When Is Hub Gene Selection Better than Standard Meta-Analysis?
Events
Loading … Spinner

Mendeley | Further Information

{"title"=>"When Is Hub Gene Selection Better than Standard Meta-Analysis?", "type"=>"journal", "authors"=>[{"first_name"=>"Peter", "last_name"=>"Langfelder", "scopus_author_id"=>"6506294054"}, {"first_name"=>"Paul S.", "last_name"=>"Mischel", "scopus_author_id"=>"6603801641"}, {"first_name"=>"Steve", "last_name"=>"Horvath", "scopus_author_id"=>"36870723900"}], "year"=>2013, "source"=>"PLoS ONE", "identifiers"=>{"pui"=>"368743257", "sgr"=>"84876217807", "issn"=>"19326203", "pmid"=>"23613865", "scopus"=>"2-s2.0-84876217807", "doi"=>"10.1371/journal.pone.0061505", "isbn"=>"10.1371/journal.pone.0061505"}, "id"=>"f0b1698b-efbe-3f87-a672-65a78d047614", "abstract"=>"Since hub nodes have been found to play important roles in many networks, highly connected hub genes are expected to play an important role in biology as well. However, the empirical evidence remains ambiguous. An open question is whether (or when) hub gene selection leads to more meaningful gene lists than a standard statistical analysis based on significance testing when analyzing genomic data sets (e.g., gene expression or DNA methylation data). Here we address this question for the special case when multiple genomic data sets are available. This is of great practical importance since for many research questions multiple data sets are publicly available. In this case, the data analyst can decide between a standard statistical approach (e.g., based on meta-analysis) and a co-expression network analysis approach that selects intramodular hubs in consensus modules. We assess the performance of these two types of approaches according to two criteria. The first criterion evaluates the biological insights gained and is relevant in basic research. The second criterion evaluates the validation success (reproducibility) in independent data sets and often applies in clinical diagnostic or prognostic applications. We compare meta-analysis with consensus network analysis based on weighted correlation network analysis (WGCNA) in three comprehensive and unbiased empirical studies: (1) Finding genes predictive of lung cancer survival, (2) finding methylation markers related to age, and (3) finding mouse genes related to total cholesterol. The results demonstrate that intramodular hub gene status with respect to consensus modules is more useful than a meta-analysis p-value when identifying biologically meaningful gene lists (reflecting criterion 1). However, standard meta-analysis methods perform as good as (if not better than) a consensus network approach in terms of validation success (criterion 2). The article also reports a comparison of meta-analysis techniques applied to gene expression data and presents novel R functions for carrying out consensus network analysis, network based screening, and meta analysis.", "link"=>"http://www.mendeley.com/research/hub-gene-selection-better-standard-metaanalysis", "reader_count"=>239, "reader_count_by_academic_status"=>{"Unspecified"=>4, "Professor > Associate Professor"=>17, "Researcher"=>67, "Student > Doctoral Student"=>7, "Student > Ph. D. Student"=>71, "Student > Postgraduate"=>15, "Student > Master"=>24, "Other"=>10, "Student > Bachelor"=>13, "Professor"=>11}, "reader_count_by_user_role"=>{"Unspecified"=>4, "Professor > Associate Professor"=>17, "Researcher"=>67, "Student > Doctoral Student"=>7, "Student > Ph. D. Student"=>71, "Student > Postgraduate"=>15, "Student > Master"=>24, "Other"=>10, "Student > Bachelor"=>13, "Professor"=>11}, "reader_count_by_subject_area"=>{"Unspecified"=>10, "Agricultural and Biological Sciences"=>125, "Chemistry"=>1, "Computer Science"=>17, "Economics, Econometrics and Finance"=>1, "Engineering"=>2, "Biochemistry, Genetics and Molecular Biology"=>34, "Nursing and Health Professions"=>1, "Materials Science"=>1, "Mathematics"=>8, "Medicine and Dentistry"=>20, "Neuroscience"=>8, "Pharmacology, Toxicology and Pharmaceutical Science"=>1, "Sports and Recreations"=>1, "Physics and Astronomy"=>1, "Psychology"=>1, "Social Sciences"=>3, "Immunology and Microbiology"=>4}, "reader_count_by_subdiscipline"=>{"Materials Science"=>{"Materials Science"=>1}, "Medicine and Dentistry"=>{"Medicine and Dentistry"=>20}, "Social Sciences"=>{"Social Sciences"=>3}, "Sports and Recreations"=>{"Sports and Recreations"=>1}, "Physics and Astronomy"=>{"Physics and Astronomy"=>1}, "Psychology"=>{"Psychology"=>1}, "Mathematics"=>{"Mathematics"=>8}, "Unspecified"=>{"Unspecified"=>10}, "Pharmacology, Toxicology and Pharmaceutical Science"=>{"Pharmacology, Toxicology and Pharmaceutical Science"=>1}, "Engineering"=>{"Engineering"=>2}, "Chemistry"=>{"Chemistry"=>1}, "Neuroscience"=>{"Neuroscience"=>8}, "Economics, Econometrics and Finance"=>{"Economics, Econometrics and Finance"=>1}, "Immunology and Microbiology"=>{"Immunology and Microbiology"=>4}, "Agricultural and Biological Sciences"=>{"Agricultural and Biological Sciences"=>125}, "Computer Science"=>{"Computer Science"=>17}, "Nursing and Health Professions"=>{"Nursing and Health Professions"=>1}, "Biochemistry, Genetics and Molecular Biology"=>{"Biochemistry, Genetics and Molecular Biology"=>34}}, "reader_count_by_country"=>{"Netherlands"=>3, "Sweden"=>2, "United States"=>12, "Taiwan"=>1, "Brazil"=>4, "Denmark"=>1, "United Kingdom"=>2, "Italy"=>1, "Portugal"=>1, "New Caledonia"=>1, "India"=>2, "Spain"=>2}, "group_count"=>8}

