A Self-Organising Model of Thermoregulatory Huddling
Publication Date
September 03, 2015
Journal
PLOS Computational Biology
Authors
Jonathan Glancy, Roderich Groß, James V. Stone & Stuart P. Wilson
Volume
11
Issue
9
Pages
e1004283
DOI
https://dx.plos.org/10.1371/journal.pcbi.1004283
Publisher URL
http://journals.plos.org/ploscompbiol/article?id=10.1371%2Fjournal.pcbi.1004283
PubMed
http://www.ncbi.nlm.nih.gov/pubmed/26334993
PubMed Central
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4559402
Europe PMC
http://europepmc.org/abstract/MED/26334993
Web of Science
000362266400001
Scopus
84943560455
Mendeley
http://www.mendeley.com/research/selforganising-model-thermoregulatory-huddling
Events
Loading … Spinner

Mendeley | Further Information

{"title"=>"A Self-Organising Model of Thermoregulatory Huddling", "type"=>"journal", "authors"=>[{"first_name"=>"Jonathan", "last_name"=>"Glancy", "scopus_author_id"=>"55804210300"}, {"first_name"=>"Roderich", "last_name"=>"Groß", "scopus_author_id"=>"56242658700"}, {"first_name"=>"James V.", "last_name"=>"Stone", "scopus_author_id"=>"7403061191"}, {"first_name"=>"Stuart P.", "last_name"=>"Wilson", "scopus_author_id"=>"16242967400"}], "year"=>2015, "source"=>"PLoS Computational Biology", "identifiers"=>{"pui"=>"606367630", "issn"=>"15537358", "doi"=>"10.1371/journal.pcbi.1004283", "scopus"=>"2-s2.0-84943560455", "pmid"=>"26334993", "sgr"=>"84943560455"}, "id"=>"8f520a6a-1462-315e-a88e-c4903b653442", "abstract"=>"Endotherms such as rats and mice huddle together to keep warm. The huddle is considered to be an example of a self-organising system, because complex properties of the collective group behaviour are thought to emerge spontaneously through simple interactions between individuals. Groups of rodent pups display two such emergent properties. First, huddling undergoes a 'phase transition', such that pups start to aggregate rapidly as the temperature of the environment falls below a critical temperature. Second, the huddle maintains a constant 'pup flow', where cooler pups at the periphery continually displace warmer pups at the centre. We set out to test whether these complex group behaviours can emerge spontaneously from local interactions between individuals. We designed a model using a minimal set of assumptions about how individual pups interact, by simply turning towards heat sources, and show in computer simulations that the model reproduces the first emergent property-the phase transition. However, this minimal model tends to produce an unnatural behaviour where several smaller aggregates emerge rather than one large huddle. We found that an extension of the minimal model to include heat exchange between pups allows the group to maintain one large huddle but eradicates the phase transition, whereas inclusion of an additional homeostatic term recovers the phase transition for large huddles. As an unanticipated consequence, the extended model also naturally gave rise to the second observed emergent property-a continuous pup flow. The model therefore serves as a minimal description of huddling as a self-organising system, and as an existence proof that group-level huddling dynamics emerge spontaneously through simple interactions between individuals. We derive a specific testable prediction: Increasing the capacity of the individual to generate or conserve heat will increase the range of ambient temperatures over which adaptive thermoregulatory huddling will emerge.", "link"=>"http://www.mendeley.com/research/selforganising-model-thermoregulatory-huddling", "reader_count"=>15, "reader_count_by_academic_status"=>{"Unspecified"=>1, "Researcher"=>3, "Student > Ph. D. Student"=>3, "Other"=>2, "Student > Master"=>1, "Student > Bachelor"=>5}, "reader_count_by_user_role"=>{"Unspecified"=>1, "Researcher"=>3, "Student > Ph. D. Student"=>3, "Other"=>2, "Student > Master"=>1, "Student > Bachelor"=>5}, "reader_count_by_subject_area"=>{"Unspecified"=>1, "Environmental Science"=>1, "Mathematics"=>1, "Agricultural and Biological Sciences"=>6, "Medicine and Dentistry"=>1, "Neuroscience"=>2, "Psychology"=>3}, "reader_count_by_subdiscipline"=>{"Medicine and Dentistry"=>{"Medicine and Dentistry"=>1}, "Neuroscience"=>{"Neuroscience"=>2}, "Psychology"=>{"Psychology"=>3}, "Agricultural and Biological Sciences"=>{"Agricultural and Biological Sciences"=>6}, "Mathematics"=>{"Mathematics"=>1}, "Unspecified"=>{"Unspecified"=>1}, "Environmental Science"=>{"Environmental Science"=>1}}, "reader_count_by_country"=>{"Japan"=>1, "United Kingdom"=>1}, "group_count"=>1}

Scopus | Further Information

