A New Measure of Centrality for Brain Networks
Publication Date
August 16, 2010
Journal
PLOS ONE
Authors
Karen E. Joyce, Paul J. Laurienti, Jonathan H. Burdette & Satoru Hayasaka
Volume
5
Issue
8
Pages
e12200
DOI
https://dx.plos.org/10.1371/journal.pone.0012200
Publisher URL
http://journals.plos.org/plosone/article?id=10.1371%2Fjournal.pone.0012200
PubMed
http://www.ncbi.nlm.nih.gov/pubmed/20808943
PubMed Central
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2922375
Europe PMC
http://europepmc.org/abstract/MED/20808943
Web of Science
000280968000023
Scopus
77957883783
Mendeley
http://www.mendeley.com/research/new-measure-centrality-brain-networks
Events
Loading … Spinner

CiteULike | Further Information

Mendeley | Further Information

{"title"=>"A new measure of centrality for brain networks", "type"=>"journal", "authors"=>[{"first_name"=>"Karen E.", "last_name"=>"Joyce", "scopus_author_id"=>"36551163600"}, {"first_name"=>"Paul J.", "last_name"=>"Laurienti", "scopus_author_id"=>"6603066653"}, {"first_name"=>"Jonathan H.", "last_name"=>"Burdette", "scopus_author_id"=>"7003971353"}, {"first_name"=>"Satoru", "last_name"=>"Hayasaka", "scopus_author_id"=>"7101616306"}], "year"=>2010, "source"=>"PLoS ONE", "identifiers"=>{"scopus"=>"2-s2.0-77957883783", "doi"=>"10.1371/journal.pone.0012200", "sgr"=>"77957883783", "isbn"=>"1932-6203 (Electronic)\\r1932-6203 (Linking)", "pmid"=>"20808943", "issn"=>"19326203", "pui"=>"359754102"}, "id"=>"11d79708-e7d9-3053-b729-cd0e36e4e79a", "abstract"=>"Recent developments in network theory have allowed for the study of the structure and function of the human brain in terms of a network of interconnected components. Among the many nodes that form a network, some play a crucial role and are said to be central within the network structure. Central nodes may be identified via centrality metrics, with degree, betweenness, and eigenvector centrality being three of the most popular measures. Degree identifies the most connected nodes, whereas betweenness centrality identifies those located on the most traveled paths. Eigenvector centrality considers nodes connected to other high degree nodes as highly central. In the work presented here, we propose a new centrality metric called leverage centrality that considers the extent of connectivity of a node relative to the connectivity of its neighbors. The leverage centrality of a node in a network is determined by the extent to which its immediate neighbors rely on that node for information. Although similar in concept, there are essential differences between eigenvector and leverage centrality that are discussed in this manuscript. Degree, betweenness, eigenvector, and leverage centrality were compared using functional brain networks generated from healthy volunteers. Functional cartography was also used to identify neighborhood hubs (nodes with high degree within a network neighborhood). Provincial hubs provide structure within the local community, and connector hubs mediate connections between multiple communities. Leverage proved to yield information that was not captured by degree, betweenness, or eigenvector centrality and was more accurate at identifying neighborhood hubs. We propose that this metric may be able to identify critical nodes that are highly influential within the network.", "link"=>"http://www.mendeley.com/research/new-measure-centrality-brain-networks", "reader_count"=>193, "reader_count_by_academic_status"=>{"Unspecified"=>8, "Professor > Associate Professor"=>13, "Researcher"=>51, "Student > Doctoral Student"=>6, "Student > Ph. D. Student"=>68, "Student > Postgraduate"=>1, "Student > Master"=>21, "Other"=>2, "Student > Bachelor"=>10, "Lecturer"=>2, "Professor"=>11}, "reader_count_by_user_role"=>{"Unspecified"=>8, "Professor > Associate Professor"=>13, "Researcher"=>51, "Student > Doctoral Student"=>6, "Student > Ph. D. Student"=>68, "Student > Postgraduate"=>1, "Student > Master"=>21, "Other"=>2, "Student > Bachelor"=>10, "Lecturer"=>2, "Professor"=>11}, "reader_count_by_subject_area"=>{"Unspecified"=>17, "Agricultural and Biological Sciences"=>38, "Business, Management and Accounting"=>1, "Chemistry"=>1, "Computer Science"=>28, "Economics, Econometrics and Finance"=>1, "Engineering"=>12, "Environmental Science"=>1, "Mathematics"=>13, "Medicine and Dentistry"=>16, "Neuroscience"=>21, "Design"=>1, "Sports and Recreations"=>1, "Physics and Astronomy"=>12, "Psychology"=>27, "Social Sciences"=>3}, "reader_count_by_subdiscipline"=>{"Medicine and Dentistry"=>{"Medicine and Dentistry"=>16}, "Social Sciences"=>{"Social Sciences"=>3}, "Sports and Recreations"=>{"Sports and Recreations"=>1}, "Physics and Astronomy"=>{"Physics and Astronomy"=>12}, "Psychology"=>{"Psychology"=>27}, "Mathematics"=>{"Mathematics"=>13}, "Unspecified"=>{"Unspecified"=>17}, "Environmental Science"=>{"Environmental Science"=>1}, "Design"=>{"Design"=>1}, "Engineering"=>{"Engineering"=>12}, "Chemistry"=>{"Chemistry"=>1}, "Neuroscience"=>{"Neuroscience"=>21}, "Economics, Econometrics and Finance"=>{"Economics, Econometrics and Finance"=>1}, "Agricultural and Biological Sciences"=>{"Agricultural and Biological Sciences"=>38}, "Computer Science"=>{"Computer Science"=>28}, "Business, Management and Accounting"=>{"Business, Management and Accounting"=>1}}, "reader_count_by_country"=>{"Cuba"=>1, "Colombia"=>1, "Netherlands"=>2, "Sweden"=>1, "United States"=>9, "Luxembourg"=>1, "Italy"=>4, "United Kingdom"=>4, "Mexico"=>3, "France"=>1, "Germany"=>6, "Spain"=>2}, "group_count"=>9}

CrossRef

Scopus | Further Information

{"@_fa"=>"true", "link"=>[{"@_fa"=>"true", "@ref"=>"self", "@href"=>"https://api.elsevier.com/content/abstract/scopus_id/77957883783"}, {"@_fa"=>"true", "@ref"=>"author-affiliation", "@href"=>"https://api.elsevier.com/content/abstract/scopus_id/77957883783?field=author,affiliation"}, {"@_fa"=>"true", "@ref"=>"scopus", "@href"=>"https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=77957883783&origin=inward"}, {"@_fa"=>"true", "@ref"=>"scopus-citedby", "@href"=>"https://www.scopus.com/inward/citedby.uri?partnerID=HzOxMe3b&scp=77957883783&origin=inward"}], "prism:url"=>"https://api.elsevier.com/content/abstract/scopus_id/77957883783", "dc:identifier"=>"SCOPUS_ID:77957883783", "eid"=>"2-s2.0-77957883783", "dc:title"=>"A new measure of centrality for brain networks", "dc:creator"=>"Joyce K.", "prism:publicationName"=>"PLoS ONE", "prism:eIssn"=>"19326203", "prism:volume"=>"5", "prism:issueIdentifier"=>"8", "prism:pageRange"=>nil, "prism:coverDate"=>"2010-10-19", "prism:coverDisplayDate"=>"2010", "prism:doi"=>"10.1371/journal.pone.0012200", "citedby-count"=>"124", "affiliation"=>[{"@_fa"=>"true", "affilname"=>"Wake Forest University School of Medicine", "affiliation-city"=>"Winston Salem", "affiliation-country"=>"United States"}], "pubmed-id"=>"20808943", "prism:aggregationType"=>"Journal", "subtype"=>"ar", "subtypeDescription"=>"Article", "article-number"=>"e12200", "source-id"=>"10600153309", "openaccess"=>"1", "openaccessFlag"=>true}

Facebook

  • {"url"=>"http%3A%2F%2Fjournals.plos.org%2Fplosone%2Farticle%3Fid%3D10.1371%252Fjournal.pone.0012200", "share_count"=>0, "like_count"=>0, "comment_count"=>0, "click_count"=>0, "total_count"=>0}

