Internal Representations of Temporal Statistics and Feedback Calibrate Motor-Sensory Interval Timing
Events
Loading … Spinner

Mendeley | Further Information

{"title"=>"Internal Representations of Temporal Statistics and Feedback Calibrate Motor-Sensory Interval Timing", "type"=>"journal", "authors"=>[{"first_name"=>"Luigi", "last_name"=>"Acerbi", "scopus_author_id"=>"23395837000"}, {"first_name"=>"Daniel M.", "last_name"=>"Wolpert", "scopus_author_id"=>"35495089500"}, {"first_name"=>"Sethu", "last_name"=>"Vijayakumar", "scopus_author_id"=>"8854114100"}], "year"=>2012, "source"=>"PLoS Computational Biology", "identifiers"=>{"pui"=>"366216172", "sgr"=>"84870711124", "issn"=>"1553734X", "pmid"=>"23209386", "scopus"=>"2-s2.0-84870711124", "doi"=>"10.1371/journal.pcbi.1002771", "isbn"=>"1553-7358 (Electronic)\\n1553-734X (Linking)"}, "id"=>"20e2386a-3069-3920-bc12-15748e74664a", "abstract"=>"Author SummaryHuman performance in a timing task depends on the context of recently experienced time intervals. In fact, people may use prior experience to improve their timing performance. Given the relevance of time for both sensing and acting in the world, how humans learn and represent temporal information is a fundamental question in neuroscience. Here, we ask subjects to reproduce the duration of time intervals drawn from different distributions (different temporal contexts). We build a set of models of how people might behave in such a timing task, depending on how they are representing the temporal context. Comparison between models and data allows us to establish that in general subjects are integrating task-relevant temporal information with the provided error feedback to enhance their timing performance. Analysis of the subjects' responses allows us to reconstruct their internal representation of the temporal context, and we compare it with the true distribution. We find that with the help of corrective feedback humans can learn good approximations of unimodal distributions of time intervals used in the experiment, even for skewed distributions of durations; on the other hand, under similar conditions, we find that multimodal distributions of timing intervals are much harder to acquire.", "link"=>"http://www.mendeley.com/research/internal-representations-temporal-statistics-feedback-calibrate-motorsensory-interval-timing", "reader_count"=>136, "reader_count_by_academic_status"=>{"Unspecified"=>1, "Professor > Associate Professor"=>11, "Librarian"=>1, "Researcher"=>36, "Student > Doctoral Student"=>2, "Student > Ph. D. Student"=>38, "Student > Postgraduate"=>7, "Other"=>2, "Student > Master"=>20, "Student > Bachelor"=>9, "Lecturer"=>3, "Lecturer > Senior Lecturer"=>2, "Professor"=>4}, "reader_count_by_user_role"=>{"Unspecified"=>1, "Professor > Associate Professor"=>11, "Librarian"=>1, "Researcher"=>36, "Student > Doctoral Student"=>2, "Student > Ph. D. Student"=>38, "Student > Postgraduate"=>7, "Other"=>2, "Student > Master"=>20, "Student > Bachelor"=>9, "Lecturer"=>3, "Lecturer > Senior Lecturer"=>2, "Professor"=>4}, "reader_count_by_subject_area"=>{"Unspecified"=>4, "Agricultural and Biological Sciences"=>28, "Philosophy"=>2, "Computer Science"=>13, "Energy"=>1, "Engineering"=>5, "Mathematics"=>1, "Medicine and Dentistry"=>5, "Neuroscience"=>20, "Sports and Recreations"=>4, "Physics and Astronomy"=>5, "Psychology"=>44, "Social Sciences"=>2, "Immunology and Microbiology"=>1, "Linguistics"=>1}, "reader_count_by_subdiscipline"=>{"Medicine and Dentistry"=>{"Medicine and Dentistry"=>5}, "Social Sciences"=>{"Social Sciences"=>2}, "Sports and Recreations"=>{"Sports and Recreations"=>4}, "Physics and Astronomy"=>{"Physics and Astronomy"=>5}, "Psychology"=>{"Psychology"=>44}, "Mathematics"=>{"Mathematics"=>1}, "Unspecified"=>{"Unspecified"=>4}, "Engineering"=>{"Engineering"=>5}, "Neuroscience"=>{"Neuroscience"=>20}, "Energy"=>{"Energy"=>1}, "Immunology and Microbiology"=>{"Immunology and Microbiology"=>1}, "Agricultural and Biological Sciences"=>{"Agricultural and Biological Sciences"=>28}, "Computer Science"=>{"Computer Science"=>13}, "Linguistics"=>{"Linguistics"=>1}, "Philosophy"=>{"Philosophy"=>2}}, "reader_count_by_country"=>{"United States"=>4, "Japan"=>2, "United Kingdom"=>4, "Portugal"=>1, "Switzerland"=>1, "Spain"=>1, "Netherlands"=>2, "Belgium"=>2, "Denmark"=>1, "Brazil"=>2, "Italy"=>1, "France"=>2, "Germany"=>2}, "group_count"=>6}

CrossRef

Scopus | Further Information

{"@_fa"=>"true", "link"=>[{"@_fa"=>"true", "@ref"=>"self", "@href"=>"https://api.elsevier.com/content/abstract/scopus_id/84870711124"}, {"@_fa"=>"true", "@ref"=>"author-affiliation", "@href"=>"https://api.elsevier.com/content/abstract/scopus_id/84870711124?field=author,affiliation"}, {"@_fa"=>"true", "@ref"=>"scopus", "@href"=>"https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=84870711124&origin=inward"}, {"@_fa"=>"true", "@ref"=>"scopus-citedby", "@href"=>"https://www.scopus.com/inward/citedby.uri?partnerID=HzOxMe3b&scp=84870711124&origin=inward"}], "prism:url"=>"https://api.elsevier.com/content/abstract/scopus_id/84870711124", "dc:identifier"=>"SCOPUS_ID:84870711124", "eid"=>"2-s2.0-84870711124", "dc:title"=>"Internal Representations of Temporal Statistics and Feedback Calibrate Motor-Sensory Interval Timing", "dc:creator"=>"Acerbi L.", "prism:publicationName"=>"PLoS Computational Biology", "prism:issn"=>"1553734X", "prism:eIssn"=>"15537358", "prism:volume"=>"8", "prism:issueIdentifier"=>"11", "prism:pageRange"=>nil, "prism:coverDate"=>"2012-11-01", "prism:coverDisplayDate"=>"November 2012", "prism:doi"=>"10.1371/journal.pcbi.1002771", "citedby-count"=>"58", "affiliation"=>[{"@_fa"=>"true", "affilname"=>"University of Edinburgh", "affiliation-city"=>"Edinburgh", "affiliation-country"=>"United Kingdom"}], "pubmed-id"=>"23209386", "prism:aggregationType"=>"Journal", "subtype"=>"ar", "subtypeDescription"=>"Article", "article-number"=>"e1002771", "source-id"=>"4000151810", "openaccess"=>"1", "openaccessFlag"=>true}

Facebook

  • {"url"=>"http%3A%2F%2Fjournals.plos.org%2Fploscompbiol%2Farticle%3Fid%3D10.1371%252Fjournal.pcbi.1002771", "share_count"=>0, "like_count"=>0, "comment_count"=>0, "click_count"=>0, "total_count"=>0}