CrossRef

Scopus | Further Information

{"@_fa"=>"true", "link"=>[{"@_fa"=>"true", "@ref"=>"self", "@href"=>"https://api.elsevier.com/content/abstract/scopus_id/84876217807"}, {"@_fa"=>"true", "@ref"=>"author-affiliation", "@href"=>"https://api.elsevier.com/content/abstract/scopus_id/84876217807?field=author,affiliation"}, {"@_fa"=>"true", "@ref"=>"scopus", "@href"=>"https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=84876217807&origin=inward"}, {"@_fa"=>"true", "@ref"=>"scopus-citedby", "@href"=>"https://www.scopus.com/inward/citedby.uri?partnerID=HzOxMe3b&scp=84876217807&origin=inward"}], "prism:url"=>"https://api.elsevier.com/content/abstract/scopus_id/84876217807", "dc:identifier"=>"SCOPUS_ID:84876217807", "eid"=>"2-s2.0-84876217807", "dc:title"=>"When Is Hub Gene Selection Better than Standard Meta-Analysis?", "dc:creator"=>"Langfelder P.", "prism:publicationName"=>"PLoS ONE", "prism:eIssn"=>"19326203", "prism:volume"=>"8", "prism:issueIdentifier"=>"4", "prism:pageRange"=>nil, "prism:coverDate"=>"2013-04-17", "prism:coverDisplayDate"=>"17 April 2013", "prism:doi"=>"10.1371/journal.pone.0061505", "citedby-count"=>"131", "affiliation"=>[{"@_fa"=>"true", "affilname"=>"University of California, Los Angeles", "affiliation-city"=>"Los Angeles", "affiliation-country"=>"United States"}], "pubmed-id"=>"23613865", "prism:aggregationType"=>"Journal", "subtype"=>"ar", "subtypeDescription"=>"Article", "article-number"=>"e61505", "source-id"=>"10600153309", "openaccess"=>"1", "openaccessFlag"=>true}

Facebook

  • {"url"=>"http%3A%2F%2Fjournals.plos.org%2Fplosone%2Farticle%3Fid%3D10.1371%252Fjournal.pone.0061505", "share_count"=>0, "like_count"=>0, "comment_count"=>0, "click_count"=>0, "total_count"=>0}

Counter

  • {"month"=>"4", "year"=>"2013", "pdf_views"=>"87", "xml_views"=>"5", "html_views"=>"259"}
  • {"month"=>"5", "year"=>"2013", "pdf_views"=>"56", "xml_views"=>"5", "html_views"=>"211"}
  • {"month"=>"6", "year"=>"2013", "pdf_views"=>"29", "xml_views"=>"1", "html_views"=>"98"}
  • {"month"=>"7", "year"=>"2013", "pdf_views"=>"31", "xml_views"=>"3", "html_views"=>"149"}
  • {"month"=>"8", "year"=>"2013", "pdf_views"=>"31", "xml_views"=>"1", "html_views"=>"90"}
  • {"month"=>"9", "year"=>"2013", "pdf_views"=>"29", "xml_views"=>"1", "html_views"=>"149"}
  • {"month"=>"10", "year"=>"2013", "pdf_views"=>"47", "xml_views"=>"2", "html_views"=>"215"}
  • {"month"=>"11", "year"=>"2013", "pdf_views"=>"42", "xml_views"=>"3", "html_views"=>"185"}
  • {"month"=>"12", "year"=>"2013", "pdf_views"=>"28", "xml_views"=>"1", "html_views"=>"115"}
  • {"month"=>"1", "year"=>"2014", "pdf_views"=>"42", "xml_views"=>"0", "html_views"=>"124"}
  • {"month"=>"2", "year"=>"2014", "pdf_views"=>"40", "xml_views"=>"0", "html_views"=>"127"}
  • {"month"=>"3", "year"=>"2014", "pdf_views"=>"52", "xml_views"=>"5", "html_views"=>"175"}
  • {"month"=>"4", "year"=>"2014", "pdf_views"=>"48", "xml_views"=>"1", "html_views"=>"145"}
  • {"month"=>"5", "year"=>"2014", "pdf_views"=>"30", "xml_views"=>"0", "html_views"=>"146"}
  • {"month"=>"6", "year"=>"2014", "pdf_views"=>"41", "xml_views"=>"2", "html_views"=>"121"}
  • {"month"=>"7", "year"=>"2014", "pdf_views"=>"23", "xml_views"=>"0", "html_views"=>"132"}
  • {"month"=>"8", "year"=>"2014", "pdf_views"=>"30", "xml_views"=>"2", "html_views"=>"124"}
  • {"month"=>"9", "year"=>"2014", "pdf_views"=>"30", "xml_views"=>"1", "html_views"=>"137"}
  • {"month"=>"10", "year"=>"2014", "pdf_views"=>"35", "xml_views"=>"2", "html_views"=>"156"}
  • {"month"=>"11", "year"=>"2014", "pdf_views"=>"48", "xml_views"=>"2", "html_views"=>"216"}
  • {"month"=>"12", "year"=>"2014", "pdf_views"=>"29", "xml_views"=>"1", "html_views"=>"180"}
  • {"month"=>"1", "year"=>"2015", "pdf_views"=>"38", "xml_views"=>"0", "html_views"=>"154"}
  • {"month"=>"2", "year"=>"2015", "pdf_views"=>"32", "xml_views"=>"0", "html_views"=>"120"}
  • {"month"=>"3", "year"=>"2015", "pdf_views"=>"20", "xml_views"=>"0", "html_views"=>"142"}
  • {"month"=>"4", "year"=>"2015", "pdf_views"=>"30", "xml_views"=>"1", "html_views"=>"148"}
  • {"month"=>"5", "year"=>"2015", "pdf_views"=>"53", "xml_views"=>"0", "html_views"=>"140"}
  • {"month"=>"6", "year"=>"2015", "pdf_views"=>"30", "xml_views"=>"1", "html_views"=>"157"}