Counter

  • {"month"=>"8", "year"=>"2010", "pdf_views"=>"129", "xml_views"=>"16", "html_views"=>"479"}
  • {"month"=>"9", "year"=>"2010", "pdf_views"=>"70", "xml_views"=>"1", "html_views"=>"198"}
  • {"month"=>"10", "year"=>"2010", "pdf_views"=>"30", "xml_views"=>"1", "html_views"=>"105"}
  • {"month"=>"11", "year"=>"2010", "pdf_views"=>"19", "xml_views"=>"1", "html_views"=>"84"}
  • {"month"=>"12", "year"=>"2010", "pdf_views"=>"18", "xml_views"=>"0", "html_views"=>"45"}
  • {"month"=>"1", "year"=>"2011", "pdf_views"=>"27", "xml_views"=>"3", "html_views"=>"56"}
  • {"month"=>"2", "year"=>"2011", "pdf_views"=>"23", "xml_views"=>"0", "html_views"=>"49"}
  • {"month"=>"3", "year"=>"2011", "pdf_views"=>"22", "xml_views"=>"2", "html_views"=>"45"}
  • {"month"=>"4", "year"=>"2011", "pdf_views"=>"18", "xml_views"=>"1", "html_views"=>"46"}
  • {"month"=>"5", "year"=>"2011", "pdf_views"=>"15", "xml_views"=>"0", "html_views"=>"55"}
  • {"month"=>"6", "year"=>"2011", "pdf_views"=>"24", "xml_views"=>"1", "html_views"=>"54"}
  • {"month"=>"7", "year"=>"2011", "pdf_views"=>"16", "xml_views"=>"0", "html_views"=>"61"}
  • {"month"=>"8", "year"=>"2011", "pdf_views"=>"16", "xml_views"=>"0", "html_views"=>"56"}
  • {"month"=>"9", "year"=>"2011", "pdf_views"=>"15", "xml_views"=>"0", "html_views"=>"86"}
  • {"month"=>"10", "year"=>"2011", "pdf_views"=>"22", "xml_views"=>"1", "html_views"=>"130"}
  • {"month"=>"11", "year"=>"2011", "pdf_views"=>"27", "xml_views"=>"1", "html_views"=>"92"}
  • {"month"=>"12", "year"=>"2011", "pdf_views"=>"22", "xml_views"=>"1", "html_views"=>"70"}
  • {"month"=>"1", "year"=>"2012", "pdf_views"=>"17", "xml_views"=>"1", "html_views"=>"52"}
  • {"month"=>"2", "year"=>"2012", "pdf_views"=>"15", "xml_views"=>"0", "html_views"=>"66"}
  • {"month"=>"3", "year"=>"2012", "pdf_views"=>"14", "xml_views"=>"0", "html_views"=>"67"}
  • {"month"=>"4", "year"=>"2012", "pdf_views"=>"21", "xml_views"=>"1", "html_views"=>"72"}
  • {"month"=>"5", "year"=>"2012", "pdf_views"=>"15", "xml_views"=>"0", "html_views"=>"75"}
  • {"month"=>"6", "year"=>"2012", "pdf_views"=>"23", "xml_views"=>"0", "html_views"=>"74"}
  • {"month"=>"7", "year"=>"2012", "pdf_views"=>"23", "xml_views"=>"0", "html_views"=>"77"}
  • {"month"=>"8", "year"=>"2012", "pdf_views"=>"26", "xml_views"=>"7", "html_views"=>"84"}
  • {"month"=>"9", "year"=>"2012", "pdf_views"=>"34", "xml_views"=>"0", "html_views"=>"82"}
  • {"month"=>"10", "year"=>"2012", "pdf_views"=>"17", "xml_views"=>"0", "html_views"=>"83"}
  • {"month"=>"11", "year"=>"2012", "pdf_views"=>"25", "xml_views"=>"0", "html_views"=>"102"}
  • {"month"=>"12", "year"=>"2012", "pdf_views"=>"17", "xml_views"=>"0", "html_views"=>"49"}
  • {"month"=>"1", "year"=>"2013", "pdf_views"=>"11", "xml_views"=>"0", "html_views"=>"77"}
  • {"month"=>"2", "year"=>"2013", "pdf_views"=>"7", "xml_views"=>"1", "html_views"=>"82"}
  • {"month"=>"3", "year"=>"2013", "pdf_views"=>"19", "xml_views"=>"0", "html_views"=>"94"}
  • {"month"=>"4", "year"=>"2013", "pdf_views"=>"21", "xml_views"=>"0", "html_views"=>"113"}
  • {"month"=>"5", "year"=>"2013", "pdf_views"=>"22", "xml_views"=>"0", "html_views"=>"109"}
  • {"month"=>"6", "year"=>"2013", "pdf_views"=>"21", "xml_views"=>"0", "html_views"=>"119"}
  • {"month"=>"7", "year"=>"2013", "pdf_views"=>"16", "xml_views"=>"0", "html_views"=>"110"}
  • {"month"=>"8", "year"=>"2013", "pdf_views"=>"10", "xml_views"=>"0", "html_views"=>"73"}
  • {"month"=>"9", "year"=>"2013", "pdf_views"=>"11", "xml_views"=>"0", "html_views"=>"103"}
  • {"month"=>"10", "year"=>"2013", "pdf_views"=>"15", "xml_views"=>"2", "html_views"=>"112"}
  • {"month"=>"11", "year"=>"2013", "pdf_views"=>"18", "xml_views"=>"0", "html_views"=>"79"}
  • {"month"=>"12", "year"=>"2013", "pdf_views"=>"21", "xml_views"=>"0", "html_views"=>"106"}
  • {"month"=>"1", "year"=>"2014", "pdf_views"=>"374", "xml_views"=>"0", "html_views"=>"79"}
  • {"month"=>"2", "year"=>"2014", "pdf_views"=>"99", "xml_views"=>"0", "html_views"=>"183"}
  • {"month"=>"3", "year"=>"2014", "pdf_views"=>"13", "xml_views"=>"2", "html_views"=>"54"}
  • {"month"=>"4", "year"=>"2014", "pdf_views"=>"18", "xml_views"=>"1", "html_views"=>"65"}
  • {"month"=>"5", "year"=>"2014", "pdf_views"=>"8", "xml_views"=>"0", "html_views"=>"78"}
  • {"month"=>"6", "year"=>"2014", "pdf_views"=>"18", "xml_views"=>"0", "html_views"=>"62"}
  • {"month"=>"7", "year"=>"2014", "pdf_views"=>"27", "xml_views"=>"0", "html_views"=>"100"}
  • {"month"=>"8", "year"=>"2014", "pdf_views"=>"18", "xml_views"=>"2", "html_views"=>"110"}
  • {"month"=>"9", "year"=>"2014", "pdf_views"=>"25", "xml_views"=>"1", "html_views"=>"94"}
  • {"month"=>"10", "year"=>"2014", "pdf_views"=>"17", "xml_views"=>"1", "html_views"=>"93"}
  • {"month"=>"11", "year"=>"2014", "pdf_views"=>"19", "xml_views"=>"1", "html_views"=>"102"}
  • {"month"=>"12", "year"=>"2014", "pdf_views"=>"7", "xml_views"=>"9", "html_views"=>"103"}
  • {"month"=>"1", "year"=>"2015", "pdf_views"=>"18", "xml_views"=>"0", "html_views"=>"90"}
  • {"month"=>"2", "year"=>"2015", "pdf_views"=>"10", "xml_views"=>"0", "html_views"=>"99"}
  • {"month"=>"3", "year"=>"2015", "pdf_views"=>"23", "xml_views"=>"0", "html_views"=>"97"}
  • {"month"=>"4", "year"=>"2015", "pdf_views"=>"25", "xml_views"=>"1", "html_views"=>"80"}
  • {"month"=>"5", "year"=>"2015", "pdf_views"=>"18", "xml_views"=>"0", "html_views"=>"76"}
  • {"month"=>"6", "year"=>"2015", "pdf_views"=>"13", "xml_views"=>"1", "html_views"=>"78"}
  • {"month"=>"7", "year"=>"2015", "pdf_views"=>"33", "xml_views"=>"0", "html_views"=>"100"}
  • {"month"=>"8", "year"=>"2015", "pdf_views"=>"16", "xml_views"=>"3", "html_views"=>"70"}
  • {"month"=>"9", "year"=>"2015", "pdf_views"=>"10", "xml_views"=>"0", "html_views"=>"53"}
  • {"month"=>"10", "year"=>"2015", "pdf_views"=>"20", "xml_views"=>"0", "html_views"=>"80"}
  • {"month"=>"11", "year"=>"2015", "pdf_views"=>"23", "xml_views"=>"1", "html_views"=>"102"}
  • {"month"=>"12", "year"=>"2015", "pdf_views"=>"25", "xml_views"=>"0", "html_views"=>"114"}
  • {"month"=>"1", "year"=>"2016", "pdf_views"=>"37", "xml_views"=>"0", "html_views"=>"101"}
  • {"month"=>"2", "year"=>"2016", "pdf_views"=>"14", "xml_views"=>"0", "html_views"=>"54"}
  • {"month"=>"3", "year"=>"2016", "pdf_views"=>"27", "xml_views"=>"0", "html_views"=>"123"}
  • {"month"=>"4", "year"=>"2016", "pdf_views"=>"30", "xml_views"=>"0", "html_views"=>"89"}
  • {"month"=>"5", "year"=>"2016", "pdf_views"=>"15", "xml_views"=>"0", "html_views"=>"73"}
  • {"month"=>"6", "year"=>"2016", "pdf_views"=>"13", "xml_views"=>"0", "html_views"=>"100"}
  • {"month"=>"7", "year"=>"2016", "pdf_views"=>"18", "xml_views"=>"0", "html_views"=>"85"}
  • {"month"=>"8", "year"=>"2016", "pdf_views"=>"22", "xml_views"=>"0", "html_views"=>"99"}
  • {"month"=>"9", "year"=>"2016", "pdf_views"=>"18", "xml_views"=>"0", "html_views"=>"75"}
  • {"month"=>"10", "year"=>"2016", "pdf_views"=>"29", "xml_views"=>"0", "html_views"=>"97"}
  • {"month"=>"11", "year"=>"2016", "pdf_views"=>"14", "xml_views"=>"0", "html_views"=>"88"}
  • {"month"=>"12", "year"=>"2016", "pdf_views"=>"11", "xml_views"=>"1", "html_views"=>"70"}
  • {"month"=>"1", "year"=>"2017", "pdf_views"=>"23", "xml_views"=>"1", "html_views"=>"111"}
  • {"month"=>"2", "year"=>"2017", "pdf_views"=>"40", "xml_views"=>"0", "html_views"=>"127"}
  • {"month"=>"3", "year"=>"2017", "pdf_views"=>"37", "xml_views"=>"1", "html_views"=>"179"}
  • {"month"=>"4", "year"=>"2017", "pdf_views"=>"23", "xml_views"=>"1", "html_views"=>"243"}
  • {"month"=>"5", "year"=>"2017", "pdf_views"=>"17", "xml_views"=>"0", "html_views"=>"201"}
  • {"month"=>"6", "year"=>"2017", "pdf_views"=>"21", "xml_views"=>"2", "html_views"=>"135"}
  • {"month"=>"7", "year"=>"2017", "pdf_views"=>"22", "xml_views"=>"2", "html_views"=>"103"}
  • {"month"=>"8", "year"=>"2017", "pdf_views"=>"15", "xml_views"=>"1", "html_views"=>"97"}
  • {"month"=>"9", "year"=>"2017", "pdf_views"=>"27", "xml_views"=>"1", "html_views"=>"121"}
  • {"month"=>"10", "year"=>"2017", "pdf_views"=>"16", "xml_views"=>"2", "html_views"=>"100"}
  • {"month"=>"11", "year"=>"2017", "pdf_views"=>"19", "xml_views"=>"0", "html_views"=>"142"}
  • {"month"=>"12", "year"=>"2017", "pdf_views"=>"18", "xml_views"=>"1", "html_views"=>"201"}
  • {"month"=>"1", "year"=>"2018", "pdf_views"=>"58", "xml_views"=>"1", "html_views"=>"288"}
  • {"month"=>"2", "year"=>"2018", "pdf_views"=>"45", "xml_views"=>"2", "html_views"=>"84"}
  • {"month"=>"3", "year"=>"2018", "pdf_views"=>"28", "xml_views"=>"1", "html_views"=>"81"}
  • {"month"=>"4", "year"=>"2018", "pdf_views"=>"35", "xml_views"=>"0", "html_views"=>"98"}
  • {"month"=>"5", "year"=>"2018", "pdf_views"=>"33", "xml_views"=>"0", "html_views"=>"75"}
  • {"month"=>"6", "year"=>"2018", "pdf_views"=>"33", "xml_views"=>"0", "html_views"=>"67"}
  • {"month"=>"7", "year"=>"2018", "pdf_views"=>"42", "xml_views"=>"3", "html_views"=>"123"}
  • {"month"=>"8", "year"=>"2018", "pdf_views"=>"18", "xml_views"=>"1", "html_views"=>"99"}
  • {"month"=>"9", "year"=>"2018", "pdf_views"=>"28", "xml_views"=>"0", "html_views"=>"92"}
  • {"month"=>"10", "year"=>"2018", "pdf_views"=>"33", "xml_views"=>"1", "html_views"=>"97"}
  • {"month"=>"11", "year"=>"2018", "pdf_views"=>"20", "xml_views"=>"0", "html_views"=>"77"}
  • {"month"=>"12", "year"=>"2018", "pdf_views"=>"16", "xml_views"=>"0", "html_views"=>"59"}
  • {"month"=>"1", "year"=>"2019", "pdf_views"=>"19", "xml_views"=>"0", "html_views"=>"65"}
  • {"month"=>"2", "year"=>"2019", "pdf_views"=>"26", "xml_views"=>"0", "html_views"=>"92"}
  • {"month"=>"3", "year"=>"2019", "pdf_views"=>"42", "xml_views"=>"0", "html_views"=>"116"}
  • {"month"=>"4", "year"=>"2019", "pdf_views"=>"21", "xml_views"=>"0", "html_views"=>"119"}
  • {"month"=>"5", "year"=>"2019", "pdf_views"=>"28", "xml_views"=>"0", "html_views"=>"98"}
  • {"month"=>"6", "year"=>"2019", "pdf_views"=>"36", "xml_views"=>"2", "html_views"=>"85"}
  • {"month"=>"7", "year"=>"2019", "pdf_views"=>"27", "xml_views"=>"8", "html_views"=>"80"}
  • {"month"=>"8", "year"=>"2019", "pdf_views"=>"35", "xml_views"=>"0", "html_views"=>"72"}
  • {"month"=>"9", "year"=>"2019", "pdf_views"=>"9", "xml_views"=>"1", "html_views"=>"43"}

