=>"32"}
  • {"month"=>"7", "year"=>"2014", "pdf_views"=>"5", "xml_views"=>"0", "html_views"=>"34"}
  • {"month"=>"8", "year"=>"2014", "pdf_views"=>"7", "xml_views"=>"2", "html_views"=>"35"}
  • {"month"=>"9", "year"=>"2014", "pdf_views"=>"8", "xml_views"=>"0", "html_views"=>"36"}
  • {"month"=>"10", "year"=>"2014", "pdf_views"=>"16", "xml_views"=>"0", "html_views"=>"51"}
  • {"month"=>"11", "year"=>"2014", "pdf_views"=>"12", "xml_views"=>"1", "html_views"=>"45"}
  • {"month"=>"12", "year"=>"2014", "pdf_views"=>"10", "xml_views"=>"3", "html_views"=>"33"}
  • {"month"=>"1", "year"=>"2015", "pdf_views"=>"6", "xml_views"=>"0", "html_views"=>"29"}
  • {"month"=>"2", "year"=>"2015", "pdf_views"=>"7", "xml_views"=>"0", "html_views"=>"52"}
  • {"month"=>"3", "year"=>"2015", "pdf_views"=>"14", "xml_views"=>"0", "html_views"=>"46"}
  • {"month"=>"4", "year"=>"2015", "pdf_views"=>"15", "xml_views"=>"1", "html_views"=>"65"}
  • {"month"=>"5", "year"=>"2015", "pdf_views"=>"9", "xml_views"=>"0", "html_views"=>"30"}
  • {"month"=>"6", "year"=>"2015", "pdf_views"=>"10", "xml_views"=>"0", "html_views"=>"29"}
  • {"month"=>"7", "year"=>"2015", "pdf_views"=>"3", "xml_views"=>"0", "html_views"=>"39"}
  • {"month"=>"8", "year"=>"2015", "pdf_views"=>"7", "xml_views"=>"0", "html_views"=>"34"}
  • {"month"=>"9", "year"=>"2015", "pdf_views"=>"7", "xml_views"=>"0", "html_views"=>"30"}
  • {"month"=>"10", "year"=>"2015", "pdf_views"=>"5", "xml_views"=>"0", "html_views"=>"44"}
  • {"month"=>"11", "year"=>"2015", "pdf_views"=>"9", "xml_views"=>"0", "html_views"=>"35"}
  • {"month"=>"12", "year"=>"2015", "pdf_views"=>"6", "xml_views"=>"0", "html_views"=>"35"}
  • {"month"=>"1", "year"=>"2016", "pdf_views"=>"7", "xml_views"=>"0", "html_views"=>"24"}
  • {"month"=>"2", "year"=>"2016", "pdf_views"=>"5", "xml_views"=>"0", "html_views"=>"33"}
  • {"month"=>"3", "year"=>"2016", "pdf_views"=>"7", "xml_views"=>"0", "html_views"=>"63"}
  • {"month"=>"4", "year"=>"2016", "pdf_views"=>"9", "xml_views"=>"0", "html_views"=>"34"}
  • {"month"=>"5", "year"=>"2016", "pdf_views"=>"6", "xml_views"=>"0", "html_views"=>"45"}
  • {"month"=>"6", "year"=>"2016", "pdf_views"=>"12", "xml_views"=>"0", "html_views"=>"28"}
  • {"month"=>"7", "year"=>"2016", "pdf_views"=>"12", "xml_views"=>"0", "html_views"=>"32"}
  • {"month"=>"8", "year"=>"2016", "pdf_views"=>"8", "xml_views"=>"0", "html_views"=>"28"}
  • {"month"=>"9", "year"=>"2016", "pdf_views"=>"6", "xml_views"=>"0", "html_views"=>"36"}
  • {"month"=>"10", "year"=>"2016", "pdf_views"=>"8", "xml_views"=>"0", "html_views"=>"54"}
  • {"month"=>"11", "year"=>"2016", "pdf_views"=>"2", "xml_views"=>"0", "html_views"=>"27"}
  • {"month"=>"12", "year"=>"2016", "pdf_views"=>"12", "xml_views"=>"0", "html_views"=>"31"}
  • {"month"=>"1", "year"=>"2017", "pdf_views"=>"9", "xml_views"=>"3", "html_views"=>"32"}
  • {"month"=>"2", "year"=>"2017", "pdf_views"=>"6", "xml_views"=>"1", "html_views"=>"55"}
  • {"month"=>"3", "year"=>"2017", "pdf_views"=>"12", "xml_views"=>"1", "html_views"=>"31"}
  • {"month"=>"4", "year"=>"2017", "pdf_views"=>"12", "xml_views"=>"0", "html_views"=>"58"}
  • {"month"=>"5", "year"=>"2017", "pdf_views"=>"12", "xml_views"=>"1", "html_views"=>"40"}
  • {"month"=>"6", "year"=>"2017", "pdf_views"=>"5", "xml_views"=>"1", "html_views"=>"24"}
  • {"month"=>"7", "year"=>"2017", "pdf_views"=>"7", "xml_views"=>"0", "html_views"=>"24"}
  • {"month"=>"8", "year"=>"2017", "pdf_views"=>"6", "xml_views"=>"0", "html_views"=>"19"}
  • {"month"=>"9", "year"=>"2017", "pdf_views"=>"6", "xml_views"=>"6", "html_views"=>"34"}
  • {"month"=>"10", "year"=>"2017", "pdf_views"=>"4", "xml_views"=>"3", "html_views"=>"25"}
  • {"month"=>"11", "year"=>"2017", "pdf_views"=>"6", "xml_views"=>"0", "html_views"=>"39"}
  • {"month"=>"12", "year"=>"2017", "pdf_views"=>"11", "xml_views"=>"5", "html_views"=>"33"}
  • {"month"=>"1", "year"=>"2018", "pdf_views"=>"5", "xml_views"=>"0", "html_views"=>"26"}
  • {"month"=>"2", "year"=>"2018", "pdf_views"=>"7", "xml_views"=>"0", "html_views"=>"19"}
  • {"month"=>"3", "year"=>"2018", "pdf_views"=>"6", "xml_views"=>"1", "html_views"=>"17"}
  • {"month"=>"4", "year"=>"2018", "pdf_views"=>"13", "xml_views"=>"4", "html_views"=>"10"}
  • {"month"=>"5", "year"=>"2018", "pdf_views"=>"19", "xml_views"=>"0", "html_views"=>"27"}
  • {"month"=>"6", "year"=>"2018", "pdf_views"=>"8", "xml_views"=>"2", "html_views"=>"12"}
  • {"month"=>"7", "year"=>"2018", "pdf_views"=>"7", "xml_views"=>"3", "html_views"=>"12"}
  • {"month"=>"8", "year"=>"2018", "pdf_views"=>"11", "xml_views"=>"1", "html_views"=>"25"}
  • {"month"=>"9", "year"=>"2018", "pdf_views"=>"6", "xml_views"=>"4", "html_views"=>"16"}
  • {"month"=>"10", "year"=>"2018", "pdf_views"=>"6", "xml_views"=>"2", "html_views"=>"7"}
  • {"month"=>"11", "year"=>"2018", "pdf_views"=>"12", "xml_views"=>"1", "html_views"=>"44"}
  • {"month"=>"12", "year"=>"2018", "pdf_views"=>"6", "xml_views"=>"1", "html_views"=>"14"}
  • {"month"=>"1", "year"=>"2019", "pdf_views"=>"5", "xml_views"=>"0", "html_views"=>"6"}
  • {"month"=>"2", "year"=>"2019", "pdf_views"=>"6", "xml_views"=>"0", "html_views"=>"10"}
  • {"month"=>"3", "year"=>"2019", "pdf_views"=>"13", "xml_views"=>"3", "html_views"=>"11"}
  • {"month"=>"4", "year"=>"2019", "pdf_views"=>"10", "xml_views"=>"0", "html_views"=>"16"}
  • {"month"=>"5", "year"=>"2019", "pdf_views"=>"8", "xml_views"=>"0", "html_views"=>"10"}

Figshare

  • {"files"=>["https://ndownloader.figshare.com/files/712126"], "description"=>"<p>3×2 factorial comparison set for PPI.</p>", "links"=>[], "tags"=>["factorial"], "article_id"=>382496, "categories"=>["Mathematics", "Biological Sciences", "Neuroscience"], "users"=>["Jean Daunizeau", "Kerstin Preuschoff", "Karl Friston", "Klaas Stephan"], "doi"=>"https://dx.doi.org/10.1371/journal.pcbi.1002280.t001", "stats"=>{"downloads"=>1, "page_views"=>4, "likes"=>0}, "figshare_url"=>"https://figshare.com/articles/_3_215_2_factorial_comparison_set_for_PPI_/382496", "title"=>"3×2 factorial comparison set for PPI.", "pos_in_sequence"=>0, "defined_type"=>3, "published_date"=>"2011-11-17 00:41:36"}