  • {"month"=>"7", "year"=>"2015", "pdf_views"=>"31", "xml_views"=>"0", "html_views"=>"137"}
  • {"month"=>"8", "year"=>"2015", "pdf_views"=>"30", "xml_views"=>"2", "html_views"=>"124"}
  • {"month"=>"9", "year"=>"2015", "pdf_views"=>"50", "xml_views"=>"0", "html_views"=>"148"}
  • {"month"=>"10", "year"=>"2015", "pdf_views"=>"54", "xml_views"=>"0", "html_views"=>"189"}
  • {"month"=>"11", "year"=>"2015", "pdf_views"=>"38", "xml_views"=>"0", "html_views"=>"194"}
  • {"month"=>"12", "year"=>"2015", "pdf_views"=>"40", "xml_views"=>"1", "html_views"=>"185"}
  • {"month"=>"1", "year"=>"2016", "pdf_views"=>"59", "xml_views"=>"0", "html_views"=>"202"}
  • {"month"=>"2", "year"=>"2016", "pdf_views"=>"19", "xml_views"=>"0", "html_views"=>"120"}
  • {"month"=>"3", "year"=>"2016", "pdf_views"=>"34", "xml_views"=>"0", "html_views"=>"188"}
  • {"month"=>"4", "year"=>"2016", "pdf_views"=>"43", "xml_views"=>"0", "html_views"=>"174"}
  • {"month"=>"5", "year"=>"2016", "pdf_views"=>"64", "xml_views"=>"0", "html_views"=>"176"}
  • {"month"=>"6", "year"=>"2016", "pdf_views"=>"47", "xml_views"=>"0", "html_views"=>"129"}
  • {"month"=>"7", "year"=>"2016", "pdf_views"=>"44", "xml_views"=>"0", "html_views"=>"84"}
  • {"month"=>"8", "year"=>"2016", "pdf_views"=>"41", "xml_views"=>"0", "html_views"=>"117"}
  • {"month"=>"9", "year"=>"2016", "pdf_views"=>"59", "xml_views"=>"0", "html_views"=>"117"}
  • {"month"=>"10", "year"=>"2016", "pdf_views"=>"57", "xml_views"=>"0", "html_views"=>"122"}
  • {"month"=>"11", "year"=>"2016", "pdf_views"=>"26", "xml_views"=>"0", "html_views"=>"120"}
  • {"month"=>"12", "year"=>"2016", "pdf_views"=>"59", "xml_views"=>"2", "html_views"=>"135"}
  • {"month"=>"1", "year"=>"2017", "pdf_views"=>"50", "xml_views"=>"1", "html_views"=>"137"}
  • {"month"=>"2", "year"=>"2017", "pdf_views"=>"45", "xml_views"=>"0", "html_views"=>"150"}
  • {"month"=>"3", "year"=>"2017", "pdf_views"=>"61", "xml_views"=>"0", "html_views"=>"212"}
  • {"month"=>"4", "year"=>"2017", "pdf_views"=>"38", "xml_views"=>"0", "html_views"=>"166"}
  • {"month"=>"5", "year"=>"2017", "pdf_views"=>"70", "xml_views"=>"0", "html_views"=>"173"}
  • {"month"=>"6", "year"=>"2017", "pdf_views"=>"64", "xml_views"=>"0", "html_views"=>"159"}
  • {"month"=>"7", "year"=>"2017", "pdf_views"=>"56", "xml_views"=>"3", "html_views"=>"91"}
  • {"month"=>"8", "year"=>"2017", "pdf_views"=>"60", "xml_views"=>"2", "html_views"=>"127"}
  • {"month"=>"9", "year"=>"2017", "pdf_views"=>"32", "xml_views"=>"1", "html_views"=>"132"}
  • {"month"=>"10", "year"=>"2017", "pdf_views"=>"34", "xml_views"=>"1", "html_views"=>"138"}
  • {"month"=>"11", "year"=>"2017", "pdf_views"=>"29", "xml_views"=>"0", "html_views"=>"193"}
  • {"month"=>"12", "year"=>"2017", "pdf_views"=>"23", "xml_views"=>"2", "html_views"=>"176"}
  • {"month"=>"1", "year"=>"2018", "pdf_views"=>"49", "xml_views"=>"1", "html_views"=>"144"}
  • {"month"=>"2", "year"=>"2018", "pdf_views"=>"40", "xml_views"=>"0", "html_views"=>"86"}
  • {"month"=>"3", "year"=>"2018", "pdf_views"=>"38", "xml_views"=>"1", "html_views"=>"95"}
  • {"month"=>"4", "year"=>"2018", "pdf_views"=>"64", "xml_views"=>"1", "html_views"=>"97"}
  • {"month"=>"5", "year"=>"2018", "pdf_views"=>"34", "xml_views"=>"0", "html_views"=>"89"}
  • {"month"=>"6", "year"=>"2018", "pdf_views"=>"24", "xml_views"=>"1", "html_views"=>"67"}
  • {"month"=>"7", "year"=>"2018", "pdf_views"=>"12", "xml_views"=>"3", "html_views"=>"73"}
  • {"month"=>"8", "year"=>"2018", "pdf_views"=>"27", "xml_views"=>"2", "html_views"=>"80"}
  • {"month"=>"9", "year"=>"2018", "pdf_views"=>"12", "xml_views"=>"0", "html_views"=>"60"}
  • {"month"=>"10", "year"=>"2018", "pdf_views"=>"21", "xml_views"=>"2", "html_views"=>"55"}
  • {"month"=>"11", "year"=>"2018", "pdf_views"=>"14", "xml_views"=>"0", "html_views"=>"78"}
  • {"month"=>"12", "year"=>"2018", "pdf_views"=>"21", "xml_views"=>"0", "html_views"=>"48"}
  • {"month"=>"1", "year"=>"2019", "pdf_views"=>"18", "xml_views"=>"0", "html_views"=>"36"}
  • {"month"=>"2", "year"=>"2019", "pdf_views"=>"32", "xml_views"=>"0", "html_views"=>"47"}
  • {"month"=>"3", "year"=>"2019", "pdf_views"=>"23", "xml_views"=>"0", "html_views"=>"41"}
  • {"month"=>"4", "year"=>"2019", "pdf_views"=>"47", "xml_views"=>"0", "html_views"=>"50"}
  • {"month"=>"5", "year"=>"2019", "pdf_views"=>"26", "xml_views"=>"0", "html_views"=>"81"}
  • {"month"=>"6", "year"=>"2019", "pdf_views"=>"31", "xml_views"=>"0", "html_views"=>"55"}
  • {"month"=>"7", "year"=>"2019", "pdf_views"=>"24", "xml_views"=>"2", "html_views"=>"55"}
  • {"month"=>"8", "year"=>"2019", "pdf_views"=>"40", "xml_views"=>"0", "html_views"=>"54"}
  • {"month"=>"9", "year"=>"2019", "pdf_views"=>"38", "xml_views"=>"0", "html_views"=>"41"}
  • {"month"=>"10", "year"=>"2019", "pdf_views"=>"34", "xml_views"=>"1", "html_views"=>"66"}
  • {"month"=>"11", "year"=>"2019", "pdf_views"=>"24", "xml_views"=>"0", "html_views"=>"61"}