Figshare

  • {"files"=>["https://ndownloader.figshare.com/files/836512"], "description"=>"<p>(A) Functional cartography plot of brain network from subject 5. Within module degree probability <i>pk<sub>i</sub></i> is shown versus participation coefficient <i>pc<sub>i</sub></i>. Hubs are delineated as provincial (yellow) or connector (pink) based on thresholds defined in the text. The functional cartography plot has been extended to include leverage (B), degree (C), betweenness (D), and eigenvector centrality (E) of the same network.</p>", "links"=>[], "tags"=>["neuroscience", "computational biology/computational neuroscience", "neuroscience/theoretical neuroscience"], "article_id"=>506875, "categories"=>["Neuroscience", "Medicine"], "users"=>["Karen E. Joyce", "Paul J. Laurienti", "Jonathan H. Burdette", "Satoru Hayasaka"], "doi"=>"https://dx.doi.org/10.1371/journal.pone.0012200.g009", "stats"=>{"downloads"=>0, "page_views"=>1, "likes"=>0}, "figshare_url"=>"https://figshare.com/articles/_Extension_of_functional_cartography_/506875", "title"=>"Extension of functional cartography.", "pos_in_sequence"=>0, "defined_type"=>1, "published_date"=>"2010-08-16 01:54:35"}
  • {"files"=>["https://ndownloader.figshare.com/files/836049"], "description"=>"<p>Labels to the left of plots indicate the ordinate centrality, where labels beneath plots indicate the abscissa centrality. Synthetic network nodes (red) overlaid over the original network (blue) separate nodes from the original network into distinct groups, most notably in plots involving leverage or eigenvector centrality.</p>", "links"=>[], "tags"=>["matrix", "betweenness", "eigenvector", "centrality"], "article_id"=>506412, "categories"=>["Neuroscience", "Medicine"], "users"=>["Karen E. Joyce", "Paul J. Laurienti", "Jonathan H. Burdette", "Satoru Hayasaka"], "doi"=>"https://dx.doi.org/10.1371/journal.pone.0012200.g004", "stats"=>{"downloads"=>1, "page_views"=>3, "likes"=>0}, "figshare_url"=>"https://figshare.com/articles/_Scatterplot_matrix_of_leverage_degree_betweenness_and_eigenvector_centrality_for_the_brain_network_of_a_representative_subject_/506412", "title"=>"Scatterplot matrix of leverage, degree, betweenness and eigenvector centrality for the brain network of a representative subject.", "pos_in_sequence"=>0, "defined_type"=>1, "published_date"=>"2010-08-16 01:46:52"}
  • {"files"=>["https://ndownloader.figshare.com/files/836613"], "description"=>"<p>ROC curves reflect the higher accuracy of hub detection using leverage, degree, betweenness, or eigenvector centrality. In this case the representative subject (subject 10) had AUCs closest to the mean. Results are typical of all but one subject, where degree was found to be the most accurate method.</p>", "links"=>[], "tags"=>["curves"], "article_id"=>506985, "categories"=>["Neuroscience", "Medicine"], "users"=>["Karen E. Joyce", "Paul J. Laurienti", "Jonathan H. Burdette", "Satoru Hayasaka"], "doi"=>"https://dx.doi.org/10.1371/journal.pone.0012200.g010", "stats"=>{"downloads"=>1, "page_views"=>1, "likes"=>0}, "figshare_url"=>"https://figshare.com/articles/_Receiver_Operating_Characteristic_curves_for_a_representative_subject_/506985", "title"=>"Receiver Operating Characteristic curves for a representative subject.", "pos_in_sequence"=>0, "defined_type"=>1, "published_date"=>"2010-08-16 01:56:25"}
  • {"files"=>["https://ndownloader.figshare.com/files/836155"], "description"=>"<p>Intensity values correspond to the number of subjects having a particular network node, i.e. image voxel, above (warm colors) or below (cool colors) the synthetic network degree-leverage centrality scatter plot. Nodes below the synthetic distribution, primarily concentrated in the areas of the precuneus and posterior cingulate, are highly interconnected high degree nodes with many redundant connections. Nodes above the synthetic distribution have higher leverage than synthetic network nodes with the same degree and can be found scattered throughout the gray matter. Color bar represents the number of subjects that exhibited a node in any particular location.</p>", "links"=>[], "tags"=>["compiled"], "article_id"=>506522, "categories"=>["Neuroscience", "Medicine"], "users"=>["Karen E. Joyce", "Paul J. Laurienti", "Jonathan H. Burdette", "Satoru Hayasaka"], "doi"=>"https://dx.doi.org/10.1371/journal.pone.0012200.g005", "stats"=>{"downloads"=>0, "page_views"=>0, "likes"=>0}, "figshare_url"=>"https://figshare.com/articles/_Overlap_image_compiled_from_all_subjects_/506522", "title"=>"Overlap image compiled from all subjects.", "pos_in_sequence"=>0, "defined_type"=>1, "published_date"=>"2010-08-16 01:48:42"}
  • {"files"=>["https://ndownloader.figshare.com/files/416201", "https://ndownloader.figshare.com/files/416235", "https://ndownloader.figshare.com/files/416249", "https://ndownloader.figshare.com/files/416274"], "description"=>"<div><p>Recent developments in network theory have allowed for the study of the structure and function of the human brain in terms of a network of interconnected components. Among the many nodes that form a network, some play a crucial role and are said to be central within the network structure. Central nodes may be identified via centrality metrics, with degree, betweenness, and eigenvector centrality being three of the most popular measures. Degree identifies the most connected nodes, whereas betweenness centrality identifies those located on the most traveled paths. Eigenvector centrality considers nodes connected to other high degree nodes as highly central. In the work presented here, we propose a new centrality metric called leverage centrality that considers the extent of connectivity of a node <em>relative to the connectivity of its neighbors</em>. The leverage centrality of a node in a network is determined by the extent to which its immediate neighbors rely on that node for information. Although similar in concept, there are essential differences between eigenvector and leverage centrality that are discussed in this manuscript. Degree, betweenness, eigenvector, and leverage centrality were compared using functional brain networks generated from healthy volunteers. Functional cartography was also used to identify neighborhood hubs (nodes with high degree within a network neighborhood). Provincial hubs provide structure within the local community, and connector hubs mediate connections between multiple communities. Leverage proved to yield information that was not captured by degree, betweenness, or eigenvector centrality and was more accurate at identifying neighborhood hubs. We propose that this metric may be able to identify critical nodes that are highly influential within the network.</p></div>", "links"=>[], "tags"=>["centrality", "networks"], "article_id"=>142165, "categories"=>["Neuroscience", "Medicine"], "users"=>["Karen E. Joyce", "Paul J. Laurienti", "Jonathan H. Burdette", "Satoru Hayasaka"], "doi"=>["https://dx.doi.org/10.1371/journal.pone.0012200.s001", "https://dx.doi.org/10.1371/journal.pone.0012200.s002", "https://dx.doi.org/10.1371/journal.pone.0012200.s003", "https://dx.doi.org/10.1371/journal.pone.0012200.s004"], "stats"=>{"downloads"=>8, "page_views"=>16, "likes"=>0}, "figshare_url"=>"https://figshare.com/articles/A_New_Measure_of_Centrality_for_Brain_Networks/142165", "title"=>"A New Measure of Centrality for Brain Networks", "pos_in_sequence"=>0, "defined_type"=>4, "published_date"=>"2010-08-16 00:36:05"}
  • {"files"=>["https://ndownloader.figshare.com/files/836680"], "description"=>"<p>AUC values demonstrate the accuracy of detecting hubs using leverage, degree, betweenness, or eigenvector centrality. Trend (average - diamonds) shows that the highest average AUC is for leverage centrality ROC curves. Asterisks indicate statistical significance (p<0.05).</p>", "links"=>[], "tags"=>["roc", "curves", "hubs"], "article_id"=>507046, "categories"=>["Neuroscience", "Medicine"], "users"=>["Karen E. Joyce", "Paul J. Laurienti", "Jonathan H. Burdette", "Satoru Hayasaka"], "doi"=>"https://dx.doi.org/10.1371/journal.pone.0012200.g011", "stats"=>{"downloads"=>0, "page_views"=>2, "likes"=>0}, "figshare_url"=>"https://figshare.com/articles/_AUCs_for_ROC_curves_for_identifying_hubs_in_all_subjects_/507046", "title"=>"AUCs for ROC curves for identifying hubs in all subjects.", "pos_in_sequence"=>0, "defined_type"=>1, "published_date"=>"2010-08-16 01:57:26"}
  • {"files"=>["https://ndownloader.figshare.com/files/836832"], "description"=>"<p>Example of threshold values used in generation of ROC curves.</p>", "links"=>[], "tags"=>["roc"], "article_id"=>507202, "categories"=>["Neuroscience", "Medicine"], "users"=>["Karen E. Joyce", "Paul J. Laurienti", "Jonathan H. Burdette", "Satoru Hayasaka"], "doi"=>"https://dx.doi.org/10.1371/journal.pone.0012200.t001", "stats"=>{"downloads"=>0, "page_views"=>1, "likes"=>0}, "figshare_url"=>"https://figshare.com/articles/_Example_of_threshold_values_used_in_generation_of_ROC_curves_/507202", "title"=>"Example of threshold values used in generation of ROC curves.", "pos_in_sequence"=>0, "defined_type"=>3, "published_date"=>"2010-08-16 02:00:02"}