Counter

  • {"month"=>"11", "year"=>"2012", "pdf_views"=>"31", "xml_views"=>"1", "html_views"=>"184"}
  • {"month"=>"12", "year"=>"2012", "pdf_views"=>"144", "xml_views"=>"16", "html_views"=>"605"}
  • {"month"=>"1", "year"=>"2013", "pdf_views"=>"29", "xml_views"=>"0", "html_views"=>"99"}
  • {"month"=>"2", "year"=>"2013", "pdf_views"=>"21", "xml_views"=>"2", "html_views"=>"382"}
  • {"month"=>"3", "year"=>"2013", "pdf_views"=>"16", "xml_views"=>"0", "html_views"=>"83"}
  • {"month"=>"4", "year"=>"2013", "pdf_views"=>"10", "xml_views"=>"0", "html_views"=>"46"}
  • {"month"=>"5", "year"=>"2013", "pdf_views"=>"9", "xml_views"=>"0", "html_views"=>"44"}
  • {"month"=>"6", "year"=>"2013", "pdf_views"=>"5", "xml_views"=>"0", "html_views"=>"32"}
  • {"month"=>"7", "year"=>"2013", "pdf_views"=>"5", "xml_views"=>"0", "html_views"=>"52"}
  • {"month"=>"8", "year"=>"2013", "pdf_views"=>"10", "xml_views"=>"4", "html_views"=>"56"}
  • {"month"=>"9", "year"=>"2013", "pdf_views"=>"13", "xml_views"=>"1", "html_views"=>"57"}
  • {"month"=>"10", "year"=>"2013", "pdf_views"=>"10", "xml_views"=>"2", "html_views"=>"181"}
  • {"month"=>"11", "year"=>"2013", "pdf_views"=>"13", "xml_views"=>"0", "html_views"=>"35"}
  • {"month"=>"12", "year"=>"2013", "pdf_views"=>"40", "xml_views"=>"1", "html_views"=>"122"}
  • {"month"=>"1", "year"=>"2014", "pdf_views"=>"23", "xml_views"=>"0", "html_views"=>"83"}
  • {"month"=>"2", "year"=>"2014", "pdf_views"=>"13", "xml_views"=>"0", "html_views"=>"47"}
  • {"month"=>"3", "year"=>"2014", "pdf_views"=>"2", "xml_views"=>"3", "html_views"=>"36"}
  • {"month"=>"4", "year"=>"2014", "pdf_views"=>"21", "xml_views"=>"1", "html_views"=>"50"}
  • {"month"=>"5", "year"=>"2014", "pdf_views"=>"3", "xml_views"=>"0", "html_views"=>"21"}
  • {"month"=>"6", "year"=>"2014", "pdf_views"=>"5", "xml_views"=>"0", "html_views"=>"35"}
  • {"month"=>"7", "year"=>"2014", "pdf_views"=>"4", "xml_views"=>"0", "html_views"=>"47"}
  • {"month"=>"8", "year"=>"2014", "pdf_views"=>"1", "xml_views"=>"2", "html_views"=>"27"}
  • {"month"=>"9", "year"=>"2014", "pdf_views"=>"9", "xml_views"=>"0", "html_views"=>"47"}
  • {"month"=>"10", "year"=>"2014", "pdf_views"=>"7", "xml_views"=>"0", "html_views"=>"58"}
  • {"month"=>"11", "year"=>"2014", "pdf_views"=>"11", "xml_views"=>"3", "html_views"=>"39"}
  • {"month"=>"12", "year"=>"2014", "pdf_views"=>"4", "xml_views"=>"3", "html_views"=>"33"}
  • {"month"=>"1", "year"=>"2015", "pdf_views"=>"4", "xml_views"=>"0", "html_views"=>"40"}
  • {"month"=>"2", "year"=>"2015", "pdf_views"=>"5", "xml_views"=>"0", "html_views"=>"52"}
  • {"month"=>"3", "year"=>"2015", "pdf_views"=>"6", "xml_views"=>"0", "html_views"=>"82"}
  • {"month"=>"4", "year"=>"2015", "pdf_views"=>"6", "xml_views"=>"1", "html_views"=>"92"}
  • {"month"=>"5", "year"=>"2015", "pdf_views"=>"10", "xml_views"=>"0", "html_views"=>"61"}
  • {"month"=>"6", "year"=>"2015", "pdf_views"=>"7", "xml_views"=>"0", "html_views"=>"52"}
  • {"month"=>"7", "year"=>"2015", "pdf_views"=>"11", "xml_views"=>"0", "html_views"=>"49"}
  • {"month"=>"8", "year"=>"2015", "pdf_views"=>"3", "xml_views"=>"0", "html_views"=>"31"}
  • {"month"=>"9", "year"=>"2015", "pdf_views"=>"3", "xml_views"=>"0", "html_views"=>"30"}
  • {"month"=>"10", "year"=>"2015", "pdf_views"=>"11", "xml_views"=>"0", "html_views"=>"76"}
  • {"month"=>"11", "year"=>"2015", "pdf_views"=>"11", "xml_views"=>"0", "html_views"=>"82"}
  • {"month"=>"12", "year"=>"2015", "pdf_views"=>"5", "xml_views"=>"0", "html_views"=>"70"}
  • {"month"=>"1", "year"=>"2016", "pdf_views"=>"9", "xml_views"=>"0", "html_views"=>"56"}
  • {"month"=>"2", "year"=>"2016", "pdf_views"=>"10", "xml_views"=>"0", "html_views"=>"32"}
  • {"month"=>"3", "year"=>"2016", "pdf_views"=>"7", "xml_views"=>"0", "html_views"=>"60"}
  • {"month"=>"4", "year"=>"2016", "pdf_views"=>"19", "xml_views"=>"0", "html_views"=>"38"}
  • {"month"=>"5", "year"=>"2016", "pdf_views"=>"15", "xml_views"=>"0", "html_views"=>"39"}
  • {"month"=>"6", "year"=>"2016", "pdf_views"=>"10", "xml_views"=>"0", "html_views"=>"30"}
  • {"month"=>"7", "year"=>"2016", "pdf_views"=>"5", "xml_views"=>"0", "html_views"=>"25"}
  • {"month"=>"8", "year"=>"2016", "pdf_views"=>"10", "xml_views"=>"0", "html_views"=>"55"}
  • {"month"=>"9", "year"=>"2016", "pdf_views"=>"12", "xml_views"=>"0", "html_views"=>"65"}
  • {"month"=>"10", "year"=>"2016", "pdf_views"=>"11", "xml_views"=>"0", "html_views"=>"47"}
  • {"month"=>"11", "year"=>"2016", "pdf_views"=>"3", "xml_views"=>"0", "html_views"=>"36"}
  • {"month"=>"12", "year"=>"2016", "pdf_views"=>"11", "xml_views"=>"0", "html_views"=>"34"}
  • {"month"=>"1", "year"=>"2017", "pdf_views"=>"7", "xml_views"=>"0", "html_views"=>"25"}
  • {"month"=>"2", "year"=>"2017", "pdf_views"=>"12", "xml_views"=>"0", "html_views"=>"36"}
  • {"month"=>"3", "year"=>"2017", "pdf_views"=>"16", "xml_views"=>"0", "html_views"=>"37"}
  • {"month"=>"4", "year"=>"2017", "pdf_views"=>"10", "xml_views"=>"0", "html_views"=>"29"}
  • {"month"=>"5", "year"=>"2017", "pdf_views"=>"14", "xml_views"=>"2", "html_views"=>"39"}
  • {"month"=>"6", "year"=>"2017", "pdf_views"=>"14", "xml_views"=>"1", "html_views"=>"42"}
  • {"month"=>"7", "year"=>"2017", "pdf_views"=>"15", "xml_views"=>"0", "html_views"=>"36"}
  • {"month"=>"8", "year"=>"2017", "pdf_views"=>"7", "xml_views"=>"1", "html_views"=>"24"}
  • {"month"=>"9", "year"=>"2017", "pdf_views"=>"9", "xml_views"=>"1", "html_views"=>"26"}
  • {"month"=>"10", "year"=>"2017", "pdf_views"=>"21", "xml_views"=>"3", "html_views"=>"54"}
  • {"month"=>"11", "year"=>"2017", "pdf_views"=>"6", "xml_views"=>"0", "html_views"=>"39"}
  • {"month"=>"12", "year"=>"2017", "pdf_views"=>"6", "xml_views"=>"1", "html_views"=>"36"}
  • {"month"=>"1", "year"=>"2018", "pdf_views"=>"6", "xml_views"=>"0", "html_views"=>"27"}
  • {"month"=>"2", "year"=>"2018", "pdf_views"=>"6", "xml_views"=>"0", "html_views"=>"14"}
  • {"month"=>"3", "year"=>"2018", "pdf_views"=>"11", "xml_views"=>"0", "html_views"=>"21"}
  • {"month"=>"4", "year"=>"2018", "pdf_views"=>"9", "xml_views"=>"0", "html_views"=>"22"}
  • {"month"=>"5", "year"=>"2018", "pdf_views"=>"2", "xml_views"=>"0", "html_views"=>"7"}
  • {"month"=>"6", "year"=>"2018", "pdf_views"=>"3", "xml_views"=>"0", "html_views"=>"15"}
  • {"month"=>"7", "year"=>"2018", "pdf_views"=>"11", "xml_views"=>"3", "html_views"=>"22"}
  • {"month"=>"8", "year"=>"2018", "pdf_views"=>"16", "xml_views"=>"1", "html_views"=>"15"}
  • {"month"=>"9", "year"=>"2018", "pdf_views"=>"6", "xml_views"=>"0", "html_views"=>"19"}
  • {"month"=>"10", "year"=>"2018", "pdf_views"=>"7", "xml_views"=>"1", "html_views"=>"41"}
  • {"month"=>"11", "year"=>"2018", "pdf_views"=>"18", "xml_views"=>"1", "html_views"=>"42"}
  • {"month"=>"12", "year"=>"2018", "pdf_views"=>"17", "xml_views"=>"0", "html_views"=>"30"}
  • {"month"=>"1", "year"=>"2019", "pdf_views"=>"8", "xml_views"=>"0", "html_views"=>"24"}
  • {"month"=>"2", "year"=>"2019", "pdf_views"=>"10", "xml_views"=>"0", "html_views"=>"23"}
  • {"month"=>"3", "year"=>"2019", "pdf_views"=>"17", "xml_views"=>"4", "html_views"=>"25"}
  • {"month"=>"4", "year"=>"2019", "pdf_views"=>"15", "xml_views"=>"0", "html_views"=>"26"}
  • {"month"=>"5", "year"=>"2019", "pdf_views"=>"6", "xml_views"=>"0", "html_views"=>"8"}
  • {"month"=>"6", "year"=>"2019", "pdf_views"=>"6", "xml_views"=>"0", "html_views"=>"8"}
  • {"month"=>"7", "year"=>"2019", "pdf_views"=>"7", "xml_views"=>"0", "html_views"=>"16"}