  • {"month"=>"12", "year"=>"2019", "pdf_views"=>"28", "xml_views"=>"0", "html_views"=>"56"}
  • {"month"=>"1", "year"=>"2020", "pdf_views"=>"36", "xml_views"=>"0", "html_views"=>"63"}
  • {"month"=>"2", "year"=>"2020", "pdf_views"=>"34", "xml_views"=>"1", "html_views"=>"43"}
  • {"month"=>"3", "year"=>"2020", "pdf_views"=>"39", "xml_views"=>"0", "html_views"=>"39"}
  • {"month"=>"4", "year"=>"2020", "pdf_views"=>"188", "xml_views"=>"0", "html_views"=>"45"}
  • {"month"=>"5", "year"=>"2020", "pdf_views"=>"150", "xml_views"=>"1", "html_views"=>"51"}
  • {"month"=>"6", "year"=>"2020", "pdf_views"=>"77", "xml_views"=>"1", "html_views"=>"35"}
  • {"month"=>"7", "year"=>"2020", "pdf_views"=>"54", "xml_views"=>"0", "html_views"=>"39"}
  • {"month"=>"8", "year"=>"2020", "pdf_views"=>"57", "xml_views"=>"3", "html_views"=>"32"}
  • {"month"=>"9", "year"=>"2020", "pdf_views"=>"75", "xml_views"=>"1", "html_views"=>"52"}
  • {"month"=>"10", "year"=>"2020", "pdf_views"=>"72", "xml_views"=>"0", "html_views"=>"39"}
  • {"month"=>"11", "year"=>"2020", "pdf_views"=>"80", "xml_views"=>"0", "html_views"=>"38"}

Figshare

  • {"files"=>["https://ndownloader.figshare.com/files/1026596"], "description"=>"<p>The barplots show validation success of the various meta-analysis methods in simulated data with 2 different traits. Continuous clinical trait 1 is weakly related to a module eigengene that may, in real data, represent the state of a pathway. In this case meta-analysis of module membership outperforms marginal meta-analysis in identifying validated genes. In contrast, clinical trait 2 is simulated to be strongly correlated with the eigengene of a small submodule of one of the identified modules. Here marginal meta-analysis outperforms meta-analysis of module membership. Analogously to <a href=\"http://www.plosone.org/article/info:doi/10.1371/journal.pone.0061505#pone-0061505-g002\" target=\"_blank\">Figure 2</a>, each bar summarizes the gene screening success of the corresponding meta-analysis methods for each of the simulated traits. For each meta-analysis method we rank the genes based on the method and retain the top 50 genes. We define gene screening success as the average correlation of these top 50 genes with the trait of interest in an independent validation data set, averaged over the validation sets in each application. Each bar represents the gene screening success; error bars give the corresponding standard deviation of the observed gene–trait correlations in the top 50 genes.</p>", "links"=>[], "tags"=>["Computational biology", "genomics", "Genome analysis tools", "Genetic networks", "Genome expression analysis", "systems biology", "statistics", "Statistical methods", "studies", "meta-analysis"], "article_id"=>684141, "categories"=>["Mathematics", "Biological Sciences"], "users"=>["Peter Langfelder", "Paul S. Mischel", "Steve Horvath"], "doi"=>"https://dx.doi.org/10.1371/journal.pone.0061505.g003", "stats"=>{"downloads"=>2, "page_views"=>4, "likes"=>0}, "figshare_url"=>"https://figshare.com/articles/_Simulation_studies_of_gene_screening_success_of_meta_analysis_methods_/684141", "title"=>"Simulation studies of gene screening success of meta-analysis methods.", "pos_in_sequence"=>0, "defined_type"=>1, "published_date"=>"2013-04-17 01:09:01"}
  • {"files"=>["https://ndownloader.figshare.com/files/1026594"], "description"=>"<p>The 3 barplots show validation success in our 3 applications. Each bar summarizes the gene screening success of the corresponding meta-analysis method. Specifically, we rank the genes using each meta-analysis method and retain the top 100 genes. We define gene screening success as the average correlation of these top 100 genes with the trait of interest in an independent validation data set, averaged over the validation sets in each application. Each bar represents the gene screening success; error bars give the corresponding standard deviation of the observed gene–trait correlations in the top 100 genes. This figure shows that, overall, marginal meta-analysis leads to gene lists with better validation success (i.e., higher correlation with the trait of interest in validation data). Adenocarcinoma expression data (panel A) present an exception in that meta-analysis of module membership results in gene lists with somewhat better validation.</p>", "links"=>[], "tags"=>["Computational biology", "genomics", "Genome analysis tools", "Genetic networks", "Genome expression analysis", "systems biology", "statistics", "Statistical methods", "meta-analysis", "tends", "lists", "validation"], "article_id"=>684140, "categories"=>["Mathematics", "Biological Sciences"], "users"=>["Peter Langfelder", "Paul S. Mischel", "Steve Horvath"], "doi"=>"https://dx.doi.org/10.1371/journal.pone.0061505.g002", "stats"=>{"downloads"=>1, "page_views"=>6, "likes"=>0}, "figshare_url"=>"https://figshare.com/articles/_Marginal_meta_analysis_tends_to_lead_to_gene_lists_with_better_validation_in_independent_data_/684140", "title"=>"Marginal meta-analysis tends to lead to gene lists with better validation in independent data.", "pos_in_sequence"=>0, "defined_type"=>1, "published_date"=>"2013-04-17 01:09:00"}