  • {"files"=>["https://ndownloader.figshare.com/files/836272"], "description"=>"<p>(A) Scatter plot of leverage, degree, and eigenvector centrality, where the lower group of nodes observed previously is shown to consist of two subgroups with different eigenvector centralities. Inset shows that the subgroup with higher eigenvector centrality (orange) has slightly lower leverage centrality than the subgroup with lower eigenvector centrality (green). (B) Spatial distribution of subgroup with higher eigenvector centrality but slightly lower leverage centrality (orange subgroup). (C) Spatial distribution of subgroup with lower eigenvector centrality but slightly higher leverage centrality (green subgroup).</p>", "links"=>[], "tags"=>["centrality", "reveals"], "article_id"=>506640, "categories"=>["Neuroscience", "Medicine"], "users"=>["Karen E. Joyce", "Paul J. Laurienti", "Jonathan H. Burdette", "Satoru Hayasaka"], "doi"=>"https://dx.doi.org/10.1371/journal.pone.0012200.g006", "stats"=>{"downloads"=>0, "page_views"=>4, "likes"=>0}, "figshare_url"=>"https://figshare.com/articles/_Eigenvector_centrality_reveals_additional_network_subgroups_/506640", "title"=>"Eigenvector centrality reveals additional network subgroups.", "pos_in_sequence"=>0, "defined_type"=>1, "published_date"=>"2010-08-16 01:50:40"}
  • {"files"=>["https://ndownloader.figshare.com/files/836737"], "description"=>"<p>AUC values compare the accuracy of distinguishing between provincial and connector hubs using leverage, degree, betweenness, or eigenvector centrality. Trend (average - diamonds) shows highest AUC is for leverage centrality ROC curves. Asterisk indicates statistical significance (p<0.05).</p>", "links"=>[], "tags"=>["roc", "curves", "classifying", "hubs"], "article_id"=>507101, "categories"=>["Neuroscience", "Medicine"], "users"=>["Karen E. Joyce", "Paul J. Laurienti", "Jonathan H. Burdette", "Satoru Hayasaka"], "doi"=>"https://dx.doi.org/10.1371/journal.pone.0012200.g012", "stats"=>{"downloads"=>0, "page_views"=>0, "likes"=>0}, "figshare_url"=>"https://figshare.com/articles/_AUCs_for_ROC_curves_for_classifying_hubs_in_all_subjects_/507101", "title"=>"AUCs for ROC curves for classifying hubs in all subjects.", "pos_in_sequence"=>0, "defined_type"=>1, "published_date"=>"2010-08-16 01:58:21"}
  • {"files"=>["https://ndownloader.figshare.com/files/836791"], "description"=>"<p>Correlation between centrality metrics averaged across 10 subjects, +/− standard deviation.</p>", "links"=>[], "tags"=>["centrality", "metrics", "averaged", "10"], "article_id"=>507161, "categories"=>["Neuroscience", "Medicine"], "users"=>["Karen E. Joyce", "Paul J. Laurienti", "Jonathan H. Burdette", "Satoru Hayasaka"], "doi"=>"https://dx.doi.org/10.1371/journal.pone.0012200.t002", "stats"=>{"downloads"=>7, "page_views"=>4, "likes"=>0}, "figshare_url"=>"https://figshare.com/articles/_Correlation_between_centrality_metrics_averaged_across_10_subjects_8722_standard_deviation_/507161", "title"=>"Correlation between centrality metrics averaged across 10 subjects, +/− standard deviation.", "pos_in_sequence"=>0, "defined_type"=>3, "published_date"=>"2010-08-16 01:59:21"}
  • {"files"=>["https://ndownloader.figshare.com/files/835843"], "description"=>"<p>Resting state fMRI data are collected from a subject. Voxel time series are extracted from the set of images, and a Pearson correlation analysis is performed between all possible pairs of voxels. The correlations are represented in the form of a correlation matrix, which is binarized at a given threshold to yield an adjacency matrix. The functional network is thereby defined, where each voxel is represented by a node and connections are determined by the adjacency matrix.</p>", "links"=>[], "tags"=>["generating"], "article_id"=>506212, "categories"=>["Neuroscience", "Medicine"], "users"=>["Karen E. Joyce", "Paul J. Laurienti", "Jonathan H. Burdette", "Satoru Hayasaka"], "doi"=>"https://dx.doi.org/10.1371/journal.pone.0012200.g001", "stats"=>{"downloads"=>1, "page_views"=>2, "likes"=>0}, "figshare_url"=>"https://figshare.com/articles/_The_process_of_generating_functional_networks_/506212", "title"=>"The process of generating functional networks.", "pos_in_sequence"=>0, "defined_type"=>1, "published_date"=>"2010-08-16 01:43:32"}
  • {"files"=>["https://ndownloader.figshare.com/files/836376"], "description"=>"<p>(A) Jaccard indices between all possible subject pairs, where the diagonal has been constrained to zero. (B) Sum of Jaccard indices for each subject, revealing subject 5 to have the highest similarity across subjects.</p>", "links"=>[], "tags"=>["neuroscience", "computational biology/computational neuroscience", "neuroscience/theoretical neuroscience"], "article_id"=>506739, "categories"=>["Neuroscience", "Medicine"], "users"=>["Karen E. Joyce", "Paul J. Laurienti", "Jonathan H. Burdette", "Satoru Hayasaka"], "doi"=>"https://dx.doi.org/10.1371/journal.pone.0012200.g007", "stats"=>{"downloads"=>0, "page_views"=>2, "likes"=>0}, "figshare_url"=>"https://figshare.com/articles/_Results_of_similarity_analysis_/506739", "title"=>"Results of similarity analysis.", "pos_in_sequence"=>0, "defined_type"=>1, "published_date"=>"2010-08-16 01:52:19"}
  • {"files"=>["https://ndownloader.figshare.com/files/835912"], "description"=>"<p>Degree distributions of the whole network (solid line) and individual modules for a representative subject (subject 5). All modules as well as the whole network follow an exponentially truncated power law distribution.</p>", "links"=>[], "tags"=>["networks", "exponentially", "truncated"], "article_id"=>506276, "categories"=>["Neuroscience", "Medicine"], "users"=>["Karen E. Joyce", "Paul J. Laurienti", "Jonathan H. Burdette", "Satoru Hayasaka"], "doi"=>"https://dx.doi.org/10.1371/journal.pone.0012200.g002", "stats"=>{"downloads"=>0, "page_views"=>3, "likes"=>0}, "figshare_url"=>"https://figshare.com/articles/_Functional_brain_networks_follow_an_exponentially_truncated_power_law_degree_distribution_/506276", "title"=>"Functional brain networks follow an exponentially truncated power law degree distribution.", "pos_in_sequence"=>0, "defined_type"=>1, "published_date"=>"2010-08-16 01:44:36"}
  • {"files"=>["https://ndownloader.figshare.com/files/836454"], "description"=>"<p>Each color corresponds to a particular functional module, with 7 total modules present, in a representative subject (subject 5).</p>", "links"=>[], "tags"=>["neuroscience", "computational biology/computational neuroscience", "neuroscience/theoretical neuroscience"], "article_id"=>506817, "categories"=>["Neuroscience", "Medicine"], "users"=>["Karen E. Joyce", "Paul J. Laurienti", "Jonathan H. Burdette", "Satoru Hayasaka"], "doi"=>"https://dx.doi.org/10.1371/journal.pone.0012200.g008", "stats"=>{"downloads"=>1, "page_views"=>5, "likes"=>0}, "figshare_url"=>"https://figshare.com/articles/_Modules_of_the_brain_of_a_representative_subject_/506817", "title"=>"Modules of the brain of a representative subject.", "pos_in_sequence"=>0, "defined_type"=>1, "published_date"=>"2010-08-16 01:53:37"}
  • {"files"=>["https://ndownloader.figshare.com/files/835962"], "description"=>"<p>(A) Within-module degree z-score <i>z<sub>i</sub></i> and participation coefficient <i>pc<sub>i</sub></i> are used to designate nodes into seven regions as described in <a href=\"http://www.plosone.org/article/info:doi/10.1371/journal.pone.0012200#pone.0012200-Guimera1\" target=\"_blank\">[21]</a>, <a href=\"http://www.plosone.org/article/info:doi/10.1371/journal.pone.0012200#pone.0012200-Meunier1\" target=\"_blank\">[24]</a>, <a href=\"http://www.plosone.org/article/info:doi/10.1371/journal.pone.0012200#pone.0012200-Valencia1\" target=\"_blank\">[38]</a>. Nodes are designated as hubs if <i>z<sub>i</sub></i>≥2.5 and non-hubs otherwise. Regions are defined as: R1 – ultra-peripheral nodes; R2 – peripheral nodes; R3 – non-hub connector nodes; R4 – non-hub kinless nodes; R5 – provincial hubs; R6 – connector hubs; R7 – kinless hubs. (B) Within-module degree probability <i>pk<sub>i</sub></i> and participation coefficient <i>pc<sub>i</sub></i> are used to designate nodes into the seven regions defined above. Participation coefficient classifications are identical to (A), but the cutoff <i>pk<sub>i</sub></i>≤0.01 is used to define hubs versus non-hubs, corresponding to <i>z<sub>i</sub></i>≥2.5 when approximating with a normal distribution.</p>", "links"=>[], "tags"=>["neuroscience", "computational biology/computational neuroscience", "neuroscience/theoretical neuroscience"], "article_id"=>506322, "categories"=>["Neuroscience", "Medicine"], "users"=>["Karen E. Joyce", "Paul J. Laurienti", "Jonathan H. Burdette", "Satoru Hayasaka"], "doi"=>"https://dx.doi.org/10.1371/journal.pone.0012200.g003", "stats"=>{"downloads"=>3, "page_views"=>4, "likes"=>0}, "figshare_url"=>"https://figshare.com/articles/_Comparison_of_pc_z_space_versus_pc_pk_space_/506322", "title"=>"Comparison of <i>pc-z</i> space versus <i>pc-pk</i> space.", "pos_in_sequence"=>0, "defined_type"=>1, "published_date"=>"2010-08-16 01:45:22"}