{"@_fa"=>"true", "link"=>[{"@_fa"=>"true", "@ref"=>"self", "@href"=>"https://api.elsevier.com/content/abstract/scopus_id/84943560455"}, {"@_fa"=>"true", "@ref"=>"author-affiliation", "@href"=>"https://api.elsevier.com/content/abstract/scopus_id/84943560455?field=author,affiliation"}, {"@_fa"=>"true", "@ref"=>"scopus", "@href"=>"https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=84943560455&origin=inward"}, {"@_fa"=>"true", "@ref"=>"scopus-citedby", "@href"=>"https://www.scopus.com/inward/citedby.uri?partnerID=HzOxMe3b&scp=84943560455&origin=inward"}], "prism:url"=>"https://api.elsevier.com/content/abstract/scopus_id/84943560455", "dc:identifier"=>"SCOPUS_ID:84943560455", "eid"=>"2-s2.0-84943560455", "dc:title"=>"A Self-Organising Model of Thermoregulatory Huddling", "dc:creator"=>"Glancy J.", "prism:publicationName"=>"PLoS Computational Biology", "prism:issn"=>"1553734X", "prism:eIssn"=>"15537358", "prism:volume"=>"11", "prism:issueIdentifier"=>"9", "prism:pageRange"=>nil, "prism:coverDate"=>"2015-01-01", "prism:coverDisplayDate"=>"2015", "prism:doi"=>"10.1371/journal.pcbi.1004283", "citedby-count"=>"7", "affiliation"=>[{"@_fa"=>"true", "affilname"=>"University of Sheffield", "affiliation-city"=>"Sheffield", "affiliation-country"=>"United Kingdom"}], "pubmed-id"=>"26334993", "prism:aggregationType"=>"Journal", "subtype"=>"ar", "subtypeDescription"=>"Article", "article-number"=>"e1004283", "source-id"=>"4000151810", "openaccess"=>"1", "openaccessFlag"=>true}

Facebook

  • {"url"=>"http%3A%2F%2Fjournals.plos.org%2Fploscompbiol%2Farticle%3Fid%3D10.1371%252Fjournal.pcbi.1004283", "share_count"=>5, "like_count"=>2, "comment_count"=>0, "click_count"=>0, "total_count"=>7}

Counter

  • {"month"=>"9", "year"=>"2015", "pdf_views"=>"102", "xml_views"=>"6", "html_views"=>"1827"}
  • {"month"=>"10", "year"=>"2015", "pdf_views"=>"50", "xml_views"=>"2", "html_views"=>"473"}
  • {"month"=>"11", "year"=>"2015", "pdf_views"=>"14", "xml_views"=>"1", "html_views"=>"92"}
  • {"month"=>"12", "year"=>"2015", "pdf_views"=>"11", "xml_views"=>"0", "html_views"=>"57"}
  • {"month"=>"1", "year"=>"2016", "pdf_views"=>"22", "xml_views"=>"0", "html_views"=>"102"}
  • {"month"=>"2", "year"=>"2016", "pdf_views"=>"7", "xml_views"=>"0", "html_views"=>"62"}
  • {"month"=>"3", "year"=>"2016", "pdf_views"=>"7", "xml_views"=>"0", "html_views"=>"70"}
  • {"month"=>"4", "year"=>"2016", "pdf_views"=>"12", "xml_views"=>"0", "html_views"=>"62"}
  • {"month"=>"5", "year"=>"2016", "pdf_views"=>"3", "xml_views"=>"0", "html_views"=>"50"}
  • {"month"=>"6", "year"=>"2016", "pdf_views"=>"5", "xml_views"=>"0", "html_views"=>"36"}
  • {"month"=>"7", "year"=>"2016", "pdf_views"=>"5", "xml_views"=>"0", "html_views"=>"64"}
  • {"month"=>"8", "year"=>"2016", "pdf_views"=>"0", "xml_views"=>"0", "html_views"=>"20"}
  • {"month"=>"9", "year"=>"2016", "pdf_views"=>"8", "xml_views"=>"0", "html_views"=>"40"}
  • {"month"=>"10", "year"=>"2016", "pdf_views"=>"15", "xml_views"=>"0", "html_views"=>"111"}
  • {"month"=>"11", "year"=>"2016", "pdf_views"=>"11", "xml_views"=>"0", "html_views"=>"101"}
  • {"month"=>"12", "year"=>"2016", "pdf_views"=>"5", "xml_views"=>"0", "html_views"=>"70"}
  • {"month"=>"1", "year"=>"2017", "pdf_views"=>"8", "xml_views"=>"0", "html_views"=>"26"}
  • {"month"=>"2", "year"=>"2017", "pdf_views"=>"12", "xml_views"=>"3", "html_views"=>"67"}
  • {"month"=>"3", "year"=>"2017", "pdf_views"=>"4", "xml_views"=>"0", "html_views"=>"58"}
  • {"month"=>"4", "year"=>"2017", "pdf_views"=>"6", "xml_views"=>"0", "html_views"=>"46"}
  • {"month"=>"5", "year"=>"2017", "pdf_views"=>"6", "xml_views"=>"1", "html_views"=>"49"}
  • {"month"=>"6", "year"=>"2017", "pdf_views"=>"8", "xml_views"=>"0", "html_views"=>"47"}
  • {"month"=>"7", "year"=>"2017", "pdf_views"=>"4", "xml_views"=>"0", "html_views"=>"35"}
  • {"month"=>"8", "year"=>"2017", "pdf_views"=>"5", "xml_views"=>"0", "html_views"=>"26"}
  • {"month"=>"9", "year"=>"2017", "pdf_views"=>"4", "xml_views"=>"0", "html_views"=>"30"}
  • {"month"=>"10", "year"=>"2017", "pdf_views"=>"4", "xml_views"=>"0", "html_views"=>"28"}
  • {"month"=>"11", "year"=>"2017", "pdf_views"=>"4", "xml_views"=>"0", "html_views"=>"39"}
  • {"month"=>"12", "year"=>"2017", "pdf_views"=>"14", "xml_views"=>"1", "html_views"=>"39"}
  • {"month"=>"1", "year"=>"2018", "pdf_views"=>"9", "xml_views"=>"0", "html_views"=>"26"}
  • {"month"=>"2", "year"=>"2018", "pdf_views"=>"9", "xml_views"=>"0", "html_views"=>"16"}
  • {"month"=>"3", "year"=>"2018", "pdf_views"=>"1", "xml_views"=>"0", "html_views"=>"22"}
  • {"month"=>"4", "year"=>"2018", "pdf_views"=>"3", "xml_views"=>"0", "html_views"=>"35"}
  • {"month"=>"5", "year"=>"2018", "pdf_views"=>"1", "xml_views"=>"0", "html_views"=>"22"}
  • {"month"=>"6", "year"=>"2018", "pdf_views"=>"6", "xml_views"=>"1", "html_views"=>"18"}
  • {"month"=>"7", "year"=>"2018", "pdf_views"=>"2", "xml_views"=>"3", "html_views"=>"5"}
  • {"month"=>"8", "year"=>"2018", "pdf_views"=>"20", "xml_views"=>"1", "html_views"=>"29"}
  • {"month"=>"9", "year"=>"2018", "pdf_views"=>"8", "xml_views"=>"0", "html_views"=>"21"}
