Rapid Prediction of Bacterial Heterotrophic Fluxomics Using Machine Learning and Constraint Programming
Publication Date
April 19, 2016
Journal
PLOS Computational Biology
Authors
Stephen Gang Wu, Yuxuan Wang, Wu Jiang, Tolutola Oyetunde, et al
Volume
12
Issue
4
Pages
e1004838
DOI
http://doi.org/10.1371/journal.pcbi.1004838
Publisher URL
http://journals.plos.org/ploscompbiol/article?id=10.1371%2Fjournal.pcbi.1004838
Web of Science
000376584400046
Scopus
84964774521
Mendeley
http://www.mendeley.com/research/rapid-prediction-bacterial-heterotrophic-fluxomics-using-machine-learning-constraint-programming
Events
Loading … Spinner

Mendeley | Further Information

{"title"=>"Rapid Prediction of Bacterial Heterotrophic Fluxomics Using Machine Learning and Constraint Programming", "type"=>"journal", "authors"=>[{"first_name"=>"Stephen Gang", "last_name"=>"Wu", "scopus_author_id"=>"55701907900"}, {"first_name"=>"Yuxuan", "last_name"=>"Wang", "scopus_author_id"=>"57189030317"}, {"first_name"=>"Wu", "last_name"=>"Jiang", "scopus_author_id"=>"56428252700"}, {"first_name"=>"Tolutola", "last_name"=>"Oyetunde", "scopus_author_id"=>"57189024969"}, {"first_name"=>"Ruilian", "last_name"=>"Yao", "scopus_author_id"=>"56684231200"}, {"first_name"=>"Xuehong", "last_name"=>"Zhang", "scopus_author_id"=>"7410271092"}, {"first_name"=>"Kazuyuki", "last_name"=>"Shimizu", "scopus_author_id"=>"35461275700"}, {"first_name"=>"Yinjie J.", "last_name"=>"Tang", "scopus_author_id"=>"8639293100"}, {"first_name"=>"Forrest Sheng", "last_name"=>"Bao", "scopus_author_id"=>"24464789400"}], "year"=>2016, "source"=>"PLoS Computational Biology", "identifiers"=>{"sgr"=>"84964774521", "pmid"=>"27092947", "pui"=>"610201381", "issn"=>"15537358", "isbn"=>"1553-7358 (Electronic)\\r1553-734X (Linking)", "scopus"=>"2-s2.0-84964774521", "doi"=>"10.1371/journal.pcbi.1004838"}, "id"=>"13921426-f037-38fa-9cc3-d8fa9479137a", "abstract"=>"13C metabolic flux analysis (13C-MFA) has been widely used to measure in vivo enzyme reaction rates (i.e., metabolic flux) in microorganisms. Mining the relationship between environmental and genetic factors and metabolic fluxes hidden in existing fluxomic data will lead to predictive models that can significantly accelerate flux quantification. In this paper, we present a web-based platform MFlux (http://mflux.org) that predicts the bacterial central metabolism via machine learning, leveraging data from approximately 100 13C-MFA papers on heterotrophic bacterial metabolisms. Three machine learning methods, namely Support Vector Machine (SVM), k-Nearest Neighbors (k-NN), and Decision Tree, were employed to study the sophisticated relationship between influential factors and metabolic fluxes. We performed a grid search of the best parameter set for each algorithm and verified their performance through 10-fold cross validations. SVM yields the highest accuracy among all three algorithms. Further, we employed quadratic programming to adjust flux profiles to satisfy stoichiometric constraints. Multiple case studies have shown that MFlux can reasonably predict fluxomes as a function of bacterial species, substrate types, growth rate, oxygen conditions, and cultivation methods. Due to the interest of studying model organism under particular carbon sources, bias of fluxome in the dataset may limit the applicability of machine learning models. This problem can be resolved after more papers on 13C-MFA are published for non-model species.", "link"=>"http://www.mendeley.com/research/rapid-prediction-bacterial-heterotrophic-fluxomics-using-machine-learning-constraint-programming", "reader_count"=>40, "reader_count_by_academic_status"=>{"Librarian"=>1, "Researcher"=>9, "Student > Doctoral Student"=>4, "Student > Ph. D. Student"=>11, "Student > Postgraduate"=>2, "Student > Master"=>6, "Other"=>2, "Student > Bachelor"=>4, "Professor"=>1}, "reader_count_by_user_role"=>{"Librarian"=>1, "Researcher"=>9, "Student > Doctoral Student"=>4, "Student > Ph. D. Student"=>11, "Student > Postgraduate"=>2, "Student > Master"=>6, "Other"=>2, "Student > Bachelor"=>4, "Professor"=>1}, "reader_count_by_subject_area"=>{"Engineering"=>10, "Environmental Science"=>2, "Biochemistry, Genetics and Molecular Biology"=>9, "Agricultural and Biological Sciences"=>10, "Medicine and Dentistry"=>1, "Chemical Engineering"=>3, "Computer Science"=>5}, "reader_count_by_subdiscipline"=>{"Engineering"=>{"Engineering"=>10}, "Medicine and Dentistry"=>{"Medicine and Dentistry"=>1}, "Agricultural and Biological Sciences"=>{"Agricultural and Biological Sciences"=>10}, "Computer Science"=>{"Computer Science"=>5}, "Biochemistry, Genetics and Molecular Biology"=>{"Biochemistry, Genetics and Molecular Biology"=>9}, "Environmental Science"=>{"Environmental Science"=>2}, "Chemical Engineering"=>{"Chemical Engineering"=>3}}, "reader_count_by_country"=>{"Belgium"=>1, "United States"=>2, "Japan"=>1, "Russia"=>1}, "group_count"=>2}