Figshare

  • {"files"=>["https://ndownloader.figshare.com/files/534231"], "description"=>"<p><i>Top:</i> Outline of a trial. Participants clicked on a mouse button and a yellow dot was flashed ms later at the center of the screen, with drawn from a block-dependent distribution (estimation phase). The subject then pressed the mouse button for a matching duration of ms (reproduction phase). Performance feedback was then displayed according to an error map . <i>Bottom:</i> Generative model for the time interval reproduction task. The interval is drawn from the probability distribution (the <i>objective distribution</i>). The stimulus induces in the observer the noisy sensory measurement with conditional probability density (the <i>sensory likelihood</i>), with a sensory variability parameter. The action subsequently taken by the ideal observer is assumed to be the ‘optimal’ action that minimizes the subjectively expected loss (<a href=\"http://www.ploscompbiol.org/article/info:doi/10.1371/journal.pcbi.1002771#pcbi.1002771.e073\" target=\"_blank\">Eq. 1</a>); is therefore a deterministic function of , . The subjectively expected loss depends on terms such as the prior and the loss function (squared subjective error map ), which do not necessarily match their objective counterparts. The chosen action is then corrupted by motor noise, producing the observed response with conditional probability density (the <i>motor likelihood</i>), where is a motor variability parameter.</p>", "links"=>[], "tags"=>["reproduction", "generative"], "article_id"=>204731, "categories"=>["Neuroscience"], "users"=>["Luigi Acerbi", "Daniel M. Wolpert", "Sethu Vijayakumar"], "doi"=>"https://dx.doi.org/10.1371/journal.pcbi.1002771.g002", "stats"=>{"downloads"=>0, "page_views"=>6, "likes"=>0}, "figshare_url"=>"https://figshare.com/articles/_Time_interval_reproduction_task_and_generative_model_/204731", "title"=>"Time interval reproduction task and generative model.", "pos_in_sequence"=>0, "defined_type"=>1, "published_date"=>"2012-11-29 01:18:51"}
  • {"files"=>["https://ndownloader.figshare.com/files/534925"], "description"=>"<p>Comparison between the main statistics of the ‘objective’ experimental distributions and the ‘subjective’ priors nonparametrically inferred from the data. The subjective moments are computed by averaging the moments of sampled priors pooled from all subjects ( s.d.); see <a href=\"http://www.ploscompbiol.org/article/info:doi/10.1371/journal.pcbi.1002771#pcbi-1002771-g008\" target=\"_blank\">Figure 8</a>, right column and <a href=\"http://www.ploscompbiol.org/article/info:doi/10.1371/journal.pcbi.1002771#s4\" target=\"_blank\">Methods</a> for details.</p>", "links"=>[], "tags"=>["distributions", "nonparametrically", "inferred", "priors"], "article_id"=>205420, "categories"=>["Neuroscience"], "users"=>["Luigi Acerbi", "Daniel M. Wolpert", "Sethu Vijayakumar"], "doi"=>"https://dx.doi.org/10.1371/journal.pcbi.1002771.t003", "stats"=>{"downloads"=>0, "page_views"=>1, "likes"=>0}, "figshare_url"=>"https://figshare.com/articles/_Main_statistics_of_the_experimental_distributions_and_nonparametrically_inferred_priors_Experiment_3_and_4_Standard_feedback_/205420", "title"=>"Main statistics of the experimental distributions and nonparametrically inferred priors (Experiment 3 and 4; Standard feedback).", "pos_in_sequence"=>0, "defined_type"=>3, "published_date"=>"2012-11-29 01:30:20"}
  • {"files"=>["https://ndownloader.figshare.com/files/534680"], "description"=>"<p><i>Top row:</i> Short Uniform (red) and Long Uniform (green) blocks. <i>Bottom row:</i> Medium Uniform (light brown) and Medium Peaked (light blue) blocks. <i>Left column:</i> Nonparametrically inferred priors for representative participants. <i>Right column:</i> Average inferred priors. Shaded regions are s.d. For comparison, the discrete experimental distributions are plotted under the inferred priors.</p>", "links"=>[], "tags"=>["inferred", "priors"], "article_id"=>205178, "categories"=>["Neuroscience"], "users"=>["Luigi Acerbi", "Daniel M. Wolpert", "Sethu Vijayakumar"], "doi"=>"https://dx.doi.org/10.1371/journal.pcbi.1002771.g007", "stats"=>{"downloads"=>0, "page_views"=>4, "likes"=>0}, "figshare_url"=>"https://figshare.com/articles/_Nonparametrically_inferred_priors_Experiment_1_and_2_/205178", "title"=>"Nonparametrically inferred priors (Experiment 1 and 2).", "pos_in_sequence"=>0, "defined_type"=>1, "published_date"=>"2012-11-29 01:26:18"}
  • {"files"=>["https://ndownloader.figshare.com/files/534892"], "description"=>"<p>Comparison between the main statistics of the ‘objective’ experimental distributions and the ‘subjective’ priors nonparametrically inferred from the data. The subjective moments are computed by averaging the moments of sampled priors pooled from all subjects ( s.d.); see <a href=\"http://www.ploscompbiol.org/article/info:doi/10.1371/journal.pcbi.1002771#pcbi-1002771-g007\" target=\"_blank\">Figure 7</a>, right column and <a href=\"http://www.ploscompbiol.org/article/info:doi/10.1371/journal.pcbi.1002771#s4\" target=\"_blank\">Methods</a> for details. In statistics, the excess kurtosis is defined as kurtosis , such that the excess kurtosis of a normal distribution is zero. Heavy tailed distributions have a positive excess kurtosis.</p>", "links"=>[], "tags"=>["distributions", "nonparametrically", "inferred", "priors", "skewed"], "article_id"=>205384, "categories"=>["Neuroscience"], "users"=>["Luigi Acerbi", "Daniel M. Wolpert", "Sethu Vijayakumar"], "doi"=>"https://dx.doi.org/10.1371/journal.pcbi.1002771.t002", "stats"=>{"downloads"=>0, "page_views"=>2, "likes"=>0}, "figshare_url"=>"https://figshare.com/articles/_Main_statistics_of_the_experimental_distributions_and_nonparametrically_inferred_priors_Experiment_1_and_2_Skewed_feedback_/205384", "title"=>"Main statistics of the experimental distributions and nonparametrically inferred priors (Experiment 1 and 2; Skewed feedback).", "pos_in_sequence"=>0, "defined_type"=>3, "published_date"=>"2012-11-29 01:29:44"}
  • {"files"=>["https://ndownloader.figshare.com/files/534351"], "description"=>"<p><i>Very top:</i> Experimental distributions for Short Uniform (red) and Long Uniform (green) blocks, repeated on top of both columns. <i>Left column:</i> Mean response bias (average difference between the response and true interval duration, top) and standard deviation of the response (bottom) for a representative subject in both blocks (red: Short Uniform; green: Long Uniform). Error bars denote s.e.m. Continuous lines represent the Bayesian model ‘fit’ obtained averaging the predictions of the most supported models (Bayesian model averaging). <i>Right column:</i> Mean response bias (top) and standard deviation of the response (bottom) across subjects in both blocks (mean s.e.m. across subjects). Continuous lines represent the Bayesian model ‘fit’ obtained averaging the predictions of the most supported models across subjects.</p>", "links"=>[], "tags"=>["neuroscience"], "article_id"=>204853, "categories"=>["Neuroscience"], "users"=>["Luigi Acerbi", "Daniel M. Wolpert", "Sethu Vijayakumar"], "doi"=>"https://dx.doi.org/10.1371/journal.pcbi.1002771.g003", "stats"=>{"downloads"=>1, "page_views"=>5, "likes"=>0}, "figshare_url"=>"https://figshare.com/articles/_Experiment_1_Short_Uniform_and_Long_Uniform_blocks_/204853", "title"=>"Experiment 1: Short Uniform and Long Uniform blocks.", "pos_in_sequence"=>0, "defined_type"=>1, "published_date"=>"2012-11-29 01:20:53"}