  • {"month"=>"10", "year"=>"2018", "pdf_views"=>"4", "xml_views"=>"3", "html_views"=>"10"}
  • {"month"=>"11", "year"=>"2018", "pdf_views"=>"5", "xml_views"=>"0", "html_views"=>"22"}
  • {"month"=>"12", "year"=>"2018", "pdf_views"=>"7", "xml_views"=>"0", "html_views"=>"10"}
  • {"month"=>"1", "year"=>"2019", "pdf_views"=>"3", "xml_views"=>"0", "html_views"=>"28"}
  • {"month"=>"2", "year"=>"2019", "pdf_views"=>"2", "xml_views"=>"0", "html_views"=>"19"}
  • {"month"=>"3", "year"=>"2019", "pdf_views"=>"6", "xml_views"=>"3", "html_views"=>"18"}
  • {"month"=>"4", "year"=>"2019", "pdf_views"=>"6", "xml_views"=>"0", "html_views"=>"44"}
  • {"month"=>"5", "year"=>"2019", "pdf_views"=>"1", "xml_views"=>"0", "html_views"=>"23"}

Figshare

  • {"files"=>["https://ndownloader.figshare.com/files/2252155"], "description"=>"<p>By approximating the huddle as a single super-organism, we are able to derive the following prediction from our theory of thermoregulatory huddling as the self-organising product of simple local interactions between pups. Accordingly the key parameter is the term </p><p></p><p></p><p></p><p><mi>G</mi></p><p><mi>k</mi><mn>1</mn></p><p></p><p></p><p></p><p></p>, where <i>G</i> is the rate of thermogenesis and <i>k</i><sub>1</sub> is the thermal conductance of each pup. The model predicts that either increasing thermogenesis (e.g., by pharmaceutically enhancing the action of brown adipose tissue) or decreasing the thermal conductance (e.g., by insulating each pup) will increase both the critical ambient temperature (single-headed arrow) and the range of ambient temperatures (double-headed arrow) over which the temperature of the huddle is stable. Confirming this prediction in future experiments would provide strong support for our description of the huddle as a self-organising system.<p></p>", "links"=>[], "tags"=>["individual", "Thermoregulatory Huddling Endotherms", "phase transition", "behaviour", "interaction", "huddle", "model", "rodent pups display"], "article_id"=>1534784, "categories"=>["Biological Sciences", "Science Policy"], "users"=>["Jonathan Glancy", "Roderich Groß", "James V. Stone", "Stuart P. Wilson"], "doi"=>"https://dx.doi.org/10.1371/journal.pcbi.1004283.g007", "stats"=>{"downloads"=>1, "page_views"=>4, "likes"=>0}, "figshare_url"=>"https://figshare.com/articles/_Testable_predictions_of_the_model_/1534784", "title"=>"Testable predictions of the model.", "pos_in_sequence"=>0, "defined_type"=>1, "published_date"=>"2015-09-03 14:51:21"}
  • {"files"=>["https://ndownloader.figshare.com/files/2252153"], "description"=>"<p>(A) Pup flow was quantified as the time-averaged absolute time-derivative of the exposed surface areas of the pups. The rate of pup flow was small at low and high ambient temperatures, but was large during the sloping region of the phase transition, where pups were observed to continually exchange positions between the center and periphery of macro-huddles or between micro-huddles. (B) To quantify aggregation level, we observed the average number of distinct groups that form at each ambient temperature. At low ambient temperatures a single macro-huddle is maintained, while as the temperature is increased beyond a critical point pups arrange into aggregation patterns with many smaller micro-huddles until eventually huddling ceases. Error bars in A show standard error, calculated for 120 observations (ten simulations, each with twelve pups) and in B for 10 observations.</p>", "links"=>[], "tags"=>["individual", "Thermoregulatory Huddling Endotherms", "phase transition", "behaviour", "interaction", "huddle", "model", "rodent pups display"], "article_id"=>1534782, "categories"=>["Biological Sciences", "Science Policy"], "users"=>["Jonathan Glancy", "Roderich Groß", "James V. Stone", "Stuart P. Wilson"], "doi"=>"https://dx.doi.org/10.1371/journal.pcbi.1004283.g005", "stats"=>{"downloads"=>1, "page_views"=>2, "likes"=>0}, "figshare_url"=>"https://figshare.com/articles/_Quantifying_pup_flow_/1534782", "title"=>"Quantifying pup flow.", "pos_in_sequence"=>0, "defined_type"=>1, "published_date"=>"2015-09-03 14:51:21"}
  • {"files"=>["https://ndownloader.figshare.com/files/2252151"], "description"=>"<p>Simulation of the experiment of [<a href=\"http://www.ploscompbiol.org/article/info:doi/10.1371/journal.pcbi.1004283#pcbi.1004283.ref009\" target=\"_blank\">9</a>], in which each pup simply turns in the direction of heat sources. The ordinate axis represents the mean proportion of pups’ body surfaces that are in contact with another pup, (1 − <i>η</i>) averaged across pups and time-steps within a simulation and across 10 repeated experiments with random initial conditions. (A) The critical temperature of the phase transition can be increased by arbitrarily scaling the temperature registered at each point of the pup body surface to be 0.25, 0.5, and 0.75 of the ambient temperature (legend denotes scaling factor). (B) With the temperature scaling set to 0.5, the slope of the phase transition can be smoothed to better match the form of the experimental data presented in <a href=\"http://www.ploscompbiol.org/article/info:doi/10.1371/journal.pcbi.1004283#pcbi.1004283.g001\" target=\"_blank\">Fig 1</a>, by adding normally distributed noise to the temperature sensed at each point on the pup body, with variances 0.0, 0.56 and 1°C (indicated by the legend) increasing the smoothness of the transition. Tuning the endothermic model in this way can give a reasonable match to the experimental data but it generates qualitatively poor huddling, as explained in the main text.