Scopus | Further Information

{"@_fa"=>"true", "link"=>[{"@_fa"=>"true", "@ref"=>"self", "@href"=>"https://api.elsevier.com/content/abstract/scopus_id/84964774521"}, {"@_fa"=>"true", "@ref"=>"author-affiliation", "@href"=>"https://api.elsevier.com/content/abstract/scopus_id/84964774521?field=author,affiliation"}, {"@_fa"=>"true", "@ref"=>"scopus", "@href"=>"https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=84964774521&origin=inward"}, {"@_fa"=>"true", "@ref"=>"scopus-citedby", "@href"=>"https://www.scopus.com/inward/citedby.uri?partnerID=HzOxMe3b&scp=84964774521&origin=inward"}], "prism:url"=>"https://api.elsevier.com/content/abstract/scopus_id/84964774521", "dc:identifier"=>"SCOPUS_ID:84964774521", "eid"=>"2-s2.0-84964774521", "dc:title"=>"Rapid Prediction of Bacterial Heterotrophic Fluxomics Using Machine Learning and Constraint Programming", "dc:creator"=>"Wu S.", "prism:publicationName"=>"PLoS Computational Biology", "prism:issn"=>"1553734X", "prism:eIssn"=>"15537358", "prism:volume"=>"12", "prism:issueIdentifier"=>"4", "prism:pageRange"=>nil, "prism:coverDate"=>"2016-04-01", "prism:coverDisplayDate"=>"April 2016", "prism:doi"=>"10.1371/journal.pcbi.1004838", "citedby-count"=>"8", "affiliation"=>[{"@_fa"=>"true", "affilname"=>"Washington University in St. Louis", "affiliation-city"=>"St Louis", "affiliation-country"=>"United States"}], "pubmed-id"=>"27092947", "prism:aggregationType"=>"Journal", "subtype"=>"ar", "subtypeDescription"=>"Article", "article-number"=>"e1004838", "source-id"=>"4000151810", "openaccess"=>"1", "openaccessFlag"=>true}

Facebook

  • {"url"=>"http%3A%2F%2Fjournals.plos.org%2Fploscompbiol%2Farticle%3Fid%3D10.1371%252Fjournal.pcbi.1004838", "share_count"=>0, "like_count"=>0, "comment_count"=>0, "click_count"=>0, "total_count"=>0}