  • {"files"=>["https://ndownloader.figshare.com/files/534965"], "description"=>"<p>Comparison between the main statistics of the ‘objective’ experimental distributions and the ‘subjective’ priors nonparametrically inferred from the data. The subjective moments are computed by averaging the moments of sampled priors pooled from all subjects ( s.d.); see <a href=\"http://www.ploscompbiol.org/article/info:doi/10.1371/journal.pcbi.1002771#pcbi-1002771-g009\" target=\"_blank\">Figure 9</a>, bottom and <a href=\"http://www.ploscompbiol.org/article/info:doi/10.1371/journal.pcbi.1002771#s4\" target=\"_blank\">Methods</a> for details.</p>", "links"=>[], "tags"=>["distributions", "nonparametrically", "inferred", "priors", "bimodal"], "article_id"=>205460, "categories"=>["Neuroscience"], "users"=>["Luigi Acerbi", "Daniel M. Wolpert", "Sethu Vijayakumar"], "doi"=>"https://dx.doi.org/10.1371/journal.pcbi.1002771.t004", "stats"=>{"downloads"=>0, "page_views"=>3, "likes"=>0}, "figshare_url"=>"https://figshare.com/articles/_Main_statistics_of_the_experimental_distributions_and_nonparametrically_inferred_priors_for_bimodal_distributions_Experiment_5_Standard_feedback_/205460", "title"=>"Main statistics of the experimental distributions and nonparametrically inferred priors for bimodal distributions (Experiment 5; Standard feedback).", "pos_in_sequence"=>0, "defined_type"=>3, "published_date"=>"2012-11-29 01:31:00"}
  • {"files"=>["https://ndownloader.figshare.com/files/534756"], "description"=>"<p><i>Top row:</i> Medium Uniform (light brown) block. <i>Bottom row:</i> Medium High-Peaked (dark blue) block. <i>Left column:</i> Nonparametrically inferred priors for representative participants. <i>Right column:</i> Average inferred priors. Shaded regions are s.d. For comparison, the discrete experimental distributions are plotted under the inferred priors.</p>", "links"=>[], "tags"=>["inferred", "priors"], "article_id"=>205256, "categories"=>["Neuroscience"], "users"=>["Luigi Acerbi", "Daniel M. Wolpert", "Sethu Vijayakumar"], "doi"=>"https://dx.doi.org/10.1371/journal.pcbi.1002771.g008", "stats"=>{"downloads"=>0, "page_views"=>4, "likes"=>0}, "figshare_url"=>"https://figshare.com/articles/_Nonparametrically_inferred_priors_Experiment_3_and_4_/205256", "title"=>"Nonparametrically inferred priors (Experiment 3 and 4).", "pos_in_sequence"=>0, "defined_type"=>1, "published_date"=>"2012-11-29 01:27:36"}
  • {"files"=>["https://ndownloader.figshare.com/files/534855"], "description"=>"<p>Each line represents an experimental block, which are grouped by experiment; subjects in Experiment 1 and 2 took part in two blocks, whereas in Experiment 5 two distinct groups of subjects took part in the two blocks. For each block, the table reports number of subjects (), interval ranges, type of distribution, probability of the ‘peak’ (i.e. most likely) intervals and shape of performance feedback. Tested ranges were Short (450–825 ms), Medium (600–975 ms), Long (750–1125 ms) and Wide (450–1125 ms), each covered by 6 intervals (10 for the Wide block) separated by 75 ms steps. Distributions of intervals were Uniform (1/6 probability per interval), Peaked/High-peaked (the ‘peak’ interval at 675 ms appeared with higher probability than non-peak stimuli, which were equiprobable), Bimodal (intervals at 600 and 975 ms appeared with higher probability) and Wide-Bimodal (intervals at 450–600 ms and 975–1125 ms appeared with higher probability). The Skewed feedback takes the form whereas the Standard feedback , where is the reproduced duration and is the target interval in a trial.</p>", "links"=>[], "tags"=>["layout"], "article_id"=>205355, "categories"=>["Neuroscience"], "users"=>["Luigi Acerbi", "Daniel M. Wolpert", "Sethu Vijayakumar"], "doi"=>"https://dx.doi.org/10.1371/journal.pcbi.1002771.t001", "stats"=>{"downloads"=>2, "page_views"=>3, "likes"=>0}, "figshare_url"=>"https://figshare.com/articles/_Summary_of_experimental_layout_for_all_experiments_/205355", "title"=>"Summary of experimental layout for all experiments.", "pos_in_sequence"=>0, "defined_type"=>3, "published_date"=>"2012-11-29 01:29:15"}
  • {"files"=>["https://ndownloader.figshare.com/files/286909", "https://ndownloader.figshare.com/files/286948", "https://ndownloader.figshare.com/files/287092"], "description"=>"<div><p>Humans have been shown to adapt to the temporal statistics of timing tasks so as to optimize the accuracy of their responses, in agreement with the predictions of Bayesian integration. This suggests that they build an internal representation of both the experimentally imposed distribution of time intervals (the prior) and of the error (the loss function). The responses of a Bayesian ideal observer depend crucially on these internal representations, which have only been previously studied for simple distributions. To study the nature of these representations we asked subjects to reproduce time intervals drawn from underlying temporal distributions of varying complexity, from uniform to highly skewed or bimodal while also varying the error mapping that determined the performance feedback. Interval reproduction times were affected by both the distribution and feedback, in good agreement with a performance-optimizing Bayesian observer and actor model. Bayesian model comparison highlighted that subjects were integrating the provided feedback and represented the experimental distribution with a smoothed approximation. A nonparametric reconstruction of the subjective priors from the data shows that they are generally in agreement with the true distributions up to third-order moments, but with systematically heavier tails. In particular, higher-order statistical features (kurtosis, multimodality) seem much harder to acquire. Our findings suggest that humans have only minor constraints on learning lower-order statistical properties of unimodal (including peaked and skewed) distributions of time intervals under the guidance of corrective feedback, and that their behavior is well explained by Bayesian decision theory.</p> </div>", "links"=>[], "tags"=>["representations", "temporal", "calibrate", "motor-sensory", "timing"], "article_id"=>116537, "categories"=>["Neuroscience"], "users"=>["Luigi Acerbi", "Daniel M. Wolpert", "Sethu Vijayakumar"], "doi"=>["https://dx.doi.org/10.1371/journal.pcbi.1002771.s001", "https://dx.doi.org/10.1371/journal.pcbi.1002771.s002", "https://dx.doi.org/10.1371/journal.pcbi.1002771.s003"], "stats"=>{"downloads"=>63, "page_views"=>5, "likes"=>0}, "figshare_url"=>"https://figshare.com/articles/Internal_Representations_of_Temporal_Statistics_and_Feedback_Calibrate_Motor_Sensory_Interval_Timing__/116537", "title"=>"Internal Representations of Temporal Statistics and Feedback Calibrate Motor-Sensory Interval Timing", "pos_in_sequence"=>0, "defined_type"=>4, "published_date"=>"2012-11-29 01:48:57"}
  • {"files"=>["https://ndownloader.figshare.com/files/534574"], "description"=>"<p>Candidate (<b>i</b>) sensory and (<b>ii</b>) motor likelihoods, independently chosen for the sensory and motor noise components of the model. The likelihoods are Gaussians with either constant or ‘scalar’ (i.e. homogeneous linear) variability. The amount of variability for the sensory (resp. motor) component is scaled by parameter (resp. ). <b>iii</b>) Candidate priors for the Medium Uniform (top) and Medium Peaked (bottom) blocks. The candidate priors for the Short Uniform (resp. Long Uniform) blocks are identical to those of the Medium Uniform block, shifted by 150 ms in the negative (resp. positive) direction. See <a href=\"http://www.ploscompbiol.org/article/info:doi/10.1371/journal.pcbi.1002771#s4\" target=\"_blank\">Methods</a> for a description of the priors. <b>iv</b>) Candidate subjective error maps. The graphs show the error as a function of the response duration, for different discrete stimuli (drawn in different colors). From top to bottom: Skewed error ; Standard error ; and Fractional error . The scale is irrelevant, as the model is invariant to rescaling of the error map. The squared subjective error map defines the loss function (as per <a href=\"http://www.ploscompbiol.org/article/info:doi/10.1371/journal.pcbi.1002771#pcbi.1002771.e073\" target=\"_blank\">Eq. 1</a>).</p>", "links"=>[], "tags"=>["neuroscience"], "article_id"=>205079, "categories"=>["Neuroscience"], "users"=>["Luigi Acerbi", "Daniel M. Wolpert", "Sethu Vijayakumar"], "doi"=>"https://dx.doi.org/10.1371/journal.pcbi.1002771.g006", "stats"=>{"downloads"=>1, "page_views"=>3, "likes"=>0}, "figshare_url"=>"https://figshare.com/articles/_Bayesian_observer_and_actor_model_components_/205079", "title"=>"Bayesian observer and actor model components.", "pos_in_sequence"=>0, "defined_type"=>1, "published_date"=>"2012-11-29 01:24:39"}