  • {"files"=>["https://ndownloader.figshare.com/files/1026598"], "description"=>"<p>The Method and Variant columns list the names for each method that are used throughout the text and in our Figures. Var. imp. stands for a general variable importance measure; the Trafo. column indicates how the input is transformed before calculating a meta-analysis statistic; the Weights columns indicates the weights used in the calculation of the meta-analysis statistic via <a href=\"http://www.plosone.org/article/info:doi/10.1371/journal.pone.0061505#pone.0061505.e058\" target=\"_blank\">Equations 4</a> or 5.</p>", "links"=>[], "tags"=>["Computational biology", "genomics", "Genome analysis tools", "Genetic networks", "Genome expression analysis", "systems biology", "statistics", "Statistical methods", "meta-analysis", "methods"], "article_id"=>684143, "categories"=>["Mathematics", "Biological Sciences"], "users"=>["Peter Langfelder", "Paul S. Mischel", "Steve Horvath"], "doi"=>"https://dx.doi.org/10.1371/journal.pone.0061505.t001", "stats"=>{"downloads"=>4, "page_views"=>7, "likes"=>0}, "figshare_url"=>"https://figshare.com/articles/_Overview_of_meta_analysis_methods_used_in_this_article_/684143", "title"=>"Overview of meta-analysis methods used in this article.", "pos_in_sequence"=>0, "defined_type"=>3, "published_date"=>"2013-04-17 01:09:03"}
  • {"files"=>["https://ndownloader.figshare.com/files/1026599", "https://ndownloader.figshare.com/files/1026600", "https://ndownloader.figshare.com/files/1026601"], "description"=>"<div><p>Since hub nodes have been found to play important roles in many networks, highly connected hub genes are expected to play an important role in biology as well. However, the empirical evidence remains ambiguous. An open question is whether (or when) hub gene selection leads to more meaningful gene lists than a standard statistical analysis based on significance testing when analyzing genomic data sets (e.g., gene expression or DNA methylation data). Here we address this question for the special case when multiple genomic data sets are available. This is of great practical importance since for many research questions multiple data sets are publicly available. In this case, the data analyst can decide between a standard statistical approach (e.g., based on meta-analysis) and a co-expression network analysis approach that selects intramodular hubs in consensus modules. We assess the performance of these two types of approaches according to two criteria. The first criterion evaluates the biological insights gained and is relevant in basic research. The second criterion evaluates the validation success (reproducibility) in independent data sets and often applies in clinical diagnostic or prognostic applications. We compare meta-analysis with consensus network analysis based on weighted correlation network analysis (WGCNA) in three comprehensive and unbiased empirical studies: (1) Finding genes predictive of lung cancer survival, (2) finding methylation markers related to age, and (3) finding mouse genes related to total cholesterol. The results demonstrate that intramodular hub gene status with respect to consensus modules is more useful than a meta-analysis p-value when identifying biologically meaningful gene lists (reflecting criterion 1). However, standard meta-analysis methods perform as good as (if not better than) a consensus network approach in terms of validation success (criterion 2). The article also reports a comparison of meta-analysis techniques applied to gene expression data and presents novel R functions for carrying out consensus network analysis, network based screening, and meta analysis.</p></div>", "links"=>[], "tags"=>["Computational biology", "genomics", "Genome analysis tools", "Genetic networks", "Genome expression analysis", "systems biology", "statistics", "Statistical methods", "hub"], "article_id"=>684144, "categories"=>["Mathematics", "Biological Sciences"], "users"=>["Peter Langfelder", "Paul S. Mischel", "Steve Horvath"], "doi"=>["https://dx.doi.org/10.1371/journal.pone.0061505.s001", "https://dx.doi.org/10.1371/journal.pone.0061505.s002", "https://dx.doi.org/10.1371/journal.pone.0061505.s003"], "stats"=>{"downloads"=>3, "page_views"=>8, "likes"=>0}, "figshare_url"=>"https://figshare.com/articles/_When_Is_Hub_Gene_Selection_Better_than_Standard_Meta_Analysis_/684144", "title"=>"When Is Hub Gene Selection Better than Standard Meta-Analysis?", "pos_in_sequence"=>0, "defined_type"=>4, "published_date"=>"2013-04-17 01:09:04"}