  • {"files"=>["https://ndownloader.figshare.com/files/711475"], "description"=>"<p>This figure shows plots of the average (across jitters) Laplace-Chernoff risk as a function of epoch duration (in seconds) and prior expectation of neural evolution parameters, for the three inference levels defined in relation to the PPI comparison set of <a href=\"http://www.ploscompbiol.org/article/info:doi/10.1371/journal.pcbi.1002280#pcbi-1002280-g010\" target=\"_blank\">Fig. 10</a>. It uses the same format as <a href=\"http://www.ploscompbiol.org/article/info:doi/10.1371/journal.pcbi.1002280#pcbi-1002280-g008\" target=\"_blank\">Fig. 8</a>. Left: model comparison, middle: family comparison (partition 1), right: family comparison (partition 2).</p>", "links"=>[], "tags"=>["optimal", "epoch"], "article_id"=>381837, "categories"=>["Mathematics", "Biological Sciences", "Neuroscience"], "users"=>["Jean Daunizeau", "Kerstin Preuschoff", "Karl Friston", "Klaas Stephan"], "doi"=>"https://dx.doi.org/10.1371/journal.pcbi.1002280.g011", "stats"=>{"downloads"=>1, "page_views"=>8, "likes"=>0}, "figshare_url"=>"https://figshare.com/articles/_PPI_optimal_epoch_duration_/381837", "title"=>"PPI: optimal epoch duration.", "pos_in_sequence"=>0, "defined_type"=>1, "published_date"=>"2011-11-17 00:30:37"}
  • {"files"=>["https://ndownloader.figshare.com/files/711618"], "description"=>"<p>This figure shows plots of the average (across jitters) Laplace-Chernoff risk as a function of the TMS design (TMS1, TMS 2 or no TMS), for two different PPI comparison sets. Left: the two TMS ‘on’ designs (TMS1: target region 1, TMS2: target region 2). Upper-right: average Laplace-Chernoff risk for the first family of partition 2 (three models, no feedback connection from node 2 to node 1). Lower-right: average Laplace-Chernoff risk for the whole PPI comparison set (six models, with and without a feedback connection from node 2 to node 1).</p>", "links"=>[], "tags"=>["optimal", "tms"], "article_id"=>381982, "categories"=>["Mathematics", "Biological Sciences", "Neuroscience"], "users"=>["Jean Daunizeau", "Kerstin Preuschoff", "Karl Friston", "Klaas Stephan"], "doi"=>"https://dx.doi.org/10.1371/journal.pcbi.1002280.g012", "stats"=>{"downloads"=>1, "page_views"=>6, "likes"=>0}, "figshare_url"=>"https://figshare.com/articles/_PPI_optimal_TMS_intervention_site_/381982", "title"=>"PPI: optimal TMS intervention site.", "pos_in_sequence"=>0, "defined_type"=>1, "published_date"=>"2011-11-17 00:33:02"}
  • {"files"=>["https://ndownloader.figshare.com/files/711358"], "description"=>"<p>The figure depicts the set of DCMs that are compatible with a PPI (correlation between region 2 and the interaction of region 1 and manipulation ). This comparison set is constructed in a factorial way: (i) three PPI classes and (ii) with/without a feedback connection from node 2 to node 1. It can be partitioned into two partitions of two families each. Partition 1 corresponds to the two qualitatively different interpretations of a PPI (“region 1 modulates the response of region 2 to ” versus “ modulates the influence of region 1 onto region 2”). Partition 2 relates to the presence versus absence of the feedback connection.</p>", "links"=>[], "tags"=>["factorial", "dcm"], "article_id"=>381723, "categories"=>["Mathematics", "Biological Sciences", "Neuroscience"], "users"=>["Jean Daunizeau", "Kerstin Preuschoff", "Karl Friston", "Klaas Stephan"], "doi"=>"https://dx.doi.org/10.1371/journal.pcbi.1002280.g010", "stats"=>{"downloads"=>1, "page_views"=>7, "likes"=>0}, "figshare_url"=>"https://figshare.com/articles/_PPI_the_3_215_2_factorial_DCM_comparison_set_/381723", "title"=>"PPI: the 3×2 factorial DCM comparison set.", "pos_in_sequence"=>0, "defined_type"=>1, "published_date"=>"2011-11-17 00:28:43"}
  • {"files"=>["https://ndownloader.figshare.com/files/711724"], "description"=>"<p>Left: inner stimulation sequence of one trial of the finger-tapping task (fixation cross, then motor pacing – left or right or both- and the final recording of the subject's response – button press-). Right: SPM t-contrast (right>left) thresholded at p = 0.05 (FWE corrected) for subject KER under the blocked design.</p>", "links"=>[], "tags"=>["paradigm"], "article_id"=>382087, "categories"=>["Mathematics", "Biological Sciences", "Neuroscience"], "users"=>["Jean Daunizeau", "Kerstin Preuschoff", "Karl Friston", "Klaas Stephan"], "doi"=>"https://dx.doi.org/10.1371/journal.pcbi.1002280.g013", "stats"=>{"downloads"=>3, "page_views"=>22, "likes"=>0}, "figshare_url"=>"https://figshare.com/articles/_Finger_tapping_task_paradigm_and_classical_SPM_/382087", "title"=>"Finger-tapping task: paradigm and classical SPM.", "pos_in_sequence"=>0, "defined_type"=>1, "published_date"=>"2011-11-17 00:34:47"}
  • {"files"=>["https://ndownloader.figshare.com/files/711937"], "description"=>"<p>This figure plots the log-model evidences of the four DCMs included in the comparison set for both subjects (orange bars: subject KER, green bars: subject JUS) and both designs (left: event-related, right: blocked design). Green (respectively, rose) shaded areas indicate the models belonging to family 1 (respectively, family 2). Black dots show the four winning models (one per subject and per design). Note that the free energies are relative to the minimal free energy within the comparison set, for each subject and design.</p>", "links"=>[], "tags"=>["dcm"], "article_id"=>382308, "categories"=>["Mathematics", "Biological Sciences", "Neuroscience"], "users"=>["Jean Daunizeau", "Kerstin Preuschoff", "Karl Friston", "Klaas Stephan"], "doi"=>"https://dx.doi.org/10.1371/journal.pcbi.1002280.g016", "stats"=>{"downloads"=>1, "page_views"=>2, "likes"=>0}, "figshare_url"=>"https://figshare.com/articles/_Finger_tapping_task_DCM_comparison_results_/382308", "title"=>"Finger-tapping task: DCM comparison results.", "pos_in_sequence"=>0, "defined_type"=>1, "published_date"=>"2011-11-17 00:38:28"}