Twitter

Counter

  • {"month"=>"4", "year"=>"2016", "pdf_views"=>"88", "xml_views"=>"0", "html_views"=>"2071"}
  • {"month"=>"5", "year"=>"2016", "pdf_views"=>"54", "xml_views"=>"0", "html_views"=>"836"}
  • {"month"=>"6", "year"=>"2016", "pdf_views"=>"19", "xml_views"=>"0", "html_views"=>"147"}
  • {"month"=>"7", "year"=>"2016", "pdf_views"=>"15", "xml_views"=>"0", "html_views"=>"124"}
  • {"month"=>"8", "year"=>"2016", "pdf_views"=>"10", "xml_views"=>"0", "html_views"=>"141"}
  • {"month"=>"9", "year"=>"2016", "pdf_views"=>"14", "xml_views"=>"0", "html_views"=>"80"}
  • {"month"=>"10", "year"=>"2016", "pdf_views"=>"6", "xml_views"=>"0", "html_views"=>"66"}
  • {"month"=>"11", "year"=>"2016", "pdf_views"=>"12", "xml_views"=>"0", "html_views"=>"71"}
  • {"month"=>"12", "year"=>"2016", "pdf_views"=>"17", "xml_views"=>"0", "html_views"=>"67"}
  • {"month"=>"1", "year"=>"2017", "pdf_views"=>"22", "xml_views"=>"1", "html_views"=>"84"}
  • {"month"=>"2", "year"=>"2017", "pdf_views"=>"32", "xml_views"=>"0", "html_views"=>"93"}
  • {"month"=>"3", "year"=>"2017", "pdf_views"=>"25", "xml_views"=>"0", "html_views"=>"85"}
  • {"month"=>"4", "year"=>"2017", "pdf_views"=>"21", "xml_views"=>"1", "html_views"=>"61"}
  • {"month"=>"5", "year"=>"2017", "pdf_views"=>"33", "xml_views"=>"1", "html_views"=>"98"}
  • {"month"=>"6", "year"=>"2017", "pdf_views"=>"23", "xml_views"=>"5", "html_views"=>"78"}
  • {"month"=>"7", "year"=>"2017", "pdf_views"=>"25", "xml_views"=>"2", "html_views"=>"61"}
  • {"month"=>"8", "year"=>"2017", "pdf_views"=>"8", "xml_views"=>"0", "html_views"=>"52"}
  • {"month"=>"9", "year"=>"2017", "pdf_views"=>"13", "xml_views"=>"4", "html_views"=>"84"}
  • {"month"=>"10", "year"=>"2017", "pdf_views"=>"10", "xml_views"=>"0", "html_views"=>"97"}
  • {"month"=>"11", "year"=>"2017", "pdf_views"=>"4", "xml_views"=>"1", "html_views"=>"73"}
  • {"month"=>"12", "year"=>"2017", "pdf_views"=>"9", "xml_views"=>"2", "html_views"=>"56"}
  • {"month"=>"1", "year"=>"2018", "pdf_views"=>"13", "xml_views"=>"0", "html_views"=>"65"}
  • {"month"=>"2", "year"=>"2018", "pdf_views"=>"10", "xml_views"=>"0", "html_views"=>"39"}
  • {"month"=>"3", "year"=>"2018", "pdf_views"=>"20", "xml_views"=>"0", "html_views"=>"52"}
  • {"month"=>"4", "year"=>"2018", "pdf_views"=>"5", "xml_views"=>"0", "html_views"=>"29"}
  • {"month"=>"5", "year"=>"2018", "pdf_views"=>"29", "xml_views"=>"0", "html_views"=>"42"}
  • {"month"=>"6", "year"=>"2018", "pdf_views"=>"8", "xml_views"=>"0", "html_views"=>"41"}
  • {"month"=>"7", "year"=>"2018", "pdf_views"=>"11", "xml_views"=>"3", "html_views"=>"67"}
  • {"month"=>"8", "year"=>"2018", "pdf_views"=>"9", "xml_views"=>"1", "html_views"=>"41"}
  • {"month"=>"9", "year"=>"2018", "pdf_views"=>"15", "xml_views"=>"0", "html_views"=>"53"}
  • {"month"=>"10", "year"=>"2018", "pdf_views"=>"4", "xml_views"=>"1", "html_views"=>"31"}
  • {"month"=>"11", "year"=>"2018", "pdf_views"=>"5", "xml_views"=>"0", "html_views"=>"8"}
  • {"month"=>"12", "year"=>"2018", "pdf_views"=>"5", "xml_views"=>"0", "html_views"=>"13"}