</p>", "links"=>[], "tags"=>["individual", "Thermoregulatory Huddling Endotherms", "phase transition", "behaviour", "interaction", "huddle", "model", "rodent pups display"], "article_id"=>1534779, "categories"=>["Biological Sciences", "Science Policy"], "users"=>["Jonathan Glancy", "Roderich Groß", "James V. Stone", "Stuart P. Wilson"], "doi"=>"https://dx.doi.org/10.1371/journal.pcbi.1004283.g003", "stats"=>{"downloads"=>1, "page_views"=>2, "likes"=>0}, "figshare_url"=>"https://figshare.com/articles/_A_phase_transition_emerges_in_simulations_of_the_endothermic_individuals_model_/1534779", "title"=>"A phase transition emerges in simulations of the endothermic individuals model.", "pos_in_sequence"=>0, "defined_type"=>1, "published_date"=>"2015-09-03 14:51:21"}
  • {"files"=>["https://ndownloader.figshare.com/files/2252149"], "description"=>"<p>(A) A snapshot of the model, showing twelve simulated pups (small circles) in a circular arena (large circle), with orientations indicated by arrows. In this snapshot, pups are shown aggregated, often overlapping, and a focal pup is highlighted by a black body and a white *. (B) The same snapshot is shown, zoomed in on the focal pup. The left and right sides of its body are coloured green and blue respectively, to indicate the regions of the body surface over which average temperatures constitute the left and right sensor values </p><p></p><p></p><p></p><p><mi>T</mi><mi>L</mi><mo>*</mo></p><p></p><p></p><p></p> and <p></p><p></p><p></p><p><mi>T</mi><mi>R</mi><mo>*</mo></p><p></p><p></p><p></p>. To implement thermotaxic control, these sensor values set the drive speed of contralateral motors <p></p><p></p><p></p><p><mi>M</mi><mi>L</mi><mo>*</mo></p><p></p><p></p><p></p> and <p></p><p></p><p></p><p><mi>M</mi><mi>R</mi><mo>*</mo></p><p></p><p></p><p></p>, which change the position <b>x</b> and orientation <i>θ</i> of the pup. (C) For the focal pup, the temperature (<i>τ</i>) registered at discrete positions around the body circumference (indexed by <i>k</i>) is shown. For the focal pup <p></p><p></p><p></p><p><mi>T</mi><mi>R</mi><mo>*</mo></p><p></p><p></p><p></p> is greater than <p></p><p></p><p></p><p><mi>T</mi><mi>L</mi><mo>*</mo></p><p></p><p></p><p></p>, indicating that it is warmer on the right than the left, hence at this point in time <p></p><p></p><p></p><p><mi>M</mi><mi>L</mi><mo>*</mo></p><mo>></mo><p><mi>M</mi><mi>R</mi><mo>*</mo></p><p></p><p></p><p></p> and therefore the pup will orient clockwise. See <a href=\"http://www.ploscompbiol.org/article/info:doi/10.1371/journal.pcbi.1004283#sec010\" target=\"_blank\">Models</a> for precise definitions of these terms.<p></p>", "links"=>[], "tags"=>["individual", "Thermoregulatory Huddling Endotherms", "phase transition", "behaviour", "interaction", "huddle", "model", "rodent pups display"], "article_id"=>1534778, "categories"=>["Biological Sciences", "Science Policy"], "users"=>["Jonathan Glancy", "Roderich Groß", "James V. Stone", "Stuart P. Wilson"], "doi"=>"https://dx.doi.org/10.1371/journal.pcbi.1004283.g002", "stats"=>{"downloads"=>2, "page_views"=>2, "likes"=>0}, "figshare_url"=>"https://figshare.com/articles/_Modelling_thermotaxic_individuals_/1534778", "title"=>"Modelling thermotaxic individuals.", "pos_in_sequence"=>0, "defined_type"=>1, "published_date"=>"2015-09-03 14:51:21"}
  • {"files"=>["https://ndownloader.figshare.com/files/2252159", "https://ndownloader.figshare.com/files/2252160"], "description"=>"<div><p>Endotherms such as rats and mice huddle together to keep warm. The huddle is considered to be an example of a self-organising system, because complex properties of the collective group behaviour are thought to emerge spontaneously through simple interactions between individuals. Groups of rodent pups display two such emergent properties. First, huddling undergoes a ‘phase transition’, such that pups start to aggregate rapidly as the temperature of the environment falls below a critical temperature. Second, the huddle maintains a constant ‘pup flow’, where cooler pups at the periphery continually displace warmer pups at the centre. We set out to test whether