PMC Usage Stats | Further Information

  • {"scanned-page-browse"=>"0", "month"=>"9", "cited-by"=>"0", "abstract"=>"1", "full-text"=>"23", "unique-ip"=>"21", "pdf"=>"8", "year"=>"2010", "figure"=>"10", "scanned-summary"=>"0", "supp-data"=>"0"}
  • {"month"=>"10", "scanned-page-browse"=>"0", "cited-by"=>"0", "abstract"=>"1", "full-text"=>"12", "year"=>"2010", "pdf"=>"16", "unique-ip"=>"17", "figure"=>"1", "scanned-summary"=>"0", "supp-data"=>"0"}
  • {"scanned-page-browse"=>"0", "month"=>"11", "cited-by"=>"0", "abstract"=>"0", "full-text"=>"14", "unique-ip"=>"18", "pdf"=>"8", "year"=>"2010", "figure"=>"3", "scanned-summary"=>"0", "supp-data"=>"0"}
  • {"month"=>"12", "scanned-page-browse"=>"0", "cited-by"=>"0", "abstract"=>"0", "full-text"=>"11", "year"=>"2010", "pdf"=>"9", "unique-ip"=>"13", "figure"=>"3", "scanned-summary"=>"0", "supp-data"=>"0"}
  • {"scanned-page-browse"=>"0", "month"=>"1", "cited-by"=>"0", "abstract"=>"2", "full-text"=>"17", "unique-ip"=>"15", "pdf"=>"8", "year"=>"2011", "figure"=>"4", "scanned-summary"=>"0", "supp-data"=>"0"}
  • {"month"=>"2", "scanned-page-browse"=>"0", "cited-by"=>"0", "abstract"=>"2", "full-text"=>"11", "year"=>"2011", "pdf"=>"4", "unique-ip"=>"14", "figure"=>"8", "scanned-summary"=>"0", "supp-data"=>"0"}
  • {"scanned-page-browse"=>"0", "month"=>"3", "cited-by"=>"0", "abstract"=>"0", "full-text"=>"15", "unique-ip"=>"14", "pdf"=>"5", "year"=>"2011", "figure"=>"2", "scanned-summary"=>"0", "supp-data"=>"0"}
  • {"month"=>"4", "scanned-page-browse"=>"0", "cited-by"=>"0", "abstract"=>"0", "full-text"=>"19", "year"=>"2011", "pdf"=>"6", "unique-ip"=>"16", "figure"=>"3", "scanned-summary"=>"0", "supp-data"=>"0"}
  • {"scanned-page-browse"=>"0", "month"=>"5", "cited-by"=>"0", "abstract"=>"1", "full-text"=>"21", "unique-ip"=>"20", "pdf"=>"14", "year"=>"2011", "figure"=>"3", "scanned-summary"=>"0", "supp-data"=>"0"}
  • {"month"=>"6", "scanned-page-browse"=>"0", "cited-by"=>"1", "abstract"=>"1", "full-text"=>"9", "year"=>"2011", "pdf"=>"2", "unique-ip"=>"11", "figure"=>"3", "scanned-summary"=>"0", "supp-data"=>"0"}
  • {"scanned-page-browse"=>"0", "month"=>"7", "cited-by"=>"0", "abstract"=>"0", "full-text"=>"6", "unique-ip"=>"6", "pdf"=>"3", "year"=>"2011", "figure"=>"0", "scanned-summary"=>"0", "supp-data"=>"0"}
  • {"month"=>"8", "scanned-page-browse"=>"0", "cited-by"=>"0", "abstract"=>"0", "full-text"=>"12", "year"=>"2011", "pdf"=>"4", "unique-ip"=>"10", "figure"=>"1", "scanned-summary"=>"0", "supp-data"=>"0"}
  • {"scanned-page-browse"=>"0", "month"=>"9", "cited-by"=>"0", "abstract"=>"0", "full-text"=>"9", "unique-ip"=>"8", "pdf"=>"2", "year"=>"2011", "figure"=>"0", "scanned-summary"=>"0", "supp-data"=>"0"}
  • {"month"=>"10", "scanned-page-browse"=>"0", "cited-by"=>"0", "abstract"=>"0", "full-text"=>"17", "year"=>"2011", "pdf"=>"5", "unique-ip"=>"17", "figure"=>"0", "scanned-summary"=>"0", "supp-data"=>"0"}
  • {"scanned-page-browse"=>"0", "month"=>"11", "cited-by"=>"0", "abstract"=>"0", "full-text"=>"4", "unique-ip"=>"7", "pdf"=>"4", "year"=>"2011", "figure"=>"1", "scanned-summary"=>"0", "supp-data"=>"0"}
  • {"month"=>"12", "scanned-page-browse"=>"0", "cited-by"=>"0", "abstract"=>"0", "full-text"=>"10", "year"=>"2011", "pdf"=>"9", "unique-ip"=>"11", "figure"=>"0", "scanned-summary"=>"0", "supp-data"=>"0"}
  • {"scanned-page-browse"=>"0", "month"=>"1", "cited-by"=>"0", "abstract"=>"0", "full-text"=>"10", "unique-ip"=>"10", "pdf"=>"5", "year"=>"2012", "figure"=>"2", "scanned-summary"=>"0", "supp-data"=>"0"}
  • {"month"=>"2", "scanned-page-browse"=>"0", "cited-by"=>"0", "abstract"=>"1", "full-text"=>"5", "year"=>"2012", "pdf"=>"1", "unique-ip"=>"6", "figure"=>"0", "scanned-summary"=>"0", "supp-data"=>"0"}
  • {"scanned-page-browse"=>"0", "month"=>"3", "cited-by"=>"0", "abstract"=>"0", "full-text"=>"14", "unique-ip"=>"15", "pdf"=>"6", "year"=>"2012", "figure"=>"1", "scanned-summary"=>"0", "supp-data"=>"0"}
  • {"month"=>"4", "scanned-page-browse"=>"0", "cited-by"=>"0", "abstract"=>"0", "full-text"=>"9", "year"=>"2012", "pdf"=>"1", "unique-ip"=>"8", "figure"=>"1", "scanned-summary"=>"0", "supp-data"=>"0"}
  • {"scanned-page-browse"=>"0", "month"=>"5", "cited-by"=>"0", "abstract"=>"2", "full-text"=>"7", "unique-ip"=>"9", "pdf"=>"4", "year"=>"2012", "figure"=>"1", "scanned-summary"=>"0", "supp-data"=>"0"}
  • {"month"=>"6", "scanned-page-browse"=>"0", "cited-by"=>"0", "abstract"=>"0", "full-text"=>"13", "year"=>"2012", "pdf"=>"5", "unique-ip"=>"11", "figure"=>"1", "scanned-summary"=>"0", "supp-data"=>"0"}
  • {"unique-ip"=>"14", "full-text"=>"14", "pdf"=>"3", "abstract"=>"0", "scanned-summary"=>"0", "scanned-page-browse"=>"0", "figure"=>"3", "supp-data"=>"0", "cited-by"=>"0", "year"=>"2012", "month"=>"7"}
  • {"unique-ip"=>"6", "full-text"=>"8", "pdf"=>"3", "abstract"=>"0", "scanned-summary"=>"0", "scanned-page-browse"=>"0", "figure"=>"0", "supp-data"=>"0", "cited-by"=>"0", "year"=>"2012", "month"=>"8"}
  • {"unique-ip"=>"6", "full-text"=>"5", "pdf"=>"5", "abstract"=>"1", "scanned-summary"=>"0", "scanned-page-browse"=>"0", "figure"=>"0", "supp-data"=>"0", "cited-by"=>"0", "year"=>"2012", "month"=>"9"}
  • {"unique-ip"=>"12", "full-text"=>"11", "pdf"=>"5", "abstract"=>"3", "scanned-summary"=>"0", "scanned-page-browse"=>"0", "figure"=>"0", "supp-data"=>"0", "cited-by"=>"0", "year"=>"2012", "month"=>"10"}
  • {"unique-ip"=>"3", "full-text"=>"2", "pdf"=>"0", "abstract"=>"1", "scanned-summary"=>"0", "scanned-page-browse"=>"0", "figure"=>"0", "supp-data"=>"0", "cited-by"=>"0", "year"=>"2012", "month"=>"12"}
  • {"unique-ip"=>"10", "full-text"=>"16", "pdf"=>"1", "abstract"=>"0", "scanned-summary"=>"0", "scanned-page-browse"=>"0", "figure"=>"2", "supp-data"=>"0", "cited-by"=>"0", "year"=>"2013", "month"=>"1"}
  • {"unique-ip"=>"13", "full-text"=>"11", "pdf"=>"4", "abstract"=>"1", "scanned-summary"=>"0", "scanned-page-browse"=>"0", "figure"=>"0", "supp-data"=>"0", "cited-by"=>"0", "year"=>"2013", "month"=>"3"}
  • {"unique-ip"=>"15", "full-text"=>"13", "pdf"=>"4", "abstract"=>"2", "scanned-summary"=>"0", "scanned-page-browse"=>"0", "figure"=>"2", "supp-data"=>"0", "cited-by"=>"1", "year"=>"2013", "month"=>"2"}
  • {"unique-ip"=>"9", "full-text"=>"8", "pdf"=>"7", "abstract"=>"0", "scanned-summary"=>"0", "scanned-page-browse"=>"0", "figure"=>"1", "supp-data"=>"0", "cited-by"=>"0", "year"=>"2013", "month"=>"4"}
  • {"unique-ip"=>"14", "full-text"=>"13", "pdf"=>"6", "abstract"=>"0", "scanned-summary"=>"0", "scanned-page-browse"=>"0", "figure"=>"1", "supp-data"=>"0", "cited-by"=>"0", "year"=>"2012", "month"=>"11"}
  • {"unique-ip"=>"9", "full-text"=>"7", "pdf"=>"2", "abstract"=>"0", "scanned-summary"=>"0", "scanned-page-browse"=>"0", "figure"=>"1", "supp-data"=>"4", "cited-by"=>"0", "year"=>"2013", "month"=>"5"}
  • {"unique-ip"=>"9", "full-text"=>"7", "pdf"=>"3", "abstract"=>"0", "scanned-summary"=>"0", "scanned-page-browse"=>"0", "figure"=>"3", "supp-data"=>"0", "cited-by"=>"0", "year"=>"2013", "month"=>"6"}
  • {"unique-ip"=>"15", "full-text"=>"16", "pdf"=>"3", "abstract"=>"0", "scanned-summary"=>"0", "scanned-page-browse"=>"0", "figure"=>"0", "supp-data"=>"0", "cited-by"=>"0", "year"=>"2013", "month"=>"7"}