  • {"files"=>["https://ndownloader.figshare.com/files/534515"], "description"=>"<p>Difference in response between the Medium Peaked and the Medium Uniform conditions as a function of the actual interval, averaged across subjects ( s.e.m.). The experimental distributions (light brown: Medium Uniform; light blue: Medium Peaked) are plotted for reference at bottom of the figure. The dashed black line represents the average response shift (difference in response between blocks, averaged across all subjects and stimuli), with the shaded area denoting s.e.m. The average response shift is significantly different from zero ( ms; two-sample t-test ), meaning that the two conditions elicited consistently different performance. Additionally, the responses were subject to a ‘local’ (i.e. interval-dependent) modulation superimposed to the average shift, that is, intervals close to the peak of the distribution (675 ms) were attracted towards it, in addition to the average shift, while intervals far away from the peak were less affected. (*) The response shift at 600 ms and 825 ms is significantly different from the average response shift; .</p>", "links"=>[], "tags"=>["peaked"], "article_id"=>205016, "categories"=>["Neuroscience"], "users"=>["Luigi Acerbi", "Daniel M. Wolpert", "Sethu Vijayakumar"], "doi"=>"https://dx.doi.org/10.1371/journal.pcbi.1002771.g005", "stats"=>{"downloads"=>1, "page_views"=>5, "likes"=>0}, "figshare_url"=>"https://figshare.com/articles/_Experiment_2_Difference_in_response_between_Medium_Peaked_and_Medium_Uniform_blocks_/205016", "title"=>"Experiment 2: Difference in response between Medium Peaked and Medium Uniform blocks.", "pos_in_sequence"=>0, "defined_type"=>1, "published_date"=>"2012-11-29 01:23:36"}
  • {"files"=>["https://ndownloader.figshare.com/files/534446"], "description"=>"<p><i>Very top:</i> Experimental distributions for Medium Uniform (light brown) and Medium Peaked (light blue) blocks, repeated on top of both columns. <i>Left column:</i> Mean response bias (average difference between the response and true interval duration, top) and standard deviation of the response (bottom) for a representative subject in both blocks (light blue: Medium Uniform; light brown: Medium Peaked). Error bars denote s.e.m. Continuous lines represent the Bayesian model ‘fit’ obtained averaging the predictions of the most supported models (Bayesian model averaging). <i>Right column:</i> Mean response bias (top) and standard deviation of the response (bottom) across subjects in both blocks (mean s.e.m. across subjects). Continuous lines represent the Bayesian model ‘fit’ obtained averaging the predictions of the most supported models across subjects.</p>", "links"=>[], "tags"=>["peaked"], "article_id"=>204950, "categories"=>["Neuroscience"], "users"=>["Luigi Acerbi", "Daniel M. Wolpert", "Sethu Vijayakumar"], "doi"=>"https://dx.doi.org/10.1371/journal.pcbi.1002771.g004", "stats"=>{"downloads"=>0, "page_views"=>1, "likes"=>0}, "figshare_url"=>"https://figshare.com/articles/_Experiment_2_Medium_Uniform_and_Medium_Peaked_blocks_/204950", "title"=>"Experiment 2: Medium Uniform and Medium Peaked blocks.", "pos_in_sequence"=>0, "defined_type"=>1, "published_date"=>"2012-11-29 01:22:30"}
  • {"files"=>["https://ndownloader.figshare.com/files/534133"], "description"=>"<p>The responses of four different ideal observers (<i>columns </i><b>a–d</b>) to a discrete set of possible stimuli durations are shown (<i>top row</i>); for visualization purpose, each stimulus duration in this plot is associated with a specific color. The behavior crucially depends on the combination of the modelled observer's temporal sensorimotor noise (likelihood), prior expectations and loss function (<i>rows</i> 2–4); see <a href=\"http://www.ploscompbiol.org/article/info:doi/10.1371/journal.pcbi.1002771#pcbi-1002771-g002\" target=\"_blank\">Figure 2</a> bottom for a description of the observer model. For instance, the observer's sensorimotor variability could be constant across all time intervals (column a) or grow linearly in the interval, according to the ‘scalar’ property of interval timing (column b–d). An observer could be approximating the true, discrete distribution of intervals as a Gaussian (columns a–b) or with a uniform distribution (columns c–d). Moreover, the observer could be minimizing a typical quadratic loss function (columns a–c) or a skewed cost imposed through an external source of feedback (column d). Yellow shading highlights the changes of each model (column) from model (<b>a</b>). All changes to the observer's model components considerably affect the statistics of the predicted responses, summarized by response bias, i.e. average difference between the response and true stimulus duration, and standard deviation (<i>bottom two rows</i>). For instance, all models predict a central tendency in the response (that is, a bias that shifts responses approximately towards the center of the interval range), but bias profiles show characteristic differences between models.</p>", "links"=>[], "tags"=>["profiles", "observers"], "article_id"=>204635, "categories"=>["Neuroscience"], "users"=>["Luigi Acerbi", "Daniel M. Wolpert", "Sethu Vijayakumar"], "doi"=>"https://dx.doi.org/10.1371/journal.pcbi.1002771.g001", "stats"=>{"downloads"=>0, "page_views"=>2, "likes"=>0}, "figshare_url"=>"https://figshare.com/articles/_Comparison_of_response_profiles_for_different_ideal_observers_in_the_timing_task_/204635", "title"=>"Comparison of response profiles for different ideal observers in the timing task.", "pos_in_sequence"=>0, "defined_type"=>1, "published_date"=>"2012-11-29 01:17:15"}
  • {"files"=>["https://ndownloader.figshare.com/files/534811"], "description"=>"<p><i>Very top:</i> Experimental distributions for Medium Bimodal (dark purple, left) and Wide Bimodal (light purple, right) blocks. <i>Top:</i> Mean response bias across subjects (mean s.e.m. across subjects) for the Medium Bimodal (left) and Wide Bimodal (right) blocks. Continuous lines represent the Bayesian model ‘fit’ obtained averaging the predictions of the most supported models across subjects. <i>Bottom:</i> Average inferred priors for the Medium Bimodal (left) and Wide Bimodal (right) blocks. Shaded regions are s.d. For comparison, the experimental distributions are plotted again under the inferred priors.</p>", "links"=>[], "tags"=>["bimodal", "nonparametrically", "inferred"], "article_id"=>205311, "categories"=>["Neuroscience"], "users"=>["Luigi Acerbi", "Daniel M. Wolpert", "Sethu Vijayakumar"], "doi"=>"https://dx.doi.org/10.1371/journal.pcbi.1002771.g009", "stats"=>{"downloads"=>2, "page_views"=>3, "likes"=>0}, "figshare_url"=>"https://figshare.com/articles/_Experiment_5_Medium_Bimodal_and_Wide_Bimodal_blocks_mean_bias_and_nonparametrically_inferred_priors_/205311", "title"=>"Experiment 5: Medium Bimodal and Wide Bimodal blocks, mean bias and nonparametrically inferred priors.", "pos_in_sequence"=>0, "defined_type"=>1, "published_date"=>"2012-11-29 01:28:31"}