these complex group behaviours can emerge spontaneously from local interactions between individuals. We designed a model using a minimal set of assumptions about how individual pups interact, by simply turning towards heat sources, and show in computer simulations that the model reproduces the first emergent property—the phase transition. However, this minimal model tends to produce an unnatural behaviour where several smaller aggregates emerge rather than one large huddle. We found that an extension of the minimal model to include heat exchange between pups allows the group to maintain one large huddle but eradicates the phase transition, whereas inclusion of an additional homeostatic term recovers the phase transition for large huddles. As an unanticipated consequence, the extended model also naturally gave rise to the second observed emergent property—a continuous pup flow. The model therefore serves as a minimal description of huddling as a self-organising system, and as an existence proof that group-level huddling dynamics emerge spontaneously through simple interactions between individuals. We derive a specific testable prediction: Increasing the capacity of the individual to generate or conserve heat will increase the range of ambient temperatures over which adaptive thermoregulatory huddling will emerge.</p></div>", "links"=>[], "tags"=>["individual", "Thermoregulatory Huddling Endotherms", "phase transition", "behaviour", "interaction", "huddle", "model", "rodent pups display"], "article_id"=>1534786, "categories"=>["Biological Sciences", "Science Policy"], "users"=>["Jonathan Glancy", "Roderich Groß", "James V. Stone", "Stuart P. Wilson"], "doi"=>["https://dx.doi.org/10.1371/journal.pcbi.1004283.s001", "https://dx.doi.org/10.1371/journal.pcbi.1004283.s002"], "stats"=>{"downloads"=>2, "page_views"=>2, "likes"=>0}, "figshare_url"=>"https://figshare.com/articles/_A_Self_Organising_Model_of_Thermoregulatory_Huddling_/1534786", "title"=>"A Self-Organising Model of Thermoregulatory Huddling", "pos_in_sequence"=>0, "defined_type"=>4, "published_date"=>"2015-09-03 14:51:21"}
  • {"files"=>["https://ndownloader.figshare.com/files/2252152"], "description"=>"<p>(A) The phase transition returns in the collective huddling behaviour (1 − <i>η</i>) of the full model. Here individual pups are ectothermic, generating their own heat which is dynamically exchanged between individuals and decays towards the ambient temperature <i>T</i><sub><i>a</i></sub>, and orienting responses direct pups towards heat sources with which they make contact that bring them closer to their preferred 37°C body temperature <i>T</i><sub><i>b</i></sub>. (B) The average body temperature is shown as a function of the ambient temperature, which reveals that for a range of temperatures the huddle is able to adaptively maintain a stable 37°C temperature (shown as a solid line). Hence, huddling in the model is thermoregulatory, enabling endothermic dynamics to emerge from local interactions within a group of ectothermic individuals. Data are averages of ten randomly seeded simulations in which the rate of thermogenesis <i>G</i> = 6.32 was chosen to give an approximate fit between panel A and the data presented in <a href=\"http://www.ploscompbiol.org/article/info:doi/10.1371/journal.pcbi.1004283#pcbi.1004283.g001\" target=\"_blank\">Fig 1</a>. Error bars show standard error, calculated for 120 observations (ten simulations, each with twelve pups).</p>", "links"=>[], "tags"=>["individual", "Thermoregulatory Huddling Endotherms", "phase transition", "behaviour", "interaction", "huddle", "model", "rodent pups display"], "article_id"=>1534780, "categories"=>["Biological Sciences", "Science Policy"], "users"=>["Jonathan Glancy", "Roderich Groß", "James V. Stone", "Stuart P. Wilson"], "doi"=>"https://dx.doi.org/10.1371/journal.pcbi.1004283.g004", "stats"=>{"downloads"=>2, "page_views"=>2, "likes"=>0}, "figshare_url"=>"https://figshare.com/articles/_Thermoregulatory_huddling_in_the_homeothermotaxic_individuals_model_/1534780", "title"=>"Thermoregulatory huddling in the homeothermotaxic individuals model.", "pos_in_sequence"=>0, "defined_type"=>1, "published_date"=>"2015-09-03 14:51:21"}