  • {"files"=>["https://ndownloader.figshare.com/files/712008"], "description"=>"<p>This figures summarizes the results of the splitting analysis (see main text), in terms of the relationship between the Laplace-Chernoff risk and the observed model selection error rate. Left: splitting procedure. The complete data and input sequence (one per subject and per design) is split into segments, each of which is analyzed independently. Right: the average (across segments and subjects) probability of making a model selection mistake (i.e. ) is plotted as a function of the Laplace-Chernoff risk, for both designs (blue: event-related, red: blocked). Each point corresponds to a different splitting procedure (no split, split into segments, split into segments).</p>", "links"=>[], "tags"=>["splitting"], "article_id"=>382374, "categories"=>["Mathematics", "Biological Sciences", "Neuroscience"], "users"=>["Jean Daunizeau", "Kerstin Preuschoff", "Karl Friston", "Klaas Stephan"], "doi"=>"https://dx.doi.org/10.1371/journal.pcbi.1002280.g017", "stats"=>{"downloads"=>4, "page_views"=>3, "likes"=>0}, "figshare_url"=>"https://figshare.com/articles/_Finger_tapping_task_splitting_analysis_/382374", "title"=>"Finger-tapping task: splitting analysis.", "pos_in_sequence"=>0, "defined_type"=>1, "published_date"=>"2011-11-17 00:39:34"}
  • {"files"=>["https://ndownloader.figshare.com/files/710743"], "description"=>"<p>This figure summarizes the Monte-Carlo simulation environment of section “Evaluation of the model selection error bounds” we used for evaluating the Laplace-Chernoff bounds in the context of network identification. The comparison set is shown on the left. It consists of two models that differ in terms of where the two inputs and enter the network. The three candidate designs are shown on the right. They consist of three different stimulation sequences, with different degrees of temporal correlation between the two inputs.</p>", "links"=>[], "tags"=>["laplace-chernoff", "dcm"], "article_id"=>381108, "categories"=>["Mathematics", "Biological Sciences", "Neuroscience"], "users"=>["Jean Daunizeau", "Kerstin Preuschoff", "Karl Friston", "Klaas Stephan"], "doi"=>"https://dx.doi.org/10.1371/journal.pcbi.1002280.g004", "stats"=>{"downloads"=>2, "page_views"=>25, "likes"=>0}, "figshare_url"=>"https://figshare.com/articles/_Evaluation_of_the_Laplace_Chernoff_bounds_DCM_comparison_set_and_candidate_designs_/381108", "title"=>"Evaluation of the Laplace-Chernoff bounds: DCM comparison set and candidate designs.", "pos_in_sequence"=>0, "defined_type"=>1, "published_date"=>"2011-11-17 00:18:28"}
  • {"files"=>["https://ndownloader.figshare.com/files/360488", "https://ndownloader.figshare.com/files/360531", "https://ndownloader.figshare.com/files/360573"], "description"=>"<div><p>This article presents the first attempt to formalize the optimization of experimental design with the aim of comparing models of brain function based on neuroimaging data. We demonstrate our approach in the context of Dynamic Causal Modelling (DCM), which relates experimental manipulations to observed network dynamics (via hidden neuronal states) and provides an inference framework for selecting among candidate models. Here, we show how to optimize the sensitivity of model selection by choosing among experimental designs according to their respective model selection accuracy. Using Bayesian decision theory, we (i) derive the <em>Laplace-Chernoff risk</em> for model selection, (ii) disclose its relationship with classical design optimality criteria and (iii) assess its sensitivity to basic modelling assumptions. We then evaluate the approach when identifying brain networks using DCM. Monte-Carlo simulations and empirical analyses of fMRI data from a simple bimanual motor task in humans serve to demonstrate the relationship between network identification and the optimal experimental design. For example, we show that deciding whether there is a feedback connection requires shorter epoch durations, relative to asking whether there is experimentally induced change in a connection that is known to be present. Finally, we discuss limitations and potential extensions of this work.</p> </div>", "links"=>[], "tags"=>["optimizing", "comparing", "models"], "article_id"=>131249, "categories"=>["Mathematics", "Biological Sciences", "Neuroscience"], "users"=>["Jean Daunizeau", "Kerstin Preuschoff", "Karl Friston", "Klaas Stephan"], "doi"=>["https://dx.doi.org/10.1371/journal.pcbi.1002280.s001", "https://dx.doi.org/10.1371/journal.pcbi.1002280.s002", "https://dx.doi.org/10.1371/journal.pcbi.1002280.s003"], "stats"=>{"downloads"=>6, "page_views"=>4, "likes"=>0}, "figshare_url"=>"https://figshare.com/articles/Optimizing_Experimental_Design_for_Comparing_Models_of_Brain_Function/131249", "title"=>"Optimizing Experimental Design for Comparing Models of Brain Function", "pos_in_sequence"=>0, "defined_type"=>4, "published_date"=>"2011-11-17 00:20:49"}
  • {"files"=>["https://ndownloader.figshare.com/files/711285"], "description"=>"<p>The figure depicts the difference in the data correlation matrices induced by two network structures (model fbk-: without feedback, model fbk+: with feedback). Red (respectively, blue) entries indicate an increase (respectively, a decrease) in the correlation induced by adding a feedback connection from node 2 to node 1. Each block within the matrix corresponds to a node-to-node temporal correlation structure (upper-left: node 1 to node 1, lower-right: node 2 to node 2, upper-right/lower-left: node 1 to node 2). For example, the dashed back box reads as follows: adding the feedback connection increases between activity in node 2 at the end of the block and node 1 during the whole block. The solid black box indicates the time interval, during which input to node 1 was ‘on’. Note that its effect onto the two-region network dynamics is delayed, due to the hemodynamic response function.</p>", "links"=>[], "tags"=>["Computational biology", "neuroscience", "mathematics"], "article_id"=>381648, "categories"=>["Mathematics", "Biological Sciences", "Neuroscience"], "users"=>["Jean Daunizeau", "Kerstin Preuschoff", "Karl Friston", "Klaas Stephan"], "doi"=>"https://dx.doi.org/10.1371/journal.pcbi.1002280.g009", "stats"=>{"downloads"=>1, "page_views"=>5, "likes"=>0}, "figshare_url"=>"https://figshare.com/articles/_The_signature_of_feedback_connections_/381648", "title"=>"The signature of feedback connections.", "pos_in_sequence"=>0, "defined_type"=>1, "published_date"=>"2011-11-17 00:27:28"}