  • {"files"=>["https://ndownloader.figshare.com/files/1026597"], "description"=>"<p>Column # samples lists the number of samples (after our removal of potential outliers) in each data set. MSAS, Multi-Site Adenocarcinoma Study; HLM, Moffit Cancer Center; DFCI, Dana-Farber Cancer Institute; MSKCC, Memorial Sloan-Kettering Cancer Center; WB, whole blood; PMP, postmenopausal.</p>", "links"=>[], "tags"=>["Computational biology", "genomics", "Genome analysis tools", "Genetic networks", "Genome expression analysis", "systems biology", "statistics", "Statistical methods", "sets"], "article_id"=>684142, "categories"=>["Mathematics", "Biological Sciences"], "users"=>["Peter Langfelder", "Paul S. Mischel", "Steve Horvath"], "doi"=>"https://dx.doi.org/10.1371/journal.pone.0061505.t002", "stats"=>{"downloads"=>4, "page_views"=>7, "likes"=>0}, "figshare_url"=>"https://figshare.com/articles/_Overview_of_data_sets_used_in_this_article_/684142", "title"=>"Overview of data sets used in this article.", "pos_in_sequence"=>0, "defined_type"=>3, "published_date"=>"2013-04-17 01:09:02"}
  • {"files"=>["https://ndownloader.figshare.com/files/1026592"], "description"=>"<p>The 3 barplots show enrichment values, defined as negative of the enrichment p-value, , in our 3 applications. Each bar summarizes the best enrichment values obtained by the corresponding meta-analysis method. Specifically, for each method we computed the enrichment in the corresponding “gold standard” list of genes. The enrichment was calculated in the top 20, 40, 60, …, 1000 genes in the adenocarcinoma and mouse TC applications; and in 100, 200, …, 5000 genes in the aging application. The best 20% of enrichment values were retained. Each bar represents the mean of these best enrichment values, and error bars give the corresponding standard deviations. The standard deviations are not corrected for auto-correlation of enrichment values. The Kruskal-Wallis test p-value is indicated in the title. The figure shows that meta-analysis of membership in consensus modules leads to gene lists with higher enrichment and hence better biological interpretability.</p>", "links"=>[], "tags"=>["Computational biology", "genomics", "Genome analysis tools", "Genetic networks", "Genome expression analysis", "systems biology", "statistics", "Statistical methods", "module", "leads", "lists", "stronger"], "article_id"=>684139, "categories"=>["Mathematics", "Biological Sciences"], "users"=>["Peter Langfelder", "Paul S. Mischel", "Steve Horvath"], "doi"=>"https://dx.doi.org/10.1371/journal.pone.0061505.g001", "stats"=>{"downloads"=>4, "page_views"=>8, "likes"=>0}, "figshare_url"=>"https://figshare.com/articles/_Meta_analysis_of_module_membership_leads_to_gene_lists_with_stronger_functional_enrichment_/684139", "title"=>"Meta-analysis of module membership leads to gene lists with stronger functional enrichment.", "pos_in_sequence"=>0, "defined_type"=>1, "published_date"=>"2013-04-17 01:08:59"}

PMC Usage Stats | Further Information

  • {"unique-ip"=>"11", "full-text"=>"16", "pdf"=>"3", "abstract"=>"0", "scanned-summary"=>"0", "scanned-page-browse"=>"0", "figure"=>"4", "supp-data"=>"9", "cited-by"=>"0", "year"=>"2013", "month"=>"4"}
  • {"unique-ip"=>"54", "full-text"=>"51", "pdf"=>"28", "abstract"=>"0", "scanned-summary"=>"0", "scanned-page-browse"=>"0", "figure"=>"5", "supp-data"=>"14", "cited-by"=>"0", "year"=>"2013", "month"=>"5"}
  • {"unique-ip"=>"30", "full-text"=>"43", "pdf"=>"11", "abstract"=>"0", "scanned-summary"=>"0", "scanned-page-browse"=>"0", "figure"=>"1", "supp-data"=>"8", "cited-by"=>"0", "year"=>"2013", "month"=>"6"}
  • {"unique-ip"=>"14", "full-text"=>"11", "pdf"=>"7", "abstract"=>"0", "scanned-summary"=>"0", "scanned-page-browse"=>"0", "figure"=>"0", "supp-data"=>"2", "cited-by"=>"0", "year"=>"2013", "month"=>"7"}
  • {"unique-ip"=>"18", "full-text"=>"23", "pdf"=>"11", "abstract"=>"1", "scanned-summary"=>"0", "scanned-page-browse"=>"0", "figure"=>"1", "supp-data"=>"3", "cited-by"=>"0", "year"=>"2013", "month"=>"8"}
  • {"unique-ip"=>"16", "full-text"=>"13", "pdf"=>"12", "abstract"=>"0", "scanned-summary"=>"0", "scanned-page-browse"=>"0", "figure"=>"0", "supp-data"=>"2", "cited-by"=>"0", "year"=>"2013", "month"=>"9"}
  • {"unique-ip"=>"26", "full-text"=>"23", "pdf"=>"17", "abstract"=>"0", "scanned-summary"=>"0", "scanned-page-browse"=>"0", "figure"=>"6", "supp-data"=>"4", "cited-by"=>"0", "year"=>"2013", "month"=>"10"}
  • {"unique-ip"=>"21", "full-text"=>"18", "pdf"=>"12", "abstract"=>"1", "scanned-summary"=>"0", "scanned-page-browse"=>"0", "figure"=>"0", "supp-data"=>"0", "cited-by"=>"0", "year"=>"2013", "month"=>"11"}
  • {"unique-ip"=>"19", "full-text"=>"16", "pdf"=>"8", "abstract"=>"0", "scanned-summary"=>"0", "scanned-page-browse"=>"0", "figure"=>"3", "supp-data"=>"0", "cited-by"=>"0", "year"=>"2013", "month"=>"12"}