PMC Usage Stats | Further Information

  • {"unique-ip"=>"10", "full-text"=>"8", "pdf"=>"6", "abstract"=>"0", "scanned-summary"=>"0", "scanned-page-browse"=>"0", "figure"=>"1", "supp-data"=>"1", "cited-by"=>"0", "year"=>"2012", "month"=>"12"}
  • {"unique-ip"=>"8", "full-text"=>"7", "pdf"=>"3", "abstract"=>"1", "scanned-summary"=>"0", "scanned-page-browse"=>"0", "figure"=>"0", "supp-data"=>"0", "cited-by"=>"0", "year"=>"2013", "month"=>"1"}
  • {"unique-ip"=>"11", "full-text"=>"10", "pdf"=>"3", "abstract"=>"0", "scanned-summary"=>"0", "scanned-page-browse"=>"0", "figure"=>"2", "supp-data"=>"0", "cited-by"=>"0", "year"=>"2013", "month"=>"2"}
  • {"unique-ip"=>"7", "full-text"=>"8", "pdf"=>"0", "abstract"=>"0", "scanned-summary"=>"0", "scanned-page-browse"=>"0", "figure"=>"0", "supp-data"=>"0", "cited-by"=>"0", "year"=>"2013", "month"=>"3"}
  • {"unique-ip"=>"23", "full-text"=>"34", "pdf"=>"3", "abstract"=>"2", "scanned-summary"=>"0", "scanned-page-browse"=>"0", "figure"=>"0", "supp-data"=>"1", "cited-by"=>"0", "year"=>"2013", "month"=>"4"}
  • {"unique-ip"=>"8", "full-text"=>"5", "pdf"=>"3", "abstract"=>"0", "scanned-summary"=>"0", "scanned-page-browse"=>"0", "figure"=>"1", "supp-data"=>"0", "cited-by"=>"0", "year"=>"2013", "month"=>"5"}
  • {"unique-ip"=>"9", "full-text"=>"6", "pdf"=>"4", "abstract"=>"0", "scanned-summary"=>"0", "scanned-page-browse"=>"0", "figure"=>"2", "supp-data"=>"0", "cited-by"=>"0", "year"=>"2013", "month"=>"6"}
  • {"unique-ip"=>"7", "full-text"=>"10", "pdf"=>"4", "abstract"=>"0", "scanned-summary"=>"0", "scanned-page-browse"=>"0", "figure"=>"0", "supp-data"=>"0", "cited-by"=>"0", "year"=>"2013", "month"=>"7"}
  • {"unique-ip"=>"3", "full-text"=>"2", "pdf"=>"2", "abstract"=>"0", "scanned-summary"=>"0", "scanned-page-browse"=>"0", "figure"=>"0", "supp-data"=>"0", "cited-by"=>"0", "year"=>"2013", "month"=>"8"}
  • {"unique-ip"=>"3", "full-text"=>"3", "pdf"=>"2", "abstract"=>"0", "scanned-summary"=>"0", "scanned-page-browse"=>"0", "figure"=>"0", "supp-data"=>"0", "cited-by"=>"0", "year"=>"2013", "month"=>"9"}
  • {"unique-ip"=>"5", "full-text"=>"5", "pdf"=>"2", "abstract"=>"0", "scanned-summary"=>"0", "scanned-page-browse"=>"0", "figure"=>"0", "supp-data"=>"0", "cited-by"=>"0", "year"=>"2013", "month"=>"10"}
  • {"unique-ip"=>"3", "full-text"=>"3", "pdf"=>"0", "abstract"=>"0", "scanned-summary"=>"0", "scanned-page-browse"=>"0", "figure"=>"0", "supp-data"=>"0", "cited-by"=>"0", "year"=>"2013", "month"=>"11"}
  • {"unique-ip"=>"6", "full-text"=>"5", "pdf"=>"2", "abstract"=>"0", "scanned-summary"=>"0", "scanned-page-browse"=>"0", "figure"=>"0", "supp-data"=>"0", "cited-by"=>"0", "year"=>"2013", "month"=>"12"}
  • {"unique-ip"=>"3", "full-text"=>"3", "pdf"=>"0", "abstract"=>"0", "scanned-summary"=>"0", "scanned-page-browse"=>"0", "figure"=>"0", "supp-data"=>"0", "cited-by"=>"0", "year"=>"2014", "month"=>"1"}
  • {"unique-ip"=>"3", "full-text"=>"4", "pdf"=>"2", "abstract"=>"1", "scanned-summary"=>"0", "scanned-page-browse"=>"0", "figure"=>"0", "supp-data"=>"0", "cited-by"=>"0", "year"=>"2014", "month"=>"2"}
  • {"unique-ip"=>"6", "full-text"=>"3", "pdf"=>"2", "abstract"=>"0", "scanned-summary"=>"0", "scanned-page-browse"=>"0", "figure"=>"2", "supp-data"=>"0", "cited-by"=>"0", "year"=>"2014", "month"=>"3"}
  • {"unique-ip"=>"4", "full-text"=>"1", "pdf"=>"1", "abstract"=>"0", "scanned-summary"=>"0", "scanned-page-browse"=>"0", "figure"=>"0", "supp-data"=>"1", "cited-by"=>"0", "year"=>"2014", "month"=>"5"}
  • {"unique-ip"=>"2", "full-text"=>"1", "pdf"=>"0", "abstract"=>"0", "scanned-summary"=>"0", "scanned-page-browse"=>"0", "figure"=>"0", "supp-data"=>"0", "cited-by"=>"0", "year"=>"2014", "month"=>"6"}
  • {"unique-ip"=>"10", "full-text"=>"5", "pdf"=>"1", "abstract"=>"0", "scanned-summary"=>"0", "scanned-page-browse"=>"0", "figure"=>"1", "supp-data"=>"2", "cited-by"=>"0", "year"=>"2014", "month"=>"4"}
  • {"unique-ip"=>"9", "full-text"=>"4", "pdf"=>"2", "abstract"=>"1", "scanned-summary"=>"0", "scanned-page-browse"=>"0", "figure"=>"0", "supp-data"=>"0", "cited-by"=>"1", "year"=>"2014", "month"=>"7"}
  • {"unique-ip"=>"10", "full-text"=>"2", "pdf"=>"3", "abstract"=>"0", "scanned-summary"=>"0", "scanned-page-browse"=>"0", "figure"=>"4", "supp-data"=>"1", "cited-by"=>"0", "year"=>"2014", "month"=>"8"}
  • {"unique-ip"=>"14", "full-text"=>"1", "pdf"=>"2", "abstract"=>"0", "scanned-summary"=>"0", "scanned-page-browse"=>"0", "figure"=>"3", "supp-data"=>"5", "cited-by"=>"0", "year"=>"2014", "month"=>"9"}
  • {"unique-ip"=>"7", "full-text"=>"4", "pdf"=>"2", "abstract"=>"0", "scanned-summary"=>"0", "scanned-page-browse"=>"0", "figure"=>"2", "supp-data"=>"0", "cited-by"=>"1", "year"=>"2014", "month"=>"10"}
  • {"unique-ip"=>"7", "full-text"=>"6", "pdf"=>"3", "abstract"=>"0", "scanned-summary"=>"0", "scanned-page-browse"=>"0", "figure"=>"0", "supp-data"=>"1", "cited-by"=>"0", "year"=>"2014", "month"=>"11"}
  • {"unique-ip"=>"7", "full-text"=>"3", "pdf"=>"0", "abstract"=>"0", "scanned-summary"=>"0", "scanned-page-browse"=>"0", "figure"=>"1", "supp-data"=>"1", "cited-by"=>"0", "year"=>"2014", "month"=>"12"}
  • {"unique-ip"=>"4", "full-text"=>"5", "pdf"=>"0", "abstract"=>"0", "scanned-summary"=>"0", "scanned-page-browse"=>"0", "figure"=>"1", "supp-data"=>"0", "cited-by"=>"0", "year"=>"2015", "month"=>"1"}
  • {"unique-ip"=>"5", "full-text"=>"6", "pdf"=>"3", "abstract"=>"0", "scanned-summary"=>"0", "scanned-page-browse"=>"0", "figure"=>"0", "supp-data"=>"0", "cited-by"=>"0", "year"=>"2015", "month"=>"2"}
  • {"unique-ip"=>"4", "full-text"=>"4", "pdf"=>"1", "abstract"=>"0", "scanned-summary"=>"0", "scanned-page-browse"=>"0", "figure"=>"0", "supp-data"=>"0", "cited-by"=>"0", "year"=>"2015", "month"=>"3"}
  • {"unique-ip"=>"7", "full-text"=>"10", "pdf"=>"4", "abstract"=>"0", "scanned-summary"=>"0", "scanned-page-browse"=>"0", "figure"=>"0", "supp-data"=>"0", "cited-by"=>"0", "year"=>"2015", "month"=>"4"}
  • {"unique-ip"=>"2", "full-text"=>"2", "pdf"=>"0", "abstract"=>"0", "scanned-summary"=>"0", "scanned-page-browse"=>"0", "figure"=>"0", "supp-data"=>"0", "cited-by"=>"0", "year"=>"2015", "month"=>"5"}
  • {"unique-ip"=>"6", "full-text"=>"6", "pdf"=>"2", "abstract"=>"0", "scanned-summary"=>"0", "scanned-page-browse"=>"0", "figure"=>"0", "supp-data"=>"0", "cited-by"=>"0", "year"=>"2015", "month"=>"6"}
  • {"unique-ip"=>"9", "full-text"=>"8", "pdf"=>"2", "abstract"=>"0", "scanned-summary"=>"0", "scanned-page-browse"=>"0", "figure"=>"2", "supp-data"=>"0", "cited-by"=>"0", "year"=>"2015", "month"=>"7"}
  • {"unique-ip"=>"3", "full-text"=>"2", "pdf"=>"1", "abstract"=>"0", "scanned-summary"=>"0", "scanned-page-browse"=>"0", "figure"=>"0", "supp-data"=>"0", "cited-by"=>"0", "year"=>"2015", "month"=>"8"}
  • {"unique-ip"=>"7", "full-text"=>"6", "pdf"=>"3", "abstract"=>"0", "scanned-summary"=>"0", "scanned-page-browse"=>"0", "figure"=>"0", "supp-data"=>"0", "cited-by"=>"0", "year"=>"2015", "month"=>"9"}
  • {"unique-ip"=>"2", "full-text"=>"2", "pdf"=>"0", "abstract"=>"0", "scanned-summary"=>"0", "scanned-page-browse"=>"0", "figure"=>"0", "supp-data"=>"0", "cited-by"=>"0", "year"=>"2015", "month"=>"10"}
  • {"unique-ip"=>"10", "full-text"=>"6", "pdf"=>"3", "abstract"=>"0", "scanned-summary"=>"0", "scanned-page-browse"=>"0", "figure"=>"0", "supp-data"=>"0", "cited-by"=>"1", "year"=>"2015", "month"=>"11"}
  • {"unique-ip"=>"9", "full-text"=>"5", "pdf"=>"3", "abstract"=>"0", "scanned-summary"=>"0", "scanned-page-browse"=>"0", "figure"=>"0", "supp-data"=>"2", "cited-by"=>"0", "year"=>"2015", "month"=>"12"}