  • {"files"=>["https://ndownloader.figshare.com/files/710444"], "description"=>"<p>The DCM cycle summarizes the interaction between modelling, experimental work and statistical data analysis. One starts with new competing hypotheses about a neural system of interest. These are then embodied into a set of candidate DCMs that are to be compared with each other given empirical data. One then designs an experiment that is maximally discriminative with respect to the candidate DCMs. This is the critical step addressed in this article. Data acquisition and analysis then proceed, the conclusion of which serves to generate a new set of competing hypotheses, etc…</p>", "links"=>[], "tags"=>["dcm"], "article_id"=>380806, "categories"=>["Mathematics", "Biological Sciences", "Neuroscience"], "users"=>["Jean Daunizeau", "Kerstin Preuschoff", "Karl Friston", "Klaas Stephan"], "doi"=>"https://dx.doi.org/10.1371/journal.pcbi.1002280.g001", "stats"=>{"downloads"=>0, "page_views"=>3, "likes"=>0}, "figshare_url"=>"https://figshare.com/articles/_The_DCM_cycle_/380806", "title"=>"The DCM cycle.", "pos_in_sequence"=>0, "defined_type"=>1, "published_date"=>"2011-11-17 00:13:26"}
  • {"files"=>["https://ndownloader.figshare.com/files/711130"], "description"=>"<p>This figure shows plots of the average (across jitters) Laplace-Chernoff risk as a function of epoch duration (in seconds) and prior expectation of neural evolution parameters, for the three canonical comparison sets (left: driving input, middle: modulatory input, right: feedback connection). Blue: , green: , red: and magenta: . Error bars depict the variability (one standard deviation) induced by varying jitters in the stimulation sequence.</p>", "links"=>[], "tags"=>["optimal", "epoch"], "article_id"=>381501, "categories"=>["Mathematics", "Biological Sciences", "Neuroscience"], "users"=>["Jean Daunizeau", "Kerstin Preuschoff", "Karl Friston", "Klaas Stephan"], "doi"=>"https://dx.doi.org/10.1371/journal.pcbi.1002280.g008", "stats"=>{"downloads"=>1, "page_views"=>6, "likes"=>0}, "figshare_url"=>"https://figshare.com/articles/_Canonical_network_identification_questions_optimal_epoch_duration_/381501", "title"=>"Canonical network identification questions: optimal epoch duration.", "pos_in_sequence"=>0, "defined_type"=>1, "published_date"=>"2011-11-17 00:25:01"}
  • {"files"=>["https://ndownloader.figshare.com/files/710607"], "description"=>"<p>The figure depicts the influence of a moment contrast between two prior predictive densities (left column), the number of models (middle column) and the data dimension (right column) onto the exact error rate (green) and the Laplace-Chernoff risk (upper bound: solid red, lower bound: dashed red). This is assessed in terms of a mean shift (left inset) and a variance scaling (right inset). The blue lines depict the approximate Jensen-Shannon density (see equations 8, 9 and 11 in the main text and equation A1.5 in <a href=\"http://www.ploscompbiol.org/article/info:doi/10.1371/journal.pcbi.1002280#pcbi.1002280.s001\" target=\"_blank\">Text S1</a>).</p>", "links"=>[], "tags"=>["laplace-chernoff"], "article_id"=>380971, "categories"=>["Mathematics", "Biological Sciences", "Neuroscience"], "users"=>["Jean Daunizeau", "Kerstin Preuschoff", "Karl Friston", "Klaas Stephan"], "doi"=>"https://dx.doi.org/10.1371/journal.pcbi.1002280.g003", "stats"=>{"downloads"=>0, "page_views"=>8, "likes"=>0}, "figshare_url"=>"https://figshare.com/articles/_Tightness_of_the_Laplace_Chernoff_bounds_/380971", "title"=>"Tightness of the Laplace-Chernoff bounds.", "pos_in_sequence"=>0, "defined_type"=>1, "published_date"=>"2011-11-17 00:16:11"}
  • {"files"=>["https://ndownloader.figshare.com/files/711871"], "description"=>"<p>Upper-left: estimated coupling strengths of model F, under the blocked design (subject KER). These are taken from the first-order moment of the approximate posterior density over evolution parameters. Lower-left: parameter posterior correlation matrix. Upper-right: observed versus fitted data in the right motor cortex. Lower-right: linearised impulse responses (first-order Volterra kernels) to the ‘right’ pace in both motor cortices as a function of time.</p>", "links"=>[], "tags"=>["vb", "inversion", "blocked"], "article_id"=>382236, "categories"=>["Mathematics", "Biological Sciences", "Neuroscience"], "users"=>["Jean Daunizeau", "Kerstin Preuschoff", "Karl Friston", "Klaas Stephan"], "doi"=>"https://dx.doi.org/10.1371/journal.pcbi.1002280.g015", "stats"=>{"downloads"=>2, "page_views"=>5, "likes"=>0}, "figshare_url"=>"https://figshare.com/articles/_Finger_tapping_task_VB_inversion_of_model_F_under_the_blocked_design_subject_KER_/382236", "title"=>"Finger-tapping task: VB inversion of model F under the blocked design (subject KER).", "pos_in_sequence"=>0, "defined_type"=>1, "published_date"=>"2011-11-17 00:37:16"}
  • {"files"=>["https://ndownloader.figshare.com/files/710847"], "description"=>"<p>Upper-left: simulated (neural and hemodynamic) states dynamics as a function of time under model 1 and design 1 (two regions, five states per region). Lower-left: simulated fMRI data (blue: region 1, green: region 2). Solid lines show the observable BOLD changes (without noise) and dashed lines show the actual noisy time series that are sent to the VB inversion scheme. Upper-middle: the iterative increase in the lower bound to the model evidence (free energy) as the VB inversion scheme proceeds (from the prior to the final posterior approximation), under model 1. Lower-middle: Posterior correlation matrix between the model parameters. Red or blue entries indicate a potential non-identifiability issue and grey entries are associated with fixed model parameters. Upper-right: approximate posterior density over (neural and hemodynamic) states . The first two moments of the density are shown (solid line: mean, shaded area: standard deviation). Lower-right: approximate posterior predictive density and data time series.</p>", "links"=>[], "tags"=>["laplace-chernoff", "simulated", "vb"], "article_id"=>381205, "categories"=>["Mathematics", "Biological Sciences", "Neuroscience"], "users"=>["Jean Daunizeau", "Kerstin Preuschoff", "Karl Friston", "Klaas Stephan"], "doi"=>"https://dx.doi.org/10.1371/journal.pcbi.1002280.g005", "stats"=>{"downloads"=>1, "page_views"=>11, "likes"=>0}, "figshare_url"=>"https://figshare.com/articles/_Evaluation_of_the_Laplace_Chernoff_bounds_simulated_data_and_VB_inversion_/381205", "title"=>"Evaluation of the Laplace-Chernoff bounds: simulated data and VB inversion.", "pos_in_sequence"=>0, "defined_type"=>1, "published_date"=>"2011-11-17 00:20:05"}