PMC Usage Stats

  • {"unique-ip"=>"8", "full-text"=>"7", "pdf"=>"0", "abstract"=>"0", "scanned-summary"=>"0", "scanned-page-browse"=>"0", "figure"=>"5", "supp-data"=>"0", "cited-by"=>"0", "year"=>"2016", "month"=>"5"}
  • {"unique-ip"=>"8", "full-text"=>"8", "pdf"=>"2", "abstract"=>"0", "scanned-summary"=>"0", "scanned-page-browse"=>"0", "figure"=>"0", "supp-data"=>"0", "cited-by"=>"0", "year"=>"2016", "month"=>"6"}
  • {"unique-ip"=>"17", "full-text"=>"8", "pdf"=>"8", "abstract"=>"0", "scanned-summary"=>"0", "scanned-page-browse"=>"0", "figure"=>"3", "supp-data"=>"0", "cited-by"=>"0", "year"=>"2016", "month"=>"7"}
  • {"unique-ip"=>"8", "full-text"=>"6", "pdf"=>"0", "abstract"=>"0", "scanned-summary"=>"0", "scanned-page-browse"=>"0", "figure"=>"4", "supp-data"=>"0", "cited-by"=>"0", "year"=>"2016", "month"=>"8"}
  • {"unique-ip"=>"10", "full-text"=>"7", "pdf"=>"4", "abstract"=>"0", "scanned-summary"=>"0", "scanned-page-browse"=>"0", "figure"=>"5", "supp-data"=>"0", "cited-by"=>"0", "year"=>"2016", "month"=>"9"}
  • {"unique-ip"=>"13", "full-text"=>"14", "pdf"=>"5", "abstract"=>"0", "scanned-summary"=>"0", "scanned-page-browse"=>"0", "figure"=>"6", "supp-data"=>"0", "cited-by"=>"0", "year"=>"2016", "month"=>"10"}
  • {"unique-ip"=>"14", "full-text"=>"16", "pdf"=>"3", "abstract"=>"0", "scanned-summary"=>"0", "scanned-page-browse"=>"0", "figure"=>"15", "supp-data"=>"0", "cited-by"=>"0", "year"=>"2016", "month"=>"11"}
  • {"unique-ip"=>"17", "full-text"=>"17", "pdf"=>"4", "abstract"=>"0", "scanned-summary"=>"0", "scanned-page-browse"=>"0", "figure"=>"3", "supp-data"=>"0", "cited-by"=>"0", "year"=>"2016", "month"=>"12"}
  • {"unique-ip"=>"11", "full-text"=>"11", "pdf"=>"3", "abstract"=>"0", "scanned-summary"=>"0", "scanned-page-browse"=>"0", "figure"=>"0", "supp-data"=>"2", "cited-by"=>"0", "year"=>"2017", "month"=>"1"}
  • {"unique-ip"=>"9", "full-text"=>"6", "pdf"=>"3", "abstract"=>"0", "scanned-summary"=>"0", "scanned-page-browse"=>"0", "figure"=>"2", "supp-data"=>"0", "cited-by"=>"0", "year"=>"2017", "month"=>"2"}
  • {"unique-ip"=>"18", "full-text"=>"17", "pdf"=>"5", "abstract"=>"0", "scanned-summary"=>"0", "scanned-page-browse"=>"0", "figure"=>"1", "supp-data"=>"0", "cited-by"=>"0", "year"=>"2017", "month"=>"3"}
  • {"unique-ip"=>"7", "full-text"=>"7", "pdf"=>"1", "abstract"=>"0", "scanned-summary"=>"0", "scanned-page-browse"=>"0", "figure"=>"1", "supp-data"=>"0", "cited-by"=>"0", "year"=>"2017", "month"=>"4"}