  • {"unique-ip"=>"24", "full-text"=>"22", "pdf"=>"6", "abstract"=>"3", "scanned-summary"=>"0", "scanned-page-browse"=>"0", "figure"=>"0", "supp-data"=>"0", "cited-by"=>"0", "year"=>"2014", "month"=>"1"}
  • {"unique-ip"=>"12", "full-text"=>"12", "pdf"=>"5", "abstract"=>"0", "scanned-summary"=>"0", "scanned-page-browse"=>"0", "figure"=>"2", "supp-data"=>"0", "cited-by"=>"0", "year"=>"2014", "month"=>"2"}
  • {"unique-ip"=>"18", "full-text"=>"16", "pdf"=>"8", "abstract"=>"1", "scanned-summary"=>"0", "scanned-page-browse"=>"0", "figure"=>"0", "supp-data"=>"0", "cited-by"=>"0", "year"=>"2014", "month"=>"3"}
  • {"unique-ip"=>"17", "full-text"=>"15", "pdf"=>"6", "abstract"=>"0", "scanned-summary"=>"0", "scanned-page-browse"=>"0", "figure"=>"0", "supp-data"=>"3", "cited-by"=>"0", "year"=>"2014", "month"=>"5"}
  • {"unique-ip"=>"24", "full-text"=>"17", "pdf"=>"12", "abstract"=>"0", "scanned-summary"=>"0", "scanned-page-browse"=>"0", "figure"=>"0", "supp-data"=>"2", "cited-by"=>"0", "year"=>"2014", "month"=>"6"}
  • {"unique-ip"=>"14", "full-text"=>"12", "pdf"=>"4", "abstract"=>"0", "scanned-summary"=>"0", "scanned-page-browse"=>"0", "figure"=>"1", "supp-data"=>"1", "cited-by"=>"0", "year"=>"2014", "month"=>"4"}
  • {"unique-ip"=>"29", "full-text"=>"24", "pdf"=>"15", "abstract"=>"0", "scanned-summary"=>"0", "scanned-page-browse"=>"0", "figure"=>"2", "supp-data"=>"1", "cited-by"=>"0", "year"=>"2014", "month"=>"9"}
  • {"unique-ip"=>"15", "full-text"=>"27", "pdf"=>"5", "abstract"=>"0", "scanned-summary"=>"0", "scanned-page-browse"=>"0", "figure"=>"0", "supp-data"=>"0", "cited-by"=>"0", "year"=>"2015", "month"=>"4"}
  • {"unique-ip"=>"26", "full-text"=>"35", "pdf"=>"9", "abstract"=>"0", "scanned-summary"=>"0", "scanned-page-browse"=>"0", "figure"=>"1", "supp-data"=>"6", "cited-by"=>"0", "year"=>"2015", "month"=>"5"}
  • {"unique-ip"=>"19", "full-text"=>"20", "pdf"=>"5", "abstract"=>"0", "scanned-summary"=>"0", "scanned-page-browse"=>"0", "figure"=>"1", "supp-data"=>"0", "cited-by"=>"0", "year"=>"2015", "month"=>"6"}
  • {"unique-ip"=>"28", "full-text"=>"31", "pdf"=>"7", "abstract"=>"0", "scanned-summary"=>"0", "scanned-page-browse"=>"0", "figure"=>"1", "supp-data"=>"0", "cited-by"=>"0", "year"=>"2015", "month"=>"7"}
  • {"unique-ip"=>"28", "full-text"=>"44", "pdf"=>"11", "abstract"=>"0", "scanned-summary"=>"0", "scanned-page-browse"=>"0", "figure"=>"0", "supp-data"=>"1", "cited-by"=>"0", "year"=>"2015", "month"=>"3"}
  • {"unique-ip"=>"18", "full-text"=>"15", "pdf"=>"11", "abstract"=>"0", "scanned-summary"=>"0", "scanned-page-browse"=>"0", "figure"=>"0", "supp-data"=>"0", "cited-by"=>"0", "year"=>"2015", "month"=>"2"}
  • {"unique-ip"=>"12", "full-text"=>"13", "pdf"=>"7", "abstract"=>"0", "scanned-summary"=>"0", "scanned-page-browse"=>"0", "figure"=>"0", "supp-data"=>"0", "cited-by"=>"0", "year"=>"2015", "month"=>"8"}
  • {"unique-ip"=>"24", "full-text"=>"23", "pdf"=>"3", "abstract"=>"0", "scanned-summary"=>"0", "scanned-page-browse"=>"0", "figure"=>"6", "supp-data"=>"0", "cited-by"=>"0", "year"=>"2015", "month"=>"9"}
  • {"unique-ip"=>"20", "full-text"=>"18", "pdf"=>"6", "abstract"=>"0", "scanned-summary"=>"0", "scanned-page-browse"=>"0", "figure"=>"0", "supp-data"=>"0", "cited-by"=>"0", "year"=>"2015", "month"=>"10"}
  • {"unique-ip"=>"21", "full-text"=>"17", "pdf"=>"6", "abstract"=>"0", "scanned-summary"=>"0", "scanned-page-browse"=>"0", "figure"=>"1", "supp-data"=>"2", "cited-by"=>"0", "year"=>"2014", "month"=>"7"}
  • {"unique-ip"=>"16", "full-text"=>"16", "pdf"=>"11", "abstract"=>"1", "scanned-summary"=>"0", "scanned-page-browse"=>"0", "figure"=>"0", "supp-data"=>"0", "cited-by"=>"0", "year"=>"2014", "month"=>"8"}
  • {"unique-ip"=>"42", "full-text"=>"39", "pdf"=>"22", "abstract"=>"0", "scanned-summary"=>"0", "scanned-page-browse"=>"0", "figure"=>"1", "supp-data"=>"2", "cited-by"=>"0", "year"=>"2014", "month"=>"10"}
  • {"unique-ip"=>"21", "full-text"=>"19", "pdf"=>"5", "abstract"=>"0", "scanned-summary"=>"0", "scanned-page-browse"=>"0", "figure"=>"2", "supp-data"=>"1", "cited-by"=>"0", "year"=>"2016", "month"=>"1"}
  • {"unique-ip"=>"13", "full-text"=>"12", "pdf"=>"4", "abstract"=>"0", "scanned-summary"=>"0", "scanned-page-browse"=>"0", "figure"=>"0", "supp-data"=>"0", "cited-by"=>"0", "year"=>"2016", "month"=>"2"}
  • {"unique-ip"=>"28", "full-text"=>"22", "pdf"=>"3", "abstract"=>"0", "scanned-summary"=>"0", "scanned-page-browse"=>"0", "figure"=>"2", "supp-data"=>"2", "cited-by"=>"0", "year"=>"2014", "month"=>"11"}
  • {"unique-ip"=>"22", "full-text"=>"21", "pdf"=>"6", "abstract"=>"0", "scanned-summary"=>"0", "scanned-page-browse"=>"0", "figure"=>"0", "supp-data"=>"1", "cited-by"=>"0", "year"=>"2014", "month"=>"12"}
  • {"unique-ip"=>"27", "full-text"=>"28", "pdf"=>"12", "abstract"=>"0", "scanned-summary"=>"0", "scanned-page-browse"=>"0", "figure"=>"3", "supp-data"=>"1", "cited-by"=>"0", "year"=>"2015", "month"=>"1"}