  • {"unique-ip"=>"10", "full-text"=>"7", "pdf"=>"1", "abstract"=>"0", "scanned-summary"=>"0", "scanned-page-browse"=>"0", "figure"=>"1", "supp-data"=>"4", "cited-by"=>"0", "year"=>"2013", "month"=>"8"}
  • {"unique-ip"=>"7", "full-text"=>"6", "pdf"=>"2", "abstract"=>"0", "scanned-summary"=>"0", "scanned-page-browse"=>"0", "figure"=>"0", "supp-data"=>"0", "cited-by"=>"0", "year"=>"2013", "month"=>"9"}
  • {"unique-ip"=>"4", "full-text"=>"5", "pdf"=>"3", "abstract"=>"0", "scanned-summary"=>"0", "scanned-page-browse"=>"0", "figure"=>"0", "supp-data"=>"0", "cited-by"=>"0", "year"=>"2013", "month"=>"10"}
  • {"unique-ip"=>"8", "full-text"=>"8", "pdf"=>"1", "abstract"=>"0", "scanned-summary"=>"0", "scanned-page-browse"=>"0", "figure"=>"0", "supp-data"=>"0", "cited-by"=>"0", "year"=>"2013", "month"=>"11"}
  • {"unique-ip"=>"4", "full-text"=>"4", "pdf"=>"1", "abstract"=>"0", "scanned-summary"=>"0", "scanned-page-browse"=>"0", "figure"=>"0", "supp-data"=>"0", "cited-by"=>"0", "year"=>"2013", "month"=>"12"}
  • {"unique-ip"=>"6", "full-text"=>"6", "pdf"=>"2", "abstract"=>"0", "scanned-summary"=>"0", "scanned-page-browse"=>"0", "figure"=>"0", "supp-data"=>"0", "cited-by"=>"0", "year"=>"2014", "month"=>"1"}
  • {"unique-ip"=>"7", "full-text"=>"7", "pdf"=>"1", "abstract"=>"0", "scanned-summary"=>"0", "scanned-page-browse"=>"0", "figure"=>"0", "supp-data"=>"0", "cited-by"=>"1", "year"=>"2014", "month"=>"2"}
  • {"unique-ip"=>"5", "full-text"=>"6", "pdf"=>"3", "abstract"=>"0", "scanned-summary"=>"0", "scanned-page-browse"=>"0", "figure"=>"0", "supp-data"=>"0", "cited-by"=>"0", "year"=>"2014", "month"=>"3"}
  • {"unique-ip"=>"14", "full-text"=>"11", "pdf"=>"9", "abstract"=>"2", "scanned-summary"=>"0", "scanned-page-browse"=>"0", "figure"=>"0", "supp-data"=>"0", "cited-by"=>"0", "year"=>"2014", "month"=>"5"}
  • {"unique-ip"=>"5", "full-text"=>"4", "pdf"=>"1", "abstract"=>"0", "scanned-summary"=>"0", "scanned-page-browse"=>"0", "figure"=>"0", "supp-data"=>"0", "cited-by"=>"0", "year"=>"2014", "month"=>"6"}
  • {"unique-ip"=>"10", "full-text"=>"9", "pdf"=>"4", "abstract"=>"0", "scanned-summary"=>"0", "scanned-page-browse"=>"0", "figure"=>"0", "supp-data"=>"0", "cited-by"=>"0", "year"=>"2014", "month"=>"4"}
  • {"unique-ip"=>"28", "full-text"=>"37", "pdf"=>"4", "abstract"=>"0", "scanned-summary"=>"0", "scanned-page-browse"=>"0", "figure"=>"3", "supp-data"=>"0", "cited-by"=>"0", "year"=>"2015", "month"=>"4"}
  • {"unique-ip"=>"20", "full-text"=>"21", "pdf"=>"8", "abstract"=>"0", "scanned-summary"=>"0", "scanned-page-browse"=>"0", "figure"=>"0", "supp-data"=>"7", "cited-by"=>"0", "year"=>"2015", "month"=>"5"}
  • {"unique-ip"=>"30", "full-text"=>"37", "pdf"=>"6", "abstract"=>"0", "scanned-summary"=>"0", "scanned-page-browse"=>"0", "figure"=>"4", "supp-data"=>"4", "cited-by"=>"0", "year"=>"2015", "month"=>"6"}
  • {"unique-ip"=>"30", "full-text"=>"42", "pdf"=>"4", "abstract"=>"0", "scanned-summary"=>"0", "scanned-page-browse"=>"0", "figure"=>"10", "supp-data"=>"1", "cited-by"=>"0", "year"=>"2015", "month"=>"7"}
  • {"unique-ip"=>"22", "full-text"=>"25", "pdf"=>"12", "abstract"=>"0", "scanned-summary"=>"0", "scanned-page-browse"=>"0", "figure"=>"4", "supp-data"=>"0", "cited-by"=>"0", "year"=>"2015", "month"=>"3"}
  • {"unique-ip"=>"18", "full-text"=>"18", "pdf"=>"6", "abstract"=>"0", "scanned-summary"=>"0", "scanned-page-browse"=>"0", "figure"=>"12", "supp-data"=>"0", "cited-by"=>"0", "year"=>"2015", "month"=>"2"}
  • {"unique-ip"=>"35", "full-text"=>"32", "pdf"=>"11", "abstract"=>"0", "scanned-summary"=>"0", "scanned-page-browse"=>"0", "figure"=>"0", "supp-data"=>"0", "cited-by"=>"0", "year"=>"2015", "month"=>"8"}
  • {"unique-ip"=>"33", "full-text"=>"34", "pdf"=>"8", "abstract"=>"0", "scanned-summary"=>"0", "scanned-page-browse"=>"0", "figure"=>"0", "supp-data"=>"0", "cited-by"=>"1", "year"=>"2015", "month"=>"9"}
  • {"unique-ip"=>"27", "full-text"=>"27", "pdf"=>"1", "abstract"=>"0", "scanned-summary"=>"0", "scanned-page-browse"=>"0", "figure"=>"1", "supp-data"=>"0", "cited-by"=>"0", "year"=>"2015", "month"=>"10"}
  • {"unique-ip"=>"9", "full-text"=>"5", "pdf"=>"3", "abstract"=>"0", "scanned-summary"=>"0", "scanned-page-browse"=>"0", "figure"=>"1", "supp-data"=>"0", "cited-by"=>"0", "year"=>"2014", "month"=>"7"}
  • {"unique-ip"=>"12", "full-text"=>"6", "pdf"=>"3", "abstract"=>"0", "scanned-summary"=>"0", "scanned-page-browse"=>"0", "figure"=>"4", "supp-data"=>"0", "cited-by"=>"0", "year"=>"2014", "month"=>"8"}
  • {"unique-ip"=>"20", "full-text"=>"13", "pdf"=>"7", "abstract"=>"0", "scanned-summary"=>"0", "scanned-page-browse"=>"0", "figure"=>"1", "supp-data"=>"0", "cited-by"=>"2", "year"=>"2014", "month"=>"9"}
  • {"unique-ip"=>"17", "full-text"=>"16", "pdf"=>"4", "abstract"=>"0", "scanned-summary"=>"0", "scanned-page-browse"=>"0", "figure"=>"1", "supp-data"=>"2", "cited-by"=>"0", "year"=>"2014", "month"=>"10"}
  • {"unique-ip"=>"31", "full-text"=>"33", "pdf"=>"7", "abstract"=>"0", "scanned-summary"=>"0", "scanned-page-browse"=>"0", "figure"=>"8", "supp-data"=>"0", "cited-by"=>"0", "year"=>"2016", "month"=>"2"}
  • {"unique-ip"=>"8", "full-text"=>"13", "pdf"=>"1", "abstract"=>"0", "scanned-summary"=>"0", "scanned-page-browse"=>"0", "figure"=>"0", "supp-data"=>"0", "cited-by"=>"0", "year"=>"2014", "month"=>"11"}
  • {"unique-ip"=>"10", "full-text"=>"9", "pdf"=>"5", "abstract"=>"0", "scanned-summary"=>"0", "scanned-page-browse"=>"0", "figure"=>"0", "supp-data"=>"0", "cited-by"=>"0", "year"=>"2014", "month"=>"12"}
  • {"unique-ip"=>"7", "full-text"=>"11", "pdf"=>"1", "abstract"=>"0", "scanned-summary"=>"0", "scanned-page-browse"=>"0", "figure"=>"1", "supp-data"=>"0", "cited-by"=>"0", "year"=>"2015", "month"=>"1"}
  • {"unique-ip"=>"45", "full-text"=>"53", "pdf"=>"12", "abstract"=>"0", "scanned-summary"=>"0", "scanned-page-browse"=>"0", "figure"=>"12", "supp-data"=>"0", "cited-by"=>"1", "year"=>"2015", "month"=>"11"}
  • {"unique-ip"=>"32", "full-text"=>"53", "pdf"=>"4", "abstract"=>"0", "scanned-summary"=>"0", "scanned-page-browse"=>"0", "figure"=>"10", "supp-data"=>"0", "cited-by"=>"0", "year"=>"2015", "month"=>"12"}
  • {"unique-ip"=>"25", "full-text"=>"44", "pdf"=>"8", "abstract"=>"0", "scanned-summary"=>"0", "scanned-page-browse"=>"0", "figure"=>"0", "supp-data"=>"0", "cited-by"=>"0", "year"=>"2016", "month"=>"1"}
  • {"unique-ip"=>"18", "full-text"=>"20", "pdf"=>"2", "abstract"=>"0", "scanned-summary"=>"0", "scanned-page-browse"=>"0", "figure"=>"0", "supp-data"=>"0", "cited-by"=>"0", "year"=>"2016", "month"=>"3"}
  • {"unique-ip"=>"47", "full-text"=>"50", "pdf"=>"4", "abstract"=>"0", "scanned-summary"=>"0", "scanned-page-browse"=>"0", "figure"=>"10", "supp-data"=>"2", "cited-by"=>"0", "year"=>"2016", "month"=>"4"}
  • {"unique-ip"=>"40", "full-text"=>"47", "pdf"=>"6", "abstract"=>"0", "scanned-summary"=>"0", "scanned-page-browse"=>"0", "figure"=>"11", "supp-data"=>"0", "cited-by"=>"0", "year"=>"2016", "month"=>"5"}