  • {"files"=>["https://ndownloader.figshare.com/files/710539"], "description"=>"<p>The (univariate) prior predictive density of two generative models (blue) and (green) are plotted as a function of data , given an arbitrary design . The dashed grey line shows the marginal predictive density that captures the probabilistic prediction of the whole comparison set . The area under the curve (red) measures the model selection error rate , which depends upon the discriminability between the two prior predictive density and . This is precisely what the Laplace-Chernoff risk is a measure of.</p>", "links"=>[], "tags"=>["laplace-chernoff"], "article_id"=>380901, "categories"=>["Mathematics", "Biological Sciences", "Neuroscience"], "users"=>["Jean Daunizeau", "Kerstin Preuschoff", "Karl Friston", "Klaas Stephan"], "doi"=>"https://dx.doi.org/10.1371/journal.pcbi.1002280.g002", "stats"=>{"downloads"=>0, "page_views"=>3, "likes"=>0}, "figshare_url"=>"https://figshare.com/articles/_Selection_error_rate_and_the_Laplace_Chernoff_risk_/380901", "title"=>"Selection error rate and the Laplace-Chernoff risk.", "pos_in_sequence"=>0, "defined_type"=>1, "published_date"=>"2011-11-17 00:15:01"}
  • {"files"=>["https://ndownloader.figshare.com/files/711058"], "description"=>"<p>This figure depicts the three canonical DCM comparison sets, each of which consists of two variants of a simple two-region network. Upper-row: driving input; middle-row: modulatory input; Lower-row: feedback connection.</p>", "links"=>[], "tags"=>["dcm"], "article_id"=>381428, "categories"=>["Mathematics", "Biological Sciences", "Neuroscience"], "users"=>["Jean Daunizeau", "Kerstin Preuschoff", "Karl Friston", "Klaas Stephan"], "doi"=>"https://dx.doi.org/10.1371/journal.pcbi.1002280.g007", "stats"=>{"downloads"=>0, "page_views"=>2, "likes"=>0}, "figshare_url"=>"https://figshare.com/articles/_Canonical_network_identification_questions_DCM_comparison_sets_/381428", "title"=>"Canonical network identification questions: DCM comparison sets.", "pos_in_sequence"=>0, "defined_type"=>1, "published_date"=>"2011-11-17 00:23:48"}
  • {"files"=>["https://ndownloader.figshare.com/files/711785"], "description"=>"<p>The figure depicts the DCM comparison set we used to analyze the finger-tapping task fMRI data. This set can be partitioned into two families of models. Family 1 gathers two plausible network structures for the finger-tapping task (left pace drives right motor cortex and right pace drives left motor cortex, with and without feedback connections). Family 2 pools over two implausible motor networks subtending the finger-tapping task (allowing the left pace to drive the left motor cortex, and reciprocally).</p>", "links"=>[], "tags"=>["dcm"], "article_id"=>382148, "categories"=>["Mathematics", "Biological Sciences", "Neuroscience"], "users"=>["Jean Daunizeau", "Kerstin Preuschoff", "Karl Friston", "Klaas Stephan"], "doi"=>"https://dx.doi.org/10.1371/journal.pcbi.1002280.g014", "stats"=>{"downloads"=>1, "page_views"=>16, "likes"=>0}, "figshare_url"=>"https://figshare.com/articles/_Finger_tapping_task_DCM_comparison_set_/382148", "title"=>"Finger-tapping task: DCM comparison set.", "pos_in_sequence"=>0, "defined_type"=>1, "published_date"=>"2011-11-17 00:35:48"}
  • {"files"=>["https://ndownloader.figshare.com/files/712100"], "description"=>"<p>Laplace-Chernoff risks for the event-related versus blocked design (when comparing family 1 versus family 2).</p>", "links"=>[], "tags"=>["risks", "event-related", "blocked", "comparing"], "article_id"=>382465, "categories"=>["Mathematics", "Biological Sciences", "Neuroscience"], "users"=>["Jean Daunizeau", "Kerstin Preuschoff", "Karl Friston", "Klaas Stephan"], "doi"=>"https://dx.doi.org/10.1371/journal.pcbi.1002280.t002", "stats"=>{"downloads"=>4, "page_views"=>20, "likes"=>0}, "figshare_url"=>"https://figshare.com/articles/_Laplace_Chernoff_risks_for_the_event_related_versus_blocked_design_when_comparing_family_1_versus_family_2_/382465", "title"=>"Laplace-Chernoff risks for the event-related versus blocked design (when comparing family 1 versus family 2).", "pos_in_sequence"=>0, "defined_type"=>3, "published_date"=>"2011-11-17 00:41:05"}
  • {"files"=>["https://ndownloader.figshare.com/files/710965"], "description"=>"<p>Evaluation of the Laplace-Chernoff bounds: Monte-Carlo results.</p>", "links"=>[], "tags"=>["laplace-chernoff", "monte-carlo"], "article_id"=>381332, "categories"=>["Mathematics", "Biological Sciences", "Neuroscience"], "users"=>["Jean Daunizeau", "Kerstin Preuschoff", "Karl Friston", "Klaas Stephan"], "doi"=>"https://dx.doi.org/10.1371/journal.pcbi.1002280.g006", "stats"=>{"downloads"=>1, "page_views"=>12, "likes"=>0}, "figshare_url"=>"https://figshare.com/articles/_Evaluation_of_the_Laplace_Chernoff_bounds_Monte_Carlo_results_/381332", "title"=>"Evaluation of the Laplace-Chernoff bounds: Monte-Carlo results.", "pos_in_sequence"=>0, "defined_type"=>1, "published_date"=>"2011-11-17 00:22:12"}

PMC Usage Stats | Further Information

  • {"scanned-page-browse"=>"0", "month"=>"12", "cited-by"=>"0", "abstract"=>"0", "full-text"=>"25", "unique-ip"=>"29", "pdf"=>"33", "year"=>"2011", "figure"=>"20", "scanned-summary"=>"0", "supp-data"=>"0"}
  • {"scanned-page-browse"=>"0", "month"=>"1", "cited-by"=>"0", "abstract"=>"0", "full-text"=>"17", "unique-ip"=>"16", "pdf"=>"11", "year"=>"2012", "figure"=>"2", "scanned-summary"=>"0", "supp-data"=>"0"}