  • {"unique-ip"=>"4", "full-text"=>"1", "pdf"=>"1", "abstract"=>"0", "scanned-summary"=>"0", "scanned-page-browse"=>"0", "figure"=>"0", "supp-data"=>"1", "cited-by"=>"1", "year"=>"2016", "month"=>"1"}
  • {"unique-ip"=>"4", "full-text"=>"2", "pdf"=>"0", "abstract"=>"0", "scanned-summary"=>"0", "scanned-page-browse"=>"0", "figure"=>"3", "supp-data"=>"0", "cited-by"=>"0", "year"=>"2016", "month"=>"2"}
  • {"unique-ip"=>"2", "full-text"=>"1", "pdf"=>"3", "abstract"=>"0", "scanned-summary"=>"0", "scanned-page-browse"=>"0", "figure"=>"0", "supp-data"=>"0", "cited-by"=>"0", "year"=>"2016", "month"=>"3"}
  • {"unique-ip"=>"3", "full-text"=>"4", "pdf"=>"0", "abstract"=>"0", "scanned-summary"=>"0", "scanned-page-browse"=>"0", "figure"=>"0", "supp-data"=>"0", "cited-by"=>"0", "year"=>"2016", "month"=>"4"}
  • {"unique-ip"=>"1", "full-text"=>"0", "pdf"=>"0", "abstract"=>"0", "scanned-summary"=>"0", "scanned-page-browse"=>"0", "figure"=>"2", "supp-data"=>"0", "cited-by"=>"0", "year"=>"2016", "month"=>"6"}
  • {"unique-ip"=>"1", "full-text"=>"1", "pdf"=>"0", "abstract"=>"0", "scanned-summary"=>"0", "scanned-page-browse"=>"0", "figure"=>"0", "supp-data"=>"0", "cited-by"=>"0", "year"=>"2016", "month"=>"7"}
  • {"unique-ip"=>"1", "full-text"=>"1", "pdf"=>"0", "abstract"=>"0", "scanned-summary"=>"0", "scanned-page-browse"=>"0", "figure"=>"0", "supp-data"=>"0", "cited-by"=>"0", "year"=>"2016", "month"=>"8"}
  • {"unique-ip"=>"1", "full-text"=>"1", "pdf"=>"0", "abstract"=>"0", "scanned-summary"=>"0", "scanned-page-browse"=>"0", "figure"=>"0", "supp-data"=>"0", "cited-by"=>"0", "year"=>"2016", "month"=>"9"}
  • {"unique-ip"=>"1", "full-text"=>"0", "pdf"=>"1", "abstract"=>"0", "scanned-summary"=>"0", "scanned-page-browse"=>"0", "figure"=>"0", "supp-data"=>"0", "cited-by"=>"0", "year"=>"2016", "month"=>"10"}
  • {"unique-ip"=>"5", "full-text"=>"4", "pdf"=>"2", "abstract"=>"0", "scanned-summary"=>"0", "scanned-page-browse"=>"0", "figure"=>"0", "supp-data"=>"0", "cited-by"=>"0", "year"=>"2016", "month"=>"11"}
  • {"unique-ip"=>"1", "full-text"=>"0", "pdf"=>"0", "abstract"=>"0", "scanned-summary"=>"0", "scanned-page-browse"=>"0", "figure"=>"0", "supp-data"=>"1", "cited-by"=>"0", "year"=>"2016", "month"=>"12"}
  • {"unique-ip"=>"4", "full-text"=>"0", "pdf"=>"0", "abstract"=>"0", "scanned-summary"=>"0", "scanned-page-browse"=>"0", "figure"=>"0", "supp-data"=>"0", "cited-by"=>"0", "year"=>"2017", "month"=>"1"}
  • {"unique-ip"=>"7", "full-text"=>"4", "pdf"=>"3", "abstract"=>"0", "scanned-summary"=>"0", "scanned-page-browse"=>"0", "figure"=>"8", "supp-data"=>"0", "cited-by"=>"0", "year"=>"2017", "month"=>"2"}
  • {"unique-ip"=>"2", "full-text"=>"2", "pdf"=>"1", "abstract"=>"0", "scanned-summary"=>"0", "scanned-page-browse"=>"0", "figure"=>"0", "supp-data"=>"0", "cited-by"=>"0", "year"=>"2017", "month"=>"3"}
  • {"unique-ip"=>"2", "full-text"=>"4", "pdf"=>"0", "abstract"=>"0", "scanned-summary"=>"0", "scanned-page-browse"=>"0", "figure"=>"0", "supp-data"=>"0", "cited-by"=>"0", "year"=>"2017", "month"=>"4"}
  • {"unique-ip"=>"3", "full-text"=>"2", "pdf"=>"2", "abstract"=>"0", "scanned-summary"=>"0", "scanned-page-browse"=>"0", "figure"=>"0", "supp-data"=>"0", "cited-by"=>"0", "year"=>"2017", "month"=>"5"}
  • {"unique-ip"=>"1", "full-text"=>"1", "pdf"=>"0", "abstract"=>"0", "scanned-summary"=>"0", "scanned-page-browse"=>"0", "figure"=>"0", "supp-data"=>"0", "cited-by"=>"0", "year"=>"2017", "month"=>"6"}
  • {"unique-ip"=>"2", "full-text"=>"2", "pdf"=>"1", "abstract"=>"0", "scanned-summary"=>"0", "scanned-page-browse"=>"0", "figure"=>"0", "supp-data"=>"0", "cited-by"=>"0", "year"=>"2017", "month"=>"7"}
  • {"unique-ip"=>"7", "full-text"=>"2", "pdf"=>"1", "abstract"=>"0", "scanned-summary"=>"0", "scanned-page-browse"=>"0", "figure"=>"0", "supp-data"=>"6", "cited-by"=>"0", "year"=>"2017", "month"=>"8"}
  • {"unique-ip"=>"2", "full-text"=>"1", "pdf"=>"2", "abstract"=>"0", "scanned-summary"=>"0", "scanned-page-browse"=>"0", "figure"=>"0", "supp-data"=>"0", "cited-by"=>"0", "year"=>"2017", "month"=>"9"}
  • {"unique-ip"=>"15", "full-text"=>"6", "pdf"=>"1", "abstract"=>"0", "scanned-summary"=>"0", "scanned-page-browse"=>"0", "figure"=>"0", "supp-data"=>"3", "cited-by"=>"1", "year"=>"2017", "month"=>"10"}
  • {"unique-ip"=>"3", "full-text"=>"3", "pdf"=>"0", "abstract"=>"0", "scanned-summary"=>"0", "scanned-page-browse"=>"0", "figure"=>"0", "supp-data"=>"0", "cited-by"=>"0", "year"=>"2017", "month"=>"11"}
  • {"unique-ip"=>"2", "full-text"=>"2", "pdf"=>"1", "abstract"=>"0", "scanned-summary"=>"0", "scanned-page-browse"=>"0", "figure"=>"0", "supp-data"=>"0", "cited-by"=>"0", "year"=>"2017", "month"=>"12"}
  • {"unique-ip"=>"5", "full-text"=>"6", "pdf"=>"1", "abstract"=>"0", "scanned-summary"=>"0", "scanned-page-browse"=>"0", "figure"=>"0", "supp-data"=>"0", "cited-by"=>"0", "year"=>"2018", "month"=>"1"}
  • {"unique-ip"=>"2", "full-text"=>"1", "pdf"=>"1", "abstract"=>"0", "scanned-summary"=>"0", "scanned-page-browse"=>"0", "figure"=>"0", "supp-data"=>"0", "cited-by"=>"0", "year"=>"2018", "month"=>"3"}
  • {"unique-ip"=>"14", "full-text"=>"12", "pdf"=>"1", "scanned-summary"=>"0", "scanned-page-browse"=>"0", "figure"=>"1", "supp-data"=>"4", "cited-by"=>"0", "year"=>"2019", "month"=>"1"}
  • {"unique-ip"=>"2", "full-text"=>"2", "pdf"=>"0", "scanned-summary"=>"0", "scanned-page-browse"=>"0", "figure"=>"0", "supp-data"=>"0", "cited-by"=>"0", "year"=>"2018", "month"=>"5"}
  • {"unique-ip"=>"1", "full-text"=>"2", "pdf"=>"0", "scanned-summary"=>"0", "scanned-page-browse"=>"0", "figure"=>"0", "supp-data"=>"0", "cited-by"=>"0", "year"=>"2018", "month"=>"4"}
  • {"unique-ip"=>"2", "full-text"=>"2", "pdf"=>"0", "scanned-summary"=>"0", "scanned-page-browse"=>"0", "figure"=>"0", "supp-data"=>"0", "cited-by"=>"0", "year"=>"2018", "month"=>"6"}
  • {"unique-ip"=>"4", "full-text"=>"0", "pdf"=>"3", "scanned-summary"=>"0", "scanned-page-browse"=>"0", "figure"=>"0", "supp-data"=>"1", "cited-by"=>"0", "year"=>"2018", "month"=>"7"}
  • {"unique-ip"=>"2", "full-text"=>"2", "pdf"=>"0", "scanned-summary"=>"0", "scanned-page-browse"=>"0", "figure"=>"0", "supp-data"=>"0", "cited-by"=>"0", "year"=>"2018", "month"=>"8"}
  • {"unique-ip"=>"1", "full-text"=>"1", "pdf"=>"0", "scanned-summary"=>"0", "scanned-page-browse"=>"0", "figure"=>"0", "supp-data"=>"0", "cited-by"=>"0", "year"=>"2018", "month"=>"9"}
  • {"unique-ip"=>"2", "full-text"=>"0", "pdf"=>"2", "scanned-summary"=>"0", "scanned-page-browse"=>"0", "figure"=>"0", "supp-data"=>"0", "cited-by"=>"0", "year"=>"2018", "month"=>"10"}
  • {"unique-ip"=>"3", "full-text"=>"3", "pdf"=>"0", "scanned-summary"=>"0", "scanned-page-browse"=>"0", "figure"=>"0", "supp-data"=>"3", "cited-by"=>"0", "year"=>"2018", "month"=>"11"}
  • {"unique-ip"=>"5", "full-text"=>"3", "pdf"=>"1", "scanned-summary"=>"0", "scanned-page-browse"=>"0", "figure"=>"4", "supp-data"=>"0", "cited-by"=>"0", "year"=>"2018", "month"=>"12"}
  • {"unique-ip"=>"3", "full-text"=>"4", "pdf"=>"0", "scanned-summary"=>"0", "scanned-page-browse"=>"0", "figure"=>"0", "supp-data"=>"0", "cited-by"=>"0", "year"=>"2019", "month"=>"2"}
  • {"unique-ip"=>"3", "full-text"=>"4", "pdf"=>"0", "scanned-summary"=>"0", "scanned-page-browse"=>"0", "figure"=>"0", "supp-data"=>"0", "cited-by"=>"0", "year"=>"2019", "month"=>"3"}
  • {"unique-ip"=>"3", "full-text"=>"3", "pdf"=>"0", "scanned-summary"=>"0", "scanned-page-browse"=>"0", "figure"=>"0", "supp-data"=>"0", "cited-by"=>"0", "year"=>"2019", "month"=>"4"}
  • {"unique-ip"=>"1", "full-text"=>"1", "pdf"=>"0", "scanned-summary"=>"0", "scanned-page-browse"=>"0", "figure"=>"0", "supp-data"=>"0", "cited-by"=>"0", "year"=>"2019", "month"=>"5"}