  • {"unique-ip"=>"23", "full-text"=>"26", "pdf"=>"5", "abstract"=>"0", "scanned-summary"=>"0", "scanned-page-browse"=>"0", "figure"=>"8", "supp-data"=>"1", "cited-by"=>"0", "year"=>"2016", "month"=>"6"}
  • {"unique-ip"=>"47", "full-text"=>"48", "pdf"=>"11", "abstract"=>"0", "scanned-summary"=>"0", "scanned-page-browse"=>"0", "figure"=>"6", "supp-data"=>"0", "cited-by"=>"1", "year"=>"2016", "month"=>"7"}
  • {"unique-ip"=>"35", "full-text"=>"37", "pdf"=>"6", "abstract"=>"0", "scanned-summary"=>"0", "scanned-page-browse"=>"0", "figure"=>"3", "supp-data"=>"0", "cited-by"=>"0", "year"=>"2016", "month"=>"8"}
  • {"unique-ip"=>"35", "full-text"=>"37", "pdf"=>"6", "abstract"=>"0", "scanned-summary"=>"0", "scanned-page-browse"=>"0", "figure"=>"6", "supp-data"=>"0", "cited-by"=>"1", "year"=>"2016", "month"=>"9"}
  • {"unique-ip"=>"44", "full-text"=>"50", "pdf"=>"4", "abstract"=>"0", "scanned-summary"=>"0", "scanned-page-browse"=>"0", "figure"=>"3", "supp-data"=>"0", "cited-by"=>"0", "year"=>"2016", "month"=>"10"}
  • {"unique-ip"=>"32", "full-text"=>"34", "pdf"=>"12", "abstract"=>"0", "scanned-summary"=>"0", "scanned-page-browse"=>"0", "figure"=>"1", "supp-data"=>"0", "cited-by"=>"0", "year"=>"2016", "month"=>"11"}
  • {"unique-ip"=>"43", "full-text"=>"46", "pdf"=>"12", "abstract"=>"0", "scanned-summary"=>"0", "scanned-page-browse"=>"0", "figure"=>"3", "supp-data"=>"0", "cited-by"=>"0", "year"=>"2016", "month"=>"12"}
  • {"unique-ip"=>"41", "full-text"=>"34", "pdf"=>"6", "abstract"=>"0", "scanned-summary"=>"0", "scanned-page-browse"=>"0", "figure"=>"14", "supp-data"=>"1", "cited-by"=>"2", "year"=>"2017", "month"=>"1"}
  • {"unique-ip"=>"23", "full-text"=>"23", "pdf"=>"6", "abstract"=>"0", "scanned-summary"=>"0", "scanned-page-browse"=>"0", "figure"=>"1", "supp-data"=>"0", "cited-by"=>"0", "year"=>"2017", "month"=>"2"}
  • {"unique-ip"=>"35", "full-text"=>"49", "pdf"=>"4", "abstract"=>"0", "scanned-summary"=>"0", "scanned-page-browse"=>"0", "figure"=>"2", "supp-data"=>"0", "cited-by"=>"0", "year"=>"2017", "month"=>"3"}
  • {"unique-ip"=>"39", "full-text"=>"43", "pdf"=>"11", "abstract"=>"0", "scanned-summary"=>"0", "scanned-page-browse"=>"0", "figure"=>"6", "supp-data"=>"0", "cited-by"=>"0", "year"=>"2017", "month"=>"4"}
  • {"unique-ip"=>"24", "full-text"=>"27", "pdf"=>"4", "abstract"=>"0", "scanned-summary"=>"0", "scanned-page-browse"=>"0", "figure"=>"4", "supp-data"=>"0", "cited-by"=>"2", "year"=>"2017", "month"=>"5"}
  • {"unique-ip"=>"30", "full-text"=>"33", "pdf"=>"5", "abstract"=>"0", "scanned-summary"=>"0", "scanned-page-browse"=>"0", "figure"=>"0", "supp-data"=>"1", "cited-by"=>"0", "year"=>"2017", "month"=>"6"}
  • {"unique-ip"=>"33", "full-text"=>"35", "pdf"=>"4", "abstract"=>"0", "scanned-summary"=>"0", "scanned-page-browse"=>"0", "figure"=>"9", "supp-data"=>"0", "cited-by"=>"0", "year"=>"2017", "month"=>"7"}
  • {"unique-ip"=>"35", "full-text"=>"38", "pdf"=>"2", "abstract"=>"0", "scanned-summary"=>"0", "scanned-page-browse"=>"0", "figure"=>"6", "supp-data"=>"0", "cited-by"=>"0", "year"=>"2017", "month"=>"8"}
  • {"unique-ip"=>"47", "full-text"=>"49", "pdf"=>"8", "abstract"=>"0", "scanned-summary"=>"0", "scanned-page-browse"=>"0", "figure"=>"5", "supp-data"=>"0", "cited-by"=>"0", "year"=>"2017", "month"=>"9"}
  • {"unique-ip"=>"68", "full-text"=>"77", "pdf"=>"13", "abstract"=>"0", "scanned-summary"=>"0", "scanned-page-browse"=>"0", "figure"=>"17", "supp-data"=>"1", "cited-by"=>"0", "year"=>"2017", "month"=>"10"}
  • {"unique-ip"=>"60", "full-text"=>"63", "pdf"=>"8", "abstract"=>"0", "scanned-summary"=>"0", "scanned-page-browse"=>"0", "figure"=>"10", "supp-data"=>"2", "cited-by"=>"0", "year"=>"2017", "month"=>"11"}
  • {"unique-ip"=>"35", "full-text"=>"39", "pdf"=>"5", "abstract"=>"0", "scanned-summary"=>"0", "scanned-page-browse"=>"0", "figure"=>"2", "supp-data"=>"0", "cited-by"=>"0", "year"=>"2017", "month"=>"12"}
  • {"unique-ip"=>"39", "full-text"=>"40", "pdf"=>"10", "abstract"=>"0", "scanned-summary"=>"0", "scanned-page-browse"=>"0", "figure"=>"0", "supp-data"=>"0", "cited-by"=>"0", "year"=>"2018", "month"=>"1"}
  • {"unique-ip"=>"2", "full-text"=>"2", "pdf"=>"0", "abstract"=>"0", "scanned-summary"=>"0", "scanned-page-browse"=>"0", "figure"=>"0", "supp-data"=>"0", "cited-by"=>"0", "year"=>"2018", "month"=>"2"}
  • {"unique-ip"=>"58", "full-text"=>"59", "pdf"=>"5", "abstract"=>"0", "scanned-summary"=>"0", "scanned-page-browse"=>"0", "figure"=>"4", "supp-data"=>"0", "cited-by"=>"0", "year"=>"2018", "month"=>"3"}
  • {"unique-ip"=>"37", "full-text"=>"45", "pdf"=>"4", "scanned-summary"=>"0", "scanned-page-browse"=>"0", "figure"=>"0", "supp-data"=>"0", "cited-by"=>"0", "year"=>"2019", "month"=>"1"}
  • {"unique-ip"=>"52", "full-text"=>"52", "pdf"=>"3", "scanned-summary"=>"0", "scanned-page-browse"=>"0", "figure"=>"1", "supp-data"=>"0", "cited-by"=>"0", "year"=>"2018", "month"=>"5"}
  • {"unique-ip"=>"44", "full-text"=>"48", "pdf"=>"7", "scanned-summary"=>"0", "scanned-page-browse"=>"0", "figure"=>"12", "supp-data"=>"0", "cited-by"=>"0", "year"=>"2018", "month"=>"4"}
  • {"unique-ip"=>"24", "full-text"=>"25", "pdf"=>"3", "scanned-summary"=>"0", "scanned-page-browse"=>"0", "figure"=>"2", "supp-data"=>"0", "cited-by"=>"0", "year"=>"2018", "month"=>"6"}
  • {"unique-ip"=>"41", "full-text"=>"43", "pdf"=>"9", "scanned-summary"=>"0", "scanned-page-browse"=>"0", "figure"=>"0", "supp-data"=>"1", "cited-by"=>"0", "year"=>"2018", "month"=>"7"}
  • {"unique-ip"=>"16", "full-text"=>"16", "pdf"=>"2", "scanned-summary"=>"0", "scanned-page-browse"=>"0", "figure"=>"0", "supp-data"=>"0", "cited-by"=>"0", "year"=>"2018", "month"=>"9"}
  • {"unique-ip"=>"35", "full-text"=>"40", "pdf"=>"5", "scanned-summary"=>"0", "scanned-page-browse"=>"0", "figure"=>"0", "supp-data"=>"2", "cited-by"=>"0", "year"=>"2018", "month"=>"8"}
  • {"unique-ip"=>"39", "full-text"=>"43", "pdf"=>"4", "scanned-summary"=>"0", "scanned-page-browse"=>"0", "figure"=>"0", "supp-data"=>"0", "cited-by"=>"0", "year"=>"2018", "month"=>"10"}
  • {"unique-ip"=>"45", "full-text"=>"50", "pdf"=>"2", "scanned-summary"=>"0", "scanned-page-browse"=>"0", "figure"=>"2", "supp-data"=>"0", "cited-by"=>"0", "year"=>"2018", "month"=>"12"}
  • {"unique-ip"=>"41", "full-text"=>"43", "pdf"=>"8", "scanned-summary"=>"0", "scanned-page-browse"=>"0", "figure"=>"0", "supp-data"=>"3", "cited-by"=>"1", "year"=>"2018", "month"=>"11"}
  • {"unique-ip"=>"31", "full-text"=>"34", "pdf"=>"3", "scanned-summary"=>"0", "scanned-page-browse"=>"0", "figure"=>"0", "supp-data"=>"0", "cited-by"=>"0", "year"=>"2019", "month"=>"2"}
  • {"unique-ip"=>"41", "full-text"=>"44", "pdf"=>"5", "scanned-summary"=>"0", "scanned-page-browse"=>"0", "figure"=>"0", "supp-data"=>"0", "cited-by"=>"0", "year"=>"2019", "month"=>"3"}
  • {"unique-ip"=>"41", "full-text"=>"51", "pdf"=>"4", "scanned-summary"=>"0", "scanned-page-browse"=>"0", "figure"=>"0", "supp-data"=>"0", "cited-by"=>"0", "year"=>"2019", "month"=>"4"}
  • {"unique-ip"=>"48", "full-text"=>"59", "pdf"=>"4", "scanned-summary"=>"0", "scanned-page-browse"=>"0", "figure"=>"1", "supp-data"=>"0", "cited-by"=>"0", "year"=>"2019", "month"=>"5"}