  • {"files"=>["https://ndownloader.figshare.com/files/2252148"], "description"=>"<p>(A) Phase transition. Aggregation patterns in juvenile mouse litters were measured in experiments in which the ambient temperature <i>T</i><sub><i>a</i></sub> was experimentally manipulated [<a href=\"http://www.ploscompbiol.org/article/info:doi/10.1371/journal.pcbi.1004283#pcbi.1004283.ref009\" target=\"_blank\">9</a>]. In this study ‘aggregation’ was defined as the mean-variance coefficient of the number of individuals occupying cells of a grid overlaid on video frames from recordings of mouse litters (note that by this metric, an aggregation score of 1 is baseline). The data reveal what has been termed a second-order phase transition into huddling at low ambient temperatures, such that the litter huddle together when it is cold and disperse in a large arena when it is warm, with a smooth transition around a critical temperature in the range 15–25°C. (B) Pup flow. The proportion of time spent exposed at the periphery of an aggregation is shown for two focal pups from the same huddle, and varies periodically as individuals continually exchange positions between the cool periphery and the warm center. Data are reproduced, respectively, from [<a href=\"http://www.ploscompbiol.org/article/info:doi/10.1371/journal.pcbi.1004283#pcbi.1004283.ref009\" target=\"_blank\">9</a>] (original error bars removed and axes relabelled), and [<a href=\"http://www.ploscompbiol.org/article/info:doi/10.1371/journal.pcbi.1004283#pcbi.1004283.ref017\" target=\"_blank\">17</a>] (data from two pups collected into the same figure for convenience).</p>", "links"=>[], "tags"=>["individual", "Thermoregulatory Huddling Endotherms", "phase transition", "behaviour", "interaction", "huddle", "model", "rodent pups display"], "article_id"=>1534777, "categories"=>["Biological Sciences", "Science Policy"], "users"=>["Jonathan Glancy", "Roderich Groß", "James V. Stone", "Stuart P. Wilson"], "doi"=>"https://dx.doi.org/10.1371/journal.pcbi.1004283.g001", "stats"=>{"downloads"=>1, "page_views"=>2, "likes"=>0}, "figshare_url"=>"https://figshare.com/articles/_Huddling_dynamics_revealed_by_previous_animal_behavioural_experiments_/1534777", "title"=>"Huddling dynamics revealed by previous animal behavioural experiments.", "pos_in_sequence"=>0, "defined_type"=>1, "published_date"=>"2015-09-03 14:51:21"}
  • {"files"=>["https://ndownloader.figshare.com/files/2252156"], "description"=>"<p>Intuitively, an animal that is able to produce more heat internally (e.g. through BAT-thermogenesis) could tolerate having a greater exposed surface area. Experiments have shown that when BAT-thermogenesis is pharmaceutically increased, rats will adapt to balance behavioural thermoregulation with the altered internal state. However, it has also been shown that animals without BAT-thermogenesis (Syrian golden hamsters) and rats with BAT-thermogenesis pharmaceutically inhibited will not display huddling behaviour. We tested the effects of varying the thermogenesis term <i>G</i> in the model and found the same pattern (<i>T</i><sub><i>a</i></sub> = 25.26). (A) At very low values of <i>G</i> contacts cannot be reliably maintained and huddling ceases at <i>G</i> = 0. As <i>G</i> increases, body temperatures become larger than the ambient temperature and macro huddling occurs (rising phase). As <i>G</i> further increases huddling is maximum within geometrical constraints (plateau phase). Increasing <i>G</i> further reduces the degree of huddling such that the collective behaviour maintains the group at their preferred body temperature <i>T</i><sub><i>p</i></sub> (falling phase). (B) Self-organised huddling is able to maintain the average body temperature of the group across a wide range of thermogenic rates.</p>", "links"=>[], "tags"=>["individual", "Thermoregulatory Huddling Endotherms", "phase transition", "behaviour", "interaction", "huddle", "model", "rodent pups display"], "article_id"=>1534785, "categories"=>["Biological Sciences", "Science Policy"], "users"=>["Jonathan Glancy", "Roderich Groß", "James V. Stone", "Stuart P. Wilson"], "doi"=>"https://dx.doi.org/10.1371/journal.pcbi.1004283.g008", "stats"=>{"downloads"=>1, "page_views"=>5, "likes"=>0}, "figshare_url"=>"https://figshare.com/articles/_The_role_of_thermogenesis_/1534785", "title"=>"The role of thermogenesis.", "pos_in_sequence"=>0, "defined_type"=>1, "published_date"=>"2015-09-03 14:51:21"}
  • {"files"=>["https://ndownloader.figshare.com/files/2252154"], "description"=>"<p>The homeothermotaxic model was simulated for a range of rates of thermogenesis <i>G</i>. Plots of huddling are shown in the top row and corresponding plots of the average body temperature are shown in the bottom row. Increasing <i>G</i> smooths the huddling phase transition and increases the critical ambient temperature at which the transition occurs. The critical region of the phase transition corresponds to the range of ambient temperatures over which the average temperature of the litter is maintained at the preferred 37°C. We found a close agreement between the simulation data (filled circles) and that predicted by an analytical model (solid lines) that we derived by considering the huddle as a single super-organism with thermodynamics based on our ectothermic individuals model, with the additional capacity to adapt the overall exposed surface area of the group to maintain thermal homeostasis. The simulation and model data agree closely for all conditions, except where <i>G</i> = 0, where the model incorrectly predicts a sharp phase transition at the preferred temperature.