  • {"month"=>"2", "scanned-page-browse"=>"0", "cited-by"=>"0", "abstract"=>"1", "full-text"=>"15", "year"=>"2012", "pdf"=>"6", "unique-ip"=>"15", "figure"=>"3", "scanned-summary"=>"0", "supp-data"=>"0"}
  • {"scanned-page-browse"=>"0", "month"=>"3", "cited-by"=>"0", "abstract"=>"2", "full-text"=>"14", "unique-ip"=>"18", "pdf"=>"9", "year"=>"2012", "figure"=>"5", "scanned-summary"=>"0", "supp-data"=>"0"}
  • {"month"=>"4", "scanned-page-browse"=>"0", "cited-by"=>"0", "abstract"=>"1", "full-text"=>"15", "year"=>"2012", "pdf"=>"7", "unique-ip"=>"17", "figure"=>"1", "scanned-summary"=>"0", "supp-data"=>"1"}
  • {"scanned-page-browse"=>"0", "month"=>"5", "cited-by"=>"0", "abstract"=>"1", "full-text"=>"8", "unique-ip"=>"9", "pdf"=>"3", "year"=>"2012", "figure"=>"0", "scanned-summary"=>"0", "supp-data"=>"0"}
  • {"month"=>"6", "scanned-page-browse"=>"0", "cited-by"=>"0", "abstract"=>"0", "full-text"=>"8", "year"=>"2012", "pdf"=>"5", "unique-ip"=>"9", "figure"=>"1", "scanned-summary"=>"0", "supp-data"=>"0"}
  • {"unique-ip"=>"12", "full-text"=>"11", "pdf"=>"3", "abstract"=>"0", "scanned-summary"=>"0", "scanned-page-browse"=>"0", "figure"=>"1", "supp-data"=>"0", "cited-by"=>"0", "year"=>"2012", "month"=>"7"}
  • {"unique-ip"=>"9", "full-text"=>"9", "pdf"=>"3", "abstract"=>"0", "scanned-summary"=>"0", "scanned-page-browse"=>"0", "figure"=>"1", "supp-data"=>"0", "cited-by"=>"0", "year"=>"2012", "month"=>"8"}
  • {"unique-ip"=>"9", "full-text"=>"9", "pdf"=>"2", "abstract"=>"0", "scanned-summary"=>"0", "scanned-page-browse"=>"0", "figure"=>"1", "supp-data"=>"0", "cited-by"=>"0", "year"=>"2012", "month"=>"9"}
  • {"unique-ip"=>"9", "full-text"=>"7", "pdf"=>"6", "abstract"=>"0", "scanned-summary"=>"0", "scanned-page-browse"=>"0", "figure"=>"2", "supp-data"=>"0", "cited-by"=>"0", "year"=>"2012", "month"=>"10"}
  • {"unique-ip"=>"8", "full-text"=>"8", "pdf"=>"1", "abstract"=>"0", "scanned-summary"=>"0", "scanned-page-browse"=>"0", "figure"=>"0", "supp-data"=>"0", "cited-by"=>"0", "year"=>"2012", "month"=>"12"}
  • {"unique-ip"=>"8", "full-text"=>"7", "pdf"=>"1", "abstract"=>"0", "scanned-summary"=>"0", "scanned-page-browse"=>"0", "figure"=>"1", "supp-data"=>"0", "cited-by"=>"0", "year"=>"2013", "month"=>"1"}
  • {"unique-ip"=>"12", "full-text"=>"13", "pdf"=>"3", "abstract"=>"0", "scanned-summary"=>"0", "scanned-page-browse"=>"0", "figure"=>"4", "supp-data"=>"0", "cited-by"=>"0", "year"=>"2013", "month"=>"2"}
  • {"unique-ip"=>"4", "full-text"=>"5", "pdf"=>"1", "abstract"=>"0", "scanned-summary"=>"0", "scanned-page-browse"=>"0", "figure"=>"0", "supp-data"=>"0", "cited-by"=>"0", "year"=>"2013", "month"=>"3"}
  • {"unique-ip"=>"9", "full-text"=>"10", "pdf"=>"1", "abstract"=>"0", "scanned-summary"=>"0", "scanned-page-browse"=>"0", "figure"=>"2", "supp-data"=>"0", "cited-by"=>"0", "year"=>"2013", "month"=>"4"}
  • {"unique-ip"=>"9", "full-text"=>"11", "pdf"=>"4", "abstract"=>"0", "scanned-summary"=>"0", "scanned-page-browse"=>"0", "figure"=>"0", "supp-data"=>"0", "cited-by"=>"0", "year"=>"2012", "month"=>"11"}
  • {"unique-ip"=>"8", "full-text"=>"11", "pdf"=>"1", "abstract"=>"0", "scanned-summary"=>"0", "scanned-page-browse"=>"0", "figure"=>"1", "supp-data"=>"0", "cited-by"=>"0", "year"=>"2013", "month"=>"5"}
  • {"unique-ip"=>"6", "full-text"=>"4", "pdf"=>"4", "abstract"=>"0", "scanned-summary"=>"0", "scanned-page-browse"=>"0", "figure"=>"0", "supp-data"=>"3", "cited-by"=>"0", "year"=>"2013", "month"=>"6"}
  • {"unique-ip"=>"5", "full-text"=>"4", "pdf"=>"3", "abstract"=>"0", "scanned-summary"=>"0", "scanned-page-browse"=>"0", "figure"=>"0", "supp-data"=>"0", "cited-by"=>"0", "year"=>"2013", "month"=>"7"}
  • {"unique-ip"=>"7", "full-text"=>"4", "pdf"=>"2", "abstract"=>"2", "scanned-summary"=>"0", "scanned-page-browse"=>"0", "figure"=>"1", "supp-data"=>"0", "cited-by"=>"0", "year"=>"2013", "month"=>"8"}
  • {"unique-ip"=>"11", "full-text"=>"8", "pdf"=>"4", "abstract"=>"2", "scanned-summary"=>"0", "scanned-page-browse"=>"0", "figure"=>"0", "supp-data"=>"3", "cited-by"=>"0", "year"=>"2013", "month"=>"9"}
  • {"unique-ip"=>"5", "full-text"=>"4", "pdf"=>"1", "abstract"=>"1", "scanned-summary"=>"0", "scanned-page-browse"=>"0", "figure"=>"1", "supp-data"=>"0", "cited-by"=>"0", "year"=>"2013", "month"=>"10"}
  • {"unique-ip"=>"7", "full-text"=>"8", "pdf"=>"3", "abstract"=>"2", "scanned-summary"=>"0", "scanned-page-browse"=>"0", "figure"=>"0", "supp-data"=>"0", "cited-by"=>"0", "year"=>"2013", "month"=>"11"}
  • {"unique-ip"=>"3", "full-text"=>"3", "pdf"=>"0", "abstract"=>"0", "scanned-summary"=>"0", "scanned-page-browse"=>"0", "figure"=>"0", "supp-data"=>"0", "cited-by"=>"0", "year"=>"2013", "month"=>"12"}
  • {"unique-ip"=>"4", "full-text"=>"2", "pdf"=>"2", "abstract"=>"1", "scanned-summary"=>"0", "scanned-page-browse"=>"0", "figure"=>"1", "supp-data"=>"0", "cited-by"=>"0", "year"=>"2014", "month"=>"1"}
  • {"unique-ip"=>"7", "full-text"=>"6", "pdf"=>"2", "abstract"=>"1", "scanned-summary"=>"0", "scanned-page-browse"=>"0", "figure"=>"2", "supp-data"=>"0", "cited-by"=>"0", "year"=>"2014", "month"=>"2"}
  • {"unique-ip"=>"8", "full-text"=>"6", "pdf"=>"3", "abstract"=>"1", "scanned-summary"=>"0", "scanned-page-browse"=>"0", "figure"=>"1", "supp-data"=>"0", "cited-by"=>"0", "year"=>"2014", "month"=>"3"}
  • {"unique-ip"=>"9", "full-text"=>"7", "pdf"=>"3", "abstract"=>"0", "scanned-summary"=>"0", "scanned-page-browse"=>"0", "figure"=>"0", "supp-data"=>"0", "cited-by"=>"0", "year"=>"2014", "month"=>"5"}
  • {"unique-ip"=>"11", "full-text"=>"9", "pdf"=>"1", "abstract"=>"1", "scanned-summary"=>"0", "scanned-page-browse"=>"0", "figure"=>"1", "supp-data"=>"0", "cited-by"=>"0", "year"=>"2014", "month"=>"6"}
  • {"unique-ip"=>"7", "full-text"=>"9", "pdf"=>"3", "abstract"=>"1", "scanned-summary"=>"0", "scanned-page-browse"=>"0", "figure"=>"1", "supp-data"=>"0", "cited-by"=>"0", "year"=>"2014", "month"=>"4"}
  • {"unique-ip"=>"14", "full-text"=>"13", "pdf"=>"1", "abstract"=>"1", "scanned-summary"=>"0", "scanned-page-browse"=>"0", "figure"=>"9", "supp-data"=>"0", "cited-by"=>"0", "year"=>"2014", "month"=>"7"}
  • {"unique-ip"=>"6", "full-text"=>"2", "pdf"=>"3", "abstract"=>"0", "scanned-summary"=>"0", "scanned-page-browse"=>"0", "figure"=>"2", "supp-data"=>"0", "cited-by"=>"0", "year"=>"2014", "month"=>"8"}