  • {"unique-ip"=>"13", "full-text"=>"13", "pdf"=>"2", "abstract"=>"0", "scanned-summary"=>"0", "scanned-page-browse"=>"0", "figure"=>"0", "supp-data"=>"0", "cited-by"=>"0", "year"=>"2017", "month"=>"5"}
  • {"unique-ip"=>"6", "full-text"=>"6", "pdf"=>"1", "abstract"=>"0", "scanned-summary"=>"0", "scanned-page-browse"=>"0", "figure"=>"0", "supp-data"=>"0", "cited-by"=>"0", "year"=>"2017", "month"=>"6"}
  • {"unique-ip"=>"10", "full-text"=>"12", "pdf"=>"0", "abstract"=>"0", "scanned-summary"=>"0", "scanned-page-browse"=>"0", "figure"=>"2", "supp-data"=>"0", "cited-by"=>"0", "year"=>"2017", "month"=>"7"}
  • {"unique-ip"=>"5", "full-text"=>"4", "pdf"=>"0", "abstract"=>"0", "scanned-summary"=>"0", "scanned-page-browse"=>"0", "figure"=>"0", "supp-data"=>"0", "cited-by"=>"0", "year"=>"2017", "month"=>"8"}
  • {"unique-ip"=>"7", "full-text"=>"8", "pdf"=>"2", "abstract"=>"0", "scanned-summary"=>"0", "scanned-page-browse"=>"0", "figure"=>"0", "supp-data"=>"0", "cited-by"=>"0", "year"=>"2017", "month"=>"9"}
  • {"unique-ip"=>"5", "full-text"=>"5", "pdf"=>"0", "abstract"=>"0", "scanned-summary"=>"0", "scanned-page-browse"=>"0", "figure"=>"0", "supp-data"=>"0", "cited-by"=>"0", "year"=>"2017", "month"=>"10"}
  • {"unique-ip"=>"15", "full-text"=>"9", "pdf"=>"4", "abstract"=>"0", "scanned-summary"=>"0", "scanned-page-browse"=>"0", "figure"=>"0", "supp-data"=>"2", "cited-by"=>"1", "year"=>"2017", "month"=>"11"}
  • {"unique-ip"=>"7", "full-text"=>"7", "pdf"=>"3", "abstract"=>"0", "scanned-summary"=>"0", "scanned-page-browse"=>"0", "figure"=>"2", "supp-data"=>"0", "cited-by"=>"0", "year"=>"2017", "month"=>"12"}
  • {"unique-ip"=>"9", "full-text"=>"9", "pdf"=>"5", "abstract"=>"0", "scanned-summary"=>"0", "scanned-page-browse"=>"0", "figure"=>"0", "supp-data"=>"0", "cited-by"=>"0", "year"=>"2018", "month"=>"1"}
  • {"unique-ip"=>"1", "full-text"=>"1", "pdf"=>"1", "abstract"=>"0", "scanned-summary"=>"0", "scanned-page-browse"=>"0", "figure"=>"0", "supp-data"=>"0", "cited-by"=>"0", "year"=>"2018", "month"=>"2"}
  • {"unique-ip"=>"11", "full-text"=>"11", "pdf"=>"3", "abstract"=>"0", "scanned-summary"=>"0", "scanned-page-browse"=>"0", "figure"=>"6", "supp-data"=>"3", "cited-by"=>"1", "year"=>"2018", "month"=>"3"}
Loading … Spinner
There are currently no alerts