</p>", "links"=>[], "tags"=>["individual", "Thermoregulatory Huddling Endotherms", "phase transition", "behaviour", "interaction", "huddle", "model", "rodent pups display"], "article_id"=>1534783, "categories"=>["Biological Sciences", "Science Policy"], "users"=>["Jonathan Glancy", "Roderich Groß", "James V. Stone", "Stuart P. Wilson"], "doi"=>"https://dx.doi.org/10.1371/journal.pcbi.1004283.g006", "stats"=>{"downloads"=>1, "page_views"=>8, "likes"=>0}, "figshare_url"=>"https://figshare.com/articles/_The_huddle_as_a_super_organism_/1534783", "title"=>"The huddle as a super-organism.", "pos_in_sequence"=>0, "defined_type"=>1, "published_date"=>"2015-09-03 14:51:21"}

PMC Usage Stats | Further Information

  • {"unique-ip"=>"10", "full-text"=>"6", "pdf"=>"2", "abstract"=>"0", "scanned-summary"=>"0", "scanned-page-browse"=>"0", "figure"=>"2", "supp-data"=>"3", "cited-by"=>"0", "year"=>"2015", "month"=>"9"}
  • {"unique-ip"=>"50", "full-text"=>"56", "pdf"=>"6", "abstract"=>"0", "scanned-summary"=>"0", "scanned-page-browse"=>"0", "figure"=>"0", "supp-data"=>"4", "cited-by"=>"0", "year"=>"2015", "month"=>"10"}
  • {"unique-ip"=>"18", "full-text"=>"26", "pdf"=>"5", "abstract"=>"0", "scanned-summary"=>"0", "scanned-page-browse"=>"0", "figure"=>"1", "supp-data"=>"1", "cited-by"=>"0", "year"=>"2015", "month"=>"11"}
  • {"unique-ip"=>"9", "full-text"=>"7", "pdf"=>"1", "abstract"=>"0", "scanned-summary"=>"0", "scanned-page-browse"=>"0", "figure"=>"1", "supp-data"=>"0", "cited-by"=>"0", "year"=>"2015", "month"=>"12"}
  • {"unique-ip"=>"8", "full-text"=>"11", "pdf"=>"1", "abstract"=>"0", "scanned-summary"=>"0", "scanned-page-browse"=>"0", "figure"=>"1", "supp-data"=>"0", "cited-by"=>"0", "year"=>"2016", "month"=>"1"}
  • {"unique-ip"=>"8", "full-text"=>"9", "pdf"=>"0", "abstract"=>"0", "scanned-summary"=>"0", "scanned-page-browse"=>"0", "figure"=>"0", "supp-data"=>"0", "cited-by"=>"0", "year"=>"2016", "month"=>"2"}
  • {"unique-ip"=>"10", "full-text"=>"11", "pdf"=>"1", "abstract"=>"0", "scanned-summary"=>"0", "scanned-page-browse"=>"0", "figure"=>"0", "supp-data"=>"0", "cited-by"=>"0", "year"=>"2016", "month"=>"3"}
  • {"unique-ip"=>"16", "full-text"=>"17", "pdf"=>"7", "abstract"=>"0", "scanned-summary"=>"0", "scanned-page-browse"=>"0", "figure"=>"0", "supp-data"=>"0", "cited-by"=>"0", "year"=>"2016", "month"=>"4"}
  • {"unique-ip"=>"6", "full-text"=>"15", "pdf"=>"0", "abstract"=>"0", "scanned-summary"=>"0", "scanned-page-browse"=>"0", "figure"=>"0", "supp-data"=>"0", "cited-by"=>"0", "year"=>"2016", "month"=>"5"}
  • {"unique-ip"=>"4", "full-text"=>"4", "pdf"=>"1", "abstract"=>"0", "scanned-summary"=>"0", "scanned-page-browse"=>"0", "figure"=>"0", "supp-data"=>"0", "cited-by"=>"0", "year"=>"2016", "month"=>"6"}
  • {"unique-ip"=>"5", "full-text"=>"5", "pdf"=>"2", "abstract"=>"0", "scanned-summary"=>"0", "scanned-page-browse"=>"0", "figure"=>"0", "supp-data"=>"0", "cited-by"=>"0", "year"=>"2016", "month"=>"7"}
  • {"unique-ip"=>"5", "full-text"=>"5", "pdf"=>"1", "abstract"=>"0", "scanned-summary"=>"0", "scanned-page-browse"=>"0", "figure"=>"0", "supp-data"=>"0", "cited-by"=>"0", "year"=>"2016", "month"=>"8"}
  • {"unique-ip"=>"7", "full-text"=>"7", "pdf"=>"0", "abstract"=>"0", "scanned-summary"=>"0", "scanned-page-browse"=>"0", "figure"=>"0", "supp-data"=>"0", "cited-by"=>"0", "year"=>"2016", "month"=>"9"}
  • {"unique-ip"=>"10", "full-text"=>"11", "pdf"=>"2", "abstract"=>"0", "scanned-summary"=>"0", "scanned-page-browse"=>"0", "figure"=>"0", "supp-data"=>"1", "cited-by"=>"0", "year"=>"2016", "month"=>"10"}
  • {"unique-ip"=>"8", "full-text"=>"8", "pdf"=>"0", "abstract"=>"0", "scanned-summary"=>"0", "scanned-page-browse"=>"0", "figure"=>"0", "supp-data"=>"0", "cited-by"=>"0", "year"=>"2016", "month"=>"11"}
  • {"unique-ip"=>"6", "full-text"=>"6", "pdf"=>"1", "abstract"=>"0", "scanned-summary"=>"0", "scanned-page-browse"=>"0", "figure"=>"0", "supp-data"=>"0", "cited-by"=>"0", "year"=>"2016", "month"=>"12"}
  • {"unique-ip"=>"8", "full-text"=>"7", "pdf"=>"2", "abstract"=>"0", "scanned-summary"=>"0", "scanned-page-browse"=>"0", "figure"=>"3", "supp-data"=>"1", "cited-by"=>"0", "year"=>"2017", "month"=>"1"}
  • {"unique-ip"=>"10", "full-text"=>"9", "pdf"=>"2", "abstract"=>"0", "scanned-summary"=>"0", "scanned-page-browse"=>"0", "figure"=>"0", "supp-data"=>"1", "cited-by"=>"0", "year"=>"2017", "month"=>"2"}
  • {"unique-ip"=>"8", "full-text"=>"10", "pdf"=>"1", "abstract"=>"0", "scanned-summary"=>"0", "scanned-page-browse"=>"0", "figure"=>"2", "supp-data"=>"1", "cited-by"=>"0", "year"=>"2017", "month"=>"3"}
  • {"unique-ip"=>"7", "full-text"=>"6", "pdf"=>"0", "abstract"=>"0", "scanned-summary"=>"0", "scanned-page-browse"=>"0", "figure"=>"1", "supp-data"=>"0", "cited-by"=>"0", "year"=>"2017", "month"=>"4"}