  • {"unique-ip"=>"14", "full-text"=>"5", "pdf"=>"5", "abstract"=>"1", "scanned-summary"=>"0", "scanned-page-browse"=>"0", "figure"=>"7", "supp-data"=>"0", "cited-by"=>"0", "year"=>"2014", "month"=>"9"}
  • {"unique-ip"=>"11", "full-text"=>"7", "pdf"=>"6", "abstract"=>"2", "scanned-summary"=>"0", "scanned-page-browse"=>"0", "figure"=>"1", "supp-data"=>"0", "cited-by"=>"0", "year"=>"2014", "month"=>"10"}
  • {"unique-ip"=>"27", "full-text"=>"15", "pdf"=>"4", "abstract"=>"0", "scanned-summary"=>"0", "scanned-page-browse"=>"0", "figure"=>"2", "supp-data"=>"9", "cited-by"=>"0", "year"=>"2014", "month"=>"11"}
  • {"unique-ip"=>"11", "full-text"=>"9", "pdf"=>"2", "abstract"=>"0", "scanned-summary"=>"0", "scanned-page-browse"=>"0", "figure"=>"0", "supp-data"=>"0", "cited-by"=>"0", "year"=>"2014", "month"=>"12"}
  • {"unique-ip"=>"7", "full-text"=>"5", "pdf"=>"1", "abstract"=>"0", "scanned-summary"=>"0", "scanned-page-browse"=>"0", "figure"=>"1", "supp-data"=>"0", "cited-by"=>"0", "year"=>"2015", "month"=>"1"}
  • {"unique-ip"=>"17", "full-text"=>"15", "pdf"=>"9", "abstract"=>"0", "scanned-summary"=>"0", "scanned-page-browse"=>"0", "figure"=>"1", "supp-data"=>"0", "cited-by"=>"0", "year"=>"2015", "month"=>"2"}
  • {"unique-ip"=>"10", "full-text"=>"10", "pdf"=>"3", "abstract"=>"0", "scanned-summary"=>"0", "scanned-page-browse"=>"0", "figure"=>"0", "supp-data"=>"0", "cited-by"=>"0", "year"=>"2015", "month"=>"3"}
  • {"unique-ip"=>"8", "full-text"=>"8", "pdf"=>"2", "abstract"=>"0", "scanned-summary"=>"0", "scanned-page-browse"=>"0", "figure"=>"1", "supp-data"=>"0", "cited-by"=>"0", "year"=>"2015", "month"=>"4"}
  • {"unique-ip"=>"10", "full-text"=>"10", "pdf"=>"2", "abstract"=>"0", "scanned-summary"=>"0", "scanned-page-browse"=>"0", "figure"=>"0", "supp-data"=>"0", "cited-by"=>"0", "year"=>"2015", "month"=>"5"}
  • {"unique-ip"=>"27", "full-text"=>"9", "pdf"=>"4", "abstract"=>"0", "scanned-summary"=>"0", "scanned-page-browse"=>"0", "figure"=>"18", "supp-data"=>"3", "cited-by"=>"1", "year"=>"2015", "month"=>"6"}
  • {"unique-ip"=>"11", "full-text"=>"11", "pdf"=>"2", "abstract"=>"0", "scanned-summary"=>"0", "scanned-page-browse"=>"0", "figure"=>"0", "supp-data"=>"0", "cited-by"=>"0", "year"=>"2015", "month"=>"7"}
  • {"unique-ip"=>"6", "full-text"=>"6", "pdf"=>"0", "abstract"=>"0", "scanned-summary"=>"0", "scanned-page-browse"=>"0", "figure"=>"1", "supp-data"=>"0", "cited-by"=>"0", "year"=>"2015", "month"=>"8"}
  • {"unique-ip"=>"7", "full-text"=>"6", "pdf"=>"0", "abstract"=>"0", "scanned-summary"=>"0", "scanned-page-browse"=>"0", "figure"=>"1", "supp-data"=>"0", "cited-by"=>"0", "year"=>"2015", "month"=>"9"}
  • {"unique-ip"=>"11", "full-text"=>"14", "pdf"=>"1", "abstract"=>"0", "scanned-summary"=>"0", "scanned-page-browse"=>"0", "figure"=>"1", "supp-data"=>"0", "cited-by"=>"0", "year"=>"2015", "month"=>"10"}
  • {"unique-ip"=>"11", "full-text"=>"6", "pdf"=>"4", "abstract"=>"0", "scanned-summary"=>"0", "scanned-page-browse"=>"0", "figure"=>"0", "supp-data"=>"0", "cited-by"=>"1", "year"=>"2015", "month"=>"11"}
  • {"unique-ip"=>"17", "full-text"=>"16", "pdf"=>"4", "abstract"=>"0", "scanned-summary"=>"0", "scanned-page-browse"=>"0", "figure"=>"0", "supp-data"=>"0", "cited-by"=>"0", "year"=>"2015", "month"=>"12"}
  • {"unique-ip"=>"8", "full-text"=>"13", "pdf"=>"2", "abstract"=>"0", "scanned-summary"=>"0", "scanned-page-browse"=>"0", "figure"=>"0", "supp-data"=>"0", "cited-by"=>"0", "year"=>"2016", "month"=>"1"}
  • {"unique-ip"=>"8", "full-text"=>"8", "pdf"=>"1", "abstract"=>"0", "scanned-summary"=>"0", "scanned-page-browse"=>"0", "figure"=>"0", "supp-data"=>"0", "cited-by"=>"0", "year"=>"2016", "month"=>"2"}
  • {"unique-ip"=>"5", "full-text"=>"5", "pdf"=>"0", "abstract"=>"0", "scanned-summary"=>"0", "scanned-page-browse"=>"0", "figure"=>"0", "supp-data"=>"0", "cited-by"=>"0", "year"=>"2016", "month"=>"3"}
  • {"unique-ip"=>"7", "full-text"=>"8", "pdf"=>"3", "abstract"=>"0", "scanned-summary"=>"0", "scanned-page-browse"=>"0", "figure"=>"0", "supp-data"=>"0", "cited-by"=>"0", "year"=>"2016", "month"=>"4"}
  • {"unique-ip"=>"8", "full-text"=>"7", "pdf"=>"2", "abstract"=>"0", "scanned-summary"=>"0", "scanned-page-browse"=>"0", "figure"=>"0", "supp-data"=>"0", "cited-by"=>"0", "year"=>"2016", "month"=>"5"}
  • {"unique-ip"=>"8", "full-text"=>"6", "pdf"=>"0", "abstract"=>"0", "scanned-summary"=>"0", "scanned-page-browse"=>"0", "figure"=>"2", "supp-data"=>"0", "cited-by"=>"0", "year"=>"2016", "month"=>"6"}
  • {"unique-ip"=>"6", "full-text"=>"4", "pdf"=>"2", "abstract"=>"0", "scanned-summary"=>"0", "scanned-page-browse"=>"0", "figure"=>"1", "supp-data"=>"0", "cited-by"=>"0", "year"=>"2016", "month"=>"7"}
  • {"unique-ip"=>"6", "full-text"=>"6", "pdf"=>"0", "abstract"=>"0", "scanned-summary"=>"0", "scanned-page-browse"=>"0", "figure"=>"2", "supp-data"=>"0", "cited-by"=>"0", "year"=>"2016", "month"=>"8"}
  • {"unique-ip"=>"9", "full-text"=>"10", "pdf"=>"3", "abstract"=>"0", "scanned-summary"=>"0", "scanned-page-browse"=>"0", "figure"=>"1", "supp-data"=>"0", "cited-by"=>"0", "year"=>"2016", "month"=>"9"}
  • {"unique-ip"=>"5", "full-text"=>"5", "pdf"=>"1", "abstract"=>"0", "scanned-summary"=>"0", "scanned-page-browse"=>"0", "figure"=>"1", "supp-data"=>"0", "cited-by"=>"0", "year"=>"2016", "month"=>"10"}
  • {"unique-ip"=>"5", "full-text"=>"4", "pdf"=>"1", "abstract"=>"0", "scanned-summary"=>"0", "scanned-page-browse"=>"0", "figure"=>"0", "supp-data"=>"0", "cited-by"=>"0", "year"=>"2016", "month"=>"11"}
  • {"unique-ip"=>"4", "full-text"=>"3", "pdf"=>"1", "abstract"=>"0", "scanned-summary"=>"0", "scanned-page-browse"=>"0", "figure"=>"1", "supp-data"=>"0", "cited-by"=>"0", "year"=>"2016", "month"=>"12"}
  • {"unique-ip"=>"9", "full-text"=>"7", "pdf"=>"0", "abstract"=>"0", "scanned-summary"=>"0", "scanned-page-browse"=>"0", "figure"=>"0", "supp-data"=>"0", "cited-by"=>"0", "year"=>"2017", "month"=>"1"}
  • {"unique-ip"=>"5", "full-text"=>"5", "pdf"=>"1", "abstract"=>"0", "scanned-summary"=>"0", "scanned-page-browse"=>"0", "figure"=>"0", "supp-data"=>"0", "cited-by"=>"0", "year"=>"2017", "month"=>"2"}