Relative Metric

{"start_date"=>"2012-01-01T00:00:00Z", "end_date"=>"2012-12-31T00:00:00Z", "subject_areas"=>[{"subject_area"=>"/Biology and life sciences", "average_usage"=>[322, 550, 671, 773, 864, 955, 1048, 1135, 1223, 1308, 1387, 1465, 1534, 1602, 1673, 1744, 1813, 1885, 1955, 2026, 2093, 2160, 2228, 2290, 2349]}, {"subject_area"=>"/Biology and life sciences/Behavior", "average_usage"=>[354, 559, 676, 770, 854, 949, 1040, 1128, 1220, 1295, 1364, 1439, 1511, 1580, 1636, 1693, 1753, 1808, 1882, 1944, 2019, 2070, 2120, 2176, 2247]}, {"subject_area"=>"/Biology and life sciences/Psychology", "average_usage"=>[328, 561, 679, 772, 852, 944, 1035, 1122, 1197, 1277, 1354, 1416, 1479, 1549, 1615, 1679, 1740, 1807, 1870, 1937, 1996, 2059, 2118, 2179, 2244]}, {"subject_area"=>"/Social sciences/Psychology", "average_usage"=>[336, 562, 679, 770, 848, 938, 1036, 1125, 1198, 1287, 1364, 1425, 1488, 1556, 1618, 1687, 1756, 1817, 1879, 1943, 2011, 2065, 2118, 2186, 2243]}]}
Loading … Spinner
There are currently no alerts