  • {"unique-ip"=>"5", "full-text"=>"5", "pdf"=>"1", "abstract"=>"0", "scanned-summary"=>"0", "scanned-page-browse"=>"0", "figure"=>"2", "supp-data"=>"0", "cited-by"=>"0", "year"=>"2017", "month"=>"5"}
  • {"unique-ip"=>"5", "full-text"=>"7", "pdf"=>"0", "abstract"=>"0", "scanned-summary"=>"0", "scanned-page-browse"=>"0", "figure"=>"0", "supp-data"=>"2", "cited-by"=>"1", "year"=>"2017", "month"=>"6"}
  • {"unique-ip"=>"6", "full-text"=>"5", "pdf"=>"0", "abstract"=>"0", "scanned-summary"=>"0", "scanned-page-browse"=>"0", "figure"=>"0", "supp-data"=>"2", "cited-by"=>"0", "year"=>"2017", "month"=>"7"}
  • {"unique-ip"=>"3", "full-text"=>"4", "pdf"=>"0", "abstract"=>"0", "scanned-summary"=>"0", "scanned-page-browse"=>"0", "figure"=>"1", "supp-data"=>"0", "cited-by"=>"0", "year"=>"2017", "month"=>"8"}
  • {"unique-ip"=>"16", "full-text"=>"17", "pdf"=>"3", "abstract"=>"0", "scanned-summary"=>"0", "scanned-page-browse"=>"0", "figure"=>"2", "supp-data"=>"0", "cited-by"=>"0", "year"=>"2017", "month"=>"9"}
  • {"unique-ip"=>"6", "full-text"=>"6", "pdf"=>"0", "abstract"=>"0", "scanned-summary"=>"0", "scanned-page-browse"=>"0", "figure"=>"0", "supp-data"=>"1", "cited-by"=>"0", "year"=>"2017", "month"=>"10"}
  • {"unique-ip"=>"5", "full-text"=>"5", "pdf"=>"1", "abstract"=>"0", "scanned-summary"=>"0", "scanned-page-browse"=>"0", "figure"=>"0", "supp-data"=>"0", "cited-by"=>"0", "year"=>"2017", "month"=>"11"}
  • {"unique-ip"=>"13", "full-text"=>"7", "pdf"=>"3", "abstract"=>"0", "scanned-summary"=>"0", "scanned-page-browse"=>"0", "figure"=>"0", "supp-data"=>"2", "cited-by"=>"1", "year"=>"2017", "month"=>"12"}
  • {"unique-ip"=>"3", "full-text"=>"3", "pdf"=>"1", "abstract"=>"0", "scanned-summary"=>"0", "scanned-page-browse"=>"0", "figure"=>"0", "supp-data"=>"0", "cited-by"=>"0", "year"=>"2018", "month"=>"1"}
  • {"unique-ip"=>"1", "full-text"=>"1", "pdf"=>"0", "abstract"=>"0", "scanned-summary"=>"0", "scanned-page-browse"=>"0", "figure"=>"0", "supp-data"=>"0", "cited-by"=>"0", "year"=>"2018", "month"=>"2"}
  • {"unique-ip"=>"12", "full-text"=>"16", "pdf"=>"0", "abstract"=>"0", "scanned-summary"=>"0", "scanned-page-browse"=>"0", "figure"=>"0", "supp-data"=>"0", "cited-by"=>"0", "year"=>"2018", "month"=>"3"}
  • {"unique-ip"=>"15", "full-text"=>"18", "pdf"=>"0", "scanned-summary"=>"0", "scanned-page-browse"=>"0", "figure"=>"0", "supp-data"=>"1", "cited-by"=>"0", "year"=>"2019", "month"=>"1"}
  • {"unique-ip"=>"10", "full-text"=>"11", "pdf"=>"0", "scanned-summary"=>"0", "scanned-page-browse"=>"0", "figure"=>"0", "supp-data"=>"0", "cited-by"=>"0", "year"=>"2018", "month"=>"4"}
  • {"unique-ip"=>"8", "full-text"=>"8", "pdf"=>"2", "scanned-summary"=>"0", "scanned-page-browse"=>"0", "figure"=>"0", "supp-data"=>"0", "cited-by"=>"0", "year"=>"2018", "month"=>"5"}
  • {"unique-ip"=>"10", "full-text"=>"9", "pdf"=>"2", "scanned-summary"=>"0", "scanned-page-browse"=>"0", "figure"=>"0", "supp-data"=>"0", "cited-by"=>"0", "year"=>"2018", "month"=>"6"}
  • {"unique-ip"=>"5", "full-text"=>"4", "pdf"=>"1", "scanned-summary"=>"0", "scanned-page-browse"=>"0", "figure"=>"0", "supp-data"=>"1", "cited-by"=>"0", "year"=>"2018", "month"=>"7"}
  • {"unique-ip"=>"7", "full-text"=>"7", "pdf"=>"2", "scanned-summary"=>"0", "scanned-page-browse"=>"0", "figure"=>"0", "supp-data"=>"0", "cited-by"=>"0", "year"=>"2018", "month"=>"8"}
  • {"unique-ip"=>"14", "full-text"=>"15", "pdf"=>"1", "scanned-summary"=>"0", "scanned-page-browse"=>"0", "figure"=>"0", "supp-data"=>"0", "cited-by"=>"0", "year"=>"2018", "month"=>"9"}
  • {"unique-ip"=>"12", "full-text"=>"12", "pdf"=>"0", "scanned-summary"=>"0", "scanned-page-browse"=>"0", "figure"=>"0", "supp-data"=>"0", "cited-by"=>"0", "year"=>"2018", "month"=>"10"}
  • {"unique-ip"=>"13", "full-text"=>"11", "pdf"=>"1", "scanned-summary"=>"0", "scanned-page-browse"=>"0", "figure"=>"0", "supp-data"=>"1", "cited-by"=>"0", "year"=>"2018", "month"=>"11"}
  • {"unique-ip"=>"10", "full-text"=>"10", "pdf"=>"0", "scanned-summary"=>"0", "scanned-page-browse"=>"0", "figure"=>"0", "supp-data"=>"0", "cited-by"=>"0", "year"=>"2018", "month"=>"12"}
  • {"unique-ip"=>"14", "full-text"=>"16", "pdf"=>"0", "scanned-summary"=>"0", "scanned-page-browse"=>"0", "figure"=>"0", "supp-data"=>"0", "cited-by"=>"0", "year"=>"2019", "month"=>"2"}
  • {"unique-ip"=>"21", "full-text"=>"24", "pdf"=>"1", "scanned-summary"=>"0", "scanned-page-browse"=>"0", "figure"=>"1", "supp-data"=>"2", "cited-by"=>"1", "year"=>"2019", "month"=>"3"}
  • {"unique-ip"=>"13", "full-text"=>"14", "pdf"=>"1", "scanned-summary"=>"0", "scanned-page-browse"=>"0", "figure"=>"0", "supp-data"=>"1", "cited-by"=>"0", "year"=>"2019", "month"=>"4"}

Relative Metric

{"start_date"=>"2015-01-01T00:00:00Z", "end_date"=>"2015-12-31T00:00:00Z", "subject_areas"=>[]}
Loading … Spinner
There are currently no alerts