  • {"unique-ip"=>"10", "full-text"=>"12", "pdf"=>"0", "abstract"=>"0", "scanned-summary"=>"0", "scanned-page-browse"=>"0", "figure"=>"3", "supp-data"=>"0", "cited-by"=>"0", "year"=>"2017", "month"=>"3"}
  • {"unique-ip"=>"3", "full-text"=>"2", "pdf"=>"0", "abstract"=>"0", "scanned-summary"=>"0", "scanned-page-browse"=>"0", "figure"=>"1", "supp-data"=>"0", "cited-by"=>"0", "year"=>"2017", "month"=>"4"}
  • {"unique-ip"=>"8", "full-text"=>"7", "pdf"=>"1", "abstract"=>"0", "scanned-summary"=>"0", "scanned-page-browse"=>"0", "figure"=>"0", "supp-data"=>"0", "cited-by"=>"0", "year"=>"2017", "month"=>"5"}
  • {"unique-ip"=>"2", "full-text"=>"2", "pdf"=>"0", "abstract"=>"0", "scanned-summary"=>"0", "scanned-page-browse"=>"0", "figure"=>"0", "supp-data"=>"0", "cited-by"=>"0", "year"=>"2017", "month"=>"6"}
  • {"unique-ip"=>"3", "full-text"=>"3", "pdf"=>"0", "abstract"=>"0", "scanned-summary"=>"0", "scanned-page-browse"=>"0", "figure"=>"0", "supp-data"=>"0", "cited-by"=>"0", "year"=>"2017", "month"=>"7"}
  • {"unique-ip"=>"6", "full-text"=>"5", "pdf"=>"0", "abstract"=>"0", "scanned-summary"=>"0", "scanned-page-browse"=>"0", "figure"=>"0", "supp-data"=>"0", "cited-by"=>"0", "year"=>"2017", "month"=>"8"}
  • {"unique-ip"=>"7", "full-text"=>"7", "pdf"=>"1", "abstract"=>"0", "scanned-summary"=>"0", "scanned-page-browse"=>"0", "figure"=>"2", "supp-data"=>"0", "cited-by"=>"0", "year"=>"2017", "month"=>"9"}
  • {"unique-ip"=>"10", "full-text"=>"9", "pdf"=>"4", "abstract"=>"0", "scanned-summary"=>"0", "scanned-page-browse"=>"0", "figure"=>"0", "supp-data"=>"0", "cited-by"=>"0", "year"=>"2017", "month"=>"10"}
  • {"unique-ip"=>"4", "full-text"=>"4", "pdf"=>"1", "abstract"=>"0", "scanned-summary"=>"0", "scanned-page-browse"=>"0", "figure"=>"0", "supp-data"=>"0", "cited-by"=>"0", "year"=>"2017", "month"=>"11"}
  • {"unique-ip"=>"8", "full-text"=>"7", "pdf"=>"2", "abstract"=>"0", "scanned-summary"=>"0", "scanned-page-browse"=>"0", "figure"=>"0", "supp-data"=>"0", "cited-by"=>"0", "year"=>"2017", "month"=>"12"}
  • {"unique-ip"=>"6", "full-text"=>"6", "pdf"=>"2", "abstract"=>"0", "scanned-summary"=>"0", "scanned-page-browse"=>"0", "figure"=>"0", "supp-data"=>"0", "cited-by"=>"0", "year"=>"2018", "month"=>"1"}
  • {"unique-ip"=>"9", "full-text"=>"9", "pdf"=>"3", "abstract"=>"0", "scanned-summary"=>"0", "scanned-page-browse"=>"0", "figure"=>"5", "supp-data"=>"0", "cited-by"=>"0", "year"=>"2018", "month"=>"3"}
  • {"unique-ip"=>"12", "full-text"=>"13", "pdf"=>"1", "scanned-summary"=>"0", "scanned-page-browse"=>"0", "figure"=>"0", "supp-data"=>"0", "cited-by"=>"0", "year"=>"2019", "month"=>"1"}
  • {"unique-ip"=>"9", "full-text"=>"8", "pdf"=>"3", "scanned-summary"=>"0", "scanned-page-browse"=>"0", "figure"=>"0", "supp-data"=>"0", "cited-by"=>"0", "year"=>"2018", "month"=>"5"}
  • {"unique-ip"=>"7", "full-text"=>"6", "pdf"=>"1", "scanned-summary"=>"0", "scanned-page-browse"=>"0", "figure"=>"2", "supp-data"=>"0", "cited-by"=>"0", "year"=>"2018", "month"=>"4"}
  • {"unique-ip"=>"5", "full-text"=>"8", "pdf"=>"2", "scanned-summary"=>"0", "scanned-page-browse"=>"0", "figure"=>"0", "supp-data"=>"0", "cited-by"=>"0", "year"=>"2018", "month"=>"6"}
  • {"unique-ip"=>"7", "full-text"=>"5", "pdf"=>"1", "scanned-summary"=>"0", "scanned-page-browse"=>"0", "figure"=>"0", "supp-data"=>"1", "cited-by"=>"0", "year"=>"2018", "month"=>"7"}
  • {"unique-ip"=>"7", "full-text"=>"5", "pdf"=>"3", "scanned-summary"=>"0", "scanned-page-browse"=>"0", "figure"=>"1", "supp-data"=>"0", "cited-by"=>"0", "year"=>"2018", "month"=>"8"}
  • {"unique-ip"=>"11", "full-text"=>"15", "pdf"=>"1", "scanned-summary"=>"0", "scanned-page-browse"=>"0", "figure"=>"0", "supp-data"=>"1", "cited-by"=>"0", "year"=>"2018", "month"=>"9"}
  • {"unique-ip"=>"12", "full-text"=>"10", "pdf"=>"5", "scanned-summary"=>"0", "scanned-page-browse"=>"0", "figure"=>"0", "supp-data"=>"0", "cited-by"=>"0", "year"=>"2018", "month"=>"10"}
  • {"unique-ip"=>"12", "full-text"=>"9", "pdf"=>"1", "scanned-summary"=>"0", "scanned-page-browse"=>"0", "figure"=>"0", "supp-data"=>"3", "cited-by"=>"0", "year"=>"2018", "month"=>"12"}
  • {"unique-ip"=>"12", "full-text"=>"11", "pdf"=>"3", "scanned-summary"=>"0", "scanned-page-browse"=>"0", "figure"=>"0", "supp-data"=>"3", "cited-by"=>"0", "year"=>"2018", "month"=>"11"}
  • {"unique-ip"=>"11", "full-text"=>"11", "pdf"=>"2", "scanned-summary"=>"0", "scanned-page-browse"=>"0", "figure"=>"0", "supp-data"=>"0", "cited-by"=>"0", "year"=>"2019", "month"=>"2"}
  • {"unique-ip"=>"14", "full-text"=>"14", "pdf"=>"1", "scanned-summary"=>"0", "scanned-page-browse"=>"0", "figure"=>"0", "supp-data"=>"0", "cited-by"=>"0", "year"=>"2019", "month"=>"3"}
  • {"unique-ip"=>"10", "full-text"=>"11", "pdf"=>"2", "scanned-summary"=>"0", "scanned-page-browse"=>"0", "figure"=>"0", "supp-data"=>"1", "cited-by"=>"0", "year"=>"2019", "month"=>"4"}

Relative Metric

{"start_date"=>"2011-01-01T00:00:00Z", "end_date"=>"2011-12-31T00:00:00Z", "subject_areas"=>[{"subject_area"=>"/Computer and information sciences", "average_usage"=>[355, 609, 735, 840, 944, 1029, 1109, 1193, 1255, 1320, 1391, 1469, 1540, 1608, 1683, 1753, 1824, 1905, 1967, 2042, 2117, 2189, 2240, 2300, 2392, 2452, 2509, 2569, 2635, 2710, 2772, 2846, 2882, 2956, 3014, 3086, 3139]}, {"subject_area"=>"/Computer and information sciences/Neural networks", "average_usage"=>[366, 640, 772, 889, 995, 1063, 1143, 1232, 1307, 1365, 1406, 1474, 1532, 1576, 1643, 1721, 1806, 1864, 1932, 1988, 2035, 2151, 2217, 2298, 2331, 2387, 2474, 2523, 2580, 2656, 2714, 2762, 2822, 2871, 2925, 2974, 3053]}, {"subject_area"=>"/Medicine and health sciences/Diagnostic medicine", "average_usage"=>[327, 595, 718, 842, 949, 1065, 1147, 1225, 1316, 1399, 1468, 1541, 1618, 1690, 1756, 1814, 1872, 1924, 1987, 2054, 2118, 2189, 2244, 2300, 2364, 2422, 2480, 2543, 2597, 2665, 2727, 2777, 2821, 2877, 2940, 2996, 3052]}, {"subject_area"=>"/Physical sciences", "average_usage"=>[303, 547, 667, 770, 875, 974, 1062, 1140, 1210, 1276, 1344, 1408, 1473, 1534, 1602, 1665, 1732, 1800, 1863, 1920, 1984, 2048, 2099, 2161, 2222, 2285, 2341, 2404, 2473, 2528, 2595, 2650, 2713, 2772, 2835, 2886, 2938]}]}
Loading … Spinner
There are currently no alerts