Relative Metric

{"start_date"=>"2010-01-01T00:00:00Z", "end_date"=>"2010-12-31T00:00:00Z", "subject_areas"=>[{"subject_area"=>"/Biology and life sciences/Cell biology", "average_usage"=>[280, 562, 725, 863, 974, 1083, 1177, 1268, 1347, 1421, 1489, 1570, 1638, 1706, 1763, 1823, 1890, 1951, 2016, 2076, 2134, 2192, 2257, 2319, 2378, 2438, 2501, 2572, 2634, 2700, 2759, 2825, 2887, 2936, 3007, 3070, 3121, 3184, 3237, 3304, 3363, 3425, 3484, 3531, 3612, 3663, 3718, 3771]}, {"subject_area"=>"/Computer and information sciences", "average_usage"=>[375, 666, 837, 949, 1062, 1171, 1233, 1318, 1399, 1470, 1550, 1608, 1701, 1771, 1835, 1908, 1973, 2046, 2091, 2160, 2220, 2285, 2359, 2455, 2537, 2610, 2687, 2778, 2836, 2908, 2974, 3021, 3082, 3169, 3224, 3300, 3382, 3469, 3550, 3640, 3728, 3765, 3814, 3858, 3915, 3952, 3991, 4067, 4107]}, {"subject_area"=>"/Computer and information sciences/Network analysis", "average_usage"=>[399, 789, 941, 1097, 1225, 1305, 1400, 1510, 1584, 1665, 1742, 1822, 1905, 1966, 2041, 2117, 2167, 2238, 2294, 2357, 2413, 2488, 2564, 2616, 2671, 2743, 2812, 2900, 2979, 3034, 3090, 3151, 3205, 3257, 3412, 3457, 3538, 3624, 3719, 3780, 3832, 3860, 3909, 3973, 4008, 4032, 4069, 4095, 4119]}, {"subject_area"=>"/Computer and information sciences/Neural networks", "average_usage"=>[385, 711, 886, 982, 1085, 1183, 1228, 1315, 1421, 1482, 1529, 1565, 1602, 1665, 1826, 1879, 1911, 1965, 2035, 2110, 2190, 2272, 2382, 2446, 2476, 2547, 2626, 2707, 2779, 2881, 2995, 3041, 3092, 3126, 3187, 3263, 3365, 3493, 3550, 3639, 3683, 3747, 3821, 3891, 3940, 3998, 4090, 4146, 4192]}, {"subject_area"=>"/Medicine and health sciences", "average_usage"=>[277, 558, 715, 845, 963, 1070, 1166, 1258, 1336, 1410, 1485, 1561, 1638, 1707, 1767, 1834, 1896, 1960, 2030, 2096, 2165, 2229, 2300, 2368, 2425, 2489, 2553, 2617, 2679, 2743, 2814, 2873, 2941, 2995, 3050, 3111, 3169, 3235, 3300, 3363, 3428, 3487, 3548, 3605, 3670, 3726, 3785, 3844]}, {"subject_area"=>"/Medicine and health sciences/Radiology and imaging", "average_usage"=>[264, 532, 652, 783, 908, 1026, 1136, 1211, 1299, 1370, 1441, 1515, 1571, 1641, 1714, 1776, 1839, 1913, 1998, 2081, 2148, 2219, 2295, 2339, 2369, 2413, 2485, 2549, 2613, 2674, 2729, 2777, 2832, 2879, 2914, 2971, 3018, 3059, 3109, 3161, 3269, 3323, 3374, 3408, 3460, 3576, 3627, 3673, 3711]}, {"subject_area"=>"/Physical sciences", "average_usage"=>[286, 543, 687, 806, 915, 1004, 1092, 1169, 1234, 1309, 1372, 1435, 1502, 1563, 1627, 1685, 1747, 1796, 1859, 1921, 1977, 2032, 2093, 2157, 2210, 2278, 2333, 2406, 2463, 2535, 2590, 2642, 2692, 2753, 2813, 2872, 2941, 2989, 3040, 3080, 3151, 3218, 3269, 3323, 3375, 3437, 3500, 3550, 3604]}, {"subject_area"=>"/Physical sciences/Mathematics", "average_usage"=>[314, 590, 728, 851, 953, 1050, 1127, 1206, 1276, 1336, 1390, 1451, 1504, 1569, 1619, 1674, 1732, 1792, 1851, 1900, 1959, 2004, 2076, 2126, 2182, 2239, 2292, 2353, 2427, 2522, 2595, 2676, 2735, 2785, 2836, 2893, 2943, 2993, 3041, 3097, 3160, 3214, 3251, 3299, 3357, 3428, 3482, 3515, 3555]}, {"subject_area"=>"/Social sciences", "average_usage"=>[365, 646, 813, 929, 1044, 1126, 1205, 1294, 1377, 1449, 1517, 1586, 1660, 1746, 1812, 1886, 1945, 2022, 2094, 2179, 2255, 2320, 2417, 2490, 2571, 2650, 2693, 2787, 2850, 2927, 2994, 3072, 3138, 3216, 3261, 3337, 3393, 3448, 3512, 3606, 3667, 3746, 3811, 3865, 3928, 3988, 4031, 4086]}, {"subject_area"=>"/Social sciences/Sociology", "average_usage"=>[427, 766, 983, 1149, 1229, 1330, 1487, 1623, 1725, 1833, 1912, 2041, 2174, 2223, 2264, 2319, 2427, 2514, 2618, 2748, 2861, 2931, 2983, 3062, 3133, 3221, 3300, 3406, 3489, 3578, 3658, 3822, 3909, 3987, 4052, 4142, 4201, 4251, 4319, 4393, 4488, 4581, 4657, 4724, 4793, 4860, 4929, 4974]}]}
Loading … Spinner
There are currently no alerts