  • {"unique-ip"=>"25", "full-text"=>"21", "pdf"=>"10", "abstract"=>"0", "scanned-summary"=>"0", "scanned-page-browse"=>"0", "figure"=>"0", "supp-data"=>"1", "cited-by"=>"1", "year"=>"2015", "month"=>"11"}
  • {"unique-ip"=>"28", "full-text"=>"23", "pdf"=>"11", "abstract"=>"0", "scanned-summary"=>"0", "scanned-page-browse"=>"0", "figure"=>"1", "supp-data"=>"0", "cited-by"=>"0", "year"=>"2015", "month"=>"12"}
  • {"unique-ip"=>"20", "full-text"=>"20", "pdf"=>"3", "abstract"=>"0", "scanned-summary"=>"0", "scanned-page-browse"=>"0", "figure"=>"1", "supp-data"=>"2", "cited-by"=>"0", "year"=>"2016", "month"=>"3"}
  • {"unique-ip"=>"18", "full-text"=>"14", "pdf"=>"8", "abstract"=>"0", "scanned-summary"=>"0", "scanned-page-browse"=>"0", "figure"=>"1", "supp-data"=>"1", "cited-by"=>"0", "year"=>"2016", "month"=>"4"}
  • {"unique-ip"=>"16", "full-text"=>"13", "pdf"=>"7", "abstract"=>"0", "scanned-summary"=>"0", "scanned-page-browse"=>"0", "figure"=>"0", "supp-data"=>"0", "cited-by"=>"0", "year"=>"2016", "month"=>"5"}
  • {"unique-ip"=>"20", "full-text"=>"20", "pdf"=>"10", "abstract"=>"0", "scanned-summary"=>"0", "scanned-page-browse"=>"0", "figure"=>"1", "supp-data"=>"0", "cited-by"=>"0", "year"=>"2016", "month"=>"6"}
  • {"unique-ip"=>"15", "full-text"=>"15", "pdf"=>"2", "abstract"=>"0", "scanned-summary"=>"0", "scanned-page-browse"=>"0", "figure"=>"2", "supp-data"=>"0", "cited-by"=>"0", "year"=>"2016", "month"=>"7"}
  • {"unique-ip"=>"25", "full-text"=>"15", "pdf"=>"1", "abstract"=>"0", "scanned-summary"=>"0", "scanned-page-browse"=>"0", "figure"=>"4", "supp-data"=>"2", "cited-by"=>"1", "year"=>"2016", "month"=>"8"}
  • {"unique-ip"=>"12", "full-text"=>"12", "pdf"=>"4", "abstract"=>"0", "scanned-summary"=>"0", "scanned-page-browse"=>"0", "figure"=>"2", "supp-data"=>"0", "cited-by"=>"0", "year"=>"2016", "month"=>"9"}
  • {"unique-ip"=>"23", "full-text"=>"26", "pdf"=>"4", "abstract"=>"0", "scanned-summary"=>"0", "scanned-page-browse"=>"0", "figure"=>"0", "supp-data"=>"0", "cited-by"=>"0", "year"=>"2016", "month"=>"10"}
  • {"unique-ip"=>"21", "full-text"=>"33", "pdf"=>"4", "abstract"=>"0", "scanned-summary"=>"0", "scanned-page-browse"=>"0", "figure"=>"0", "supp-data"=>"1", "cited-by"=>"0", "year"=>"2016", "month"=>"11"}
  • {"unique-ip"=>"42", "full-text"=>"26", "pdf"=>"10", "abstract"=>"0", "scanned-summary"=>"0", "scanned-page-browse"=>"0", "figure"=>"8", "supp-data"=>"5", "cited-by"=>"1", "year"=>"2016", "month"=>"12"}
  • {"unique-ip"=>"22", "full-text"=>"19", "pdf"=>"7", "abstract"=>"0", "scanned-summary"=>"0", "scanned-page-browse"=>"0", "figure"=>"0", "supp-data"=>"0", "cited-by"=>"2", "year"=>"2017", "month"=>"1"}
  • {"unique-ip"=>"22", "full-text"=>"22", "pdf"=>"12", "abstract"=>"0", "scanned-summary"=>"0", "scanned-page-browse"=>"0", "figure"=>"0", "supp-data"=>"0", "cited-by"=>"0", "year"=>"2017", "month"=>"2"}
  • {"unique-ip"=>"34", "full-text"=>"33", "pdf"=>"6", "abstract"=>"0", "scanned-summary"=>"0", "scanned-page-browse"=>"0", "figure"=>"1", "supp-data"=>"1", "cited-by"=>"0", "year"=>"2017", "month"=>"3"}
  • {"unique-ip"=>"39", "full-text"=>"48", "pdf"=>"7", "abstract"=>"0", "scanned-summary"=>"0", "scanned-page-browse"=>"0", "figure"=>"0", "supp-data"=>"0", "cited-by"=>"1", "year"=>"2017", "month"=>"4"}
  • {"unique-ip"=>"24", "full-text"=>"26", "pdf"=>"5", "abstract"=>"0", "scanned-summary"=>"0", "scanned-page-browse"=>"0", "figure"=>"0", "supp-data"=>"0", "cited-by"=>"0", "year"=>"2017", "month"=>"5"}
  • {"unique-ip"=>"18", "full-text"=>"23", "pdf"=>"4", "abstract"=>"0", "scanned-summary"=>"0", "scanned-page-browse"=>"0", "figure"=>"0", "supp-data"=>"7", "cited-by"=>"0", "year"=>"2017", "month"=>"6"}
  • {"unique-ip"=>"20", "full-text"=>"20", "pdf"=>"9", "abstract"=>"0", "scanned-summary"=>"0", "scanned-page-browse"=>"0", "figure"=>"0", "supp-data"=>"0", "cited-by"=>"0", "year"=>"2017", "month"=>"7"}
  • {"unique-ip"=>"21", "full-text"=>"22", "pdf"=>"7", "abstract"=>"0", "scanned-summary"=>"0", "scanned-page-browse"=>"0", "figure"=>"3", "supp-data"=>"1", "cited-by"=>"0", "year"=>"2017", "month"=>"8"}
  • {"unique-ip"=>"20", "full-text"=>"19", "pdf"=>"6", "abstract"=>"0", "scanned-summary"=>"0", "scanned-page-browse"=>"0", "figure"=>"0", "supp-data"=>"1", "cited-by"=>"0", "year"=>"2017", "month"=>"9"}
  • {"unique-ip"=>"19", "full-text"=>"18", "pdf"=>"6", "abstract"=>"0", "scanned-summary"=>"0", "scanned-page-browse"=>"0", "figure"=>"3", "supp-data"=>"0", "cited-by"=>"0", "year"=>"2017", "month"=>"10"}
  • {"unique-ip"=>"26", "full-text"=>"20", "pdf"=>"13", "abstract"=>"0", "scanned-summary"=>"0", "scanned-page-browse"=>"0", "figure"=>"0", "supp-data"=>"2", "cited-by"=>"0", "year"=>"2017", "month"=>"11"}
  • {"unique-ip"=>"22", "full-text"=>"23", "pdf"=>"7", "abstract"=>"0", "scanned-summary"=>"0", "scanned-page-browse"=>"0", "figure"=>"1", "supp-data"=>"1", "cited-by"=>"0", "year"=>"2017", "month"=>"12"}
  • {"unique-ip"=>"16", "full-text"=>"15", "pdf"=>"3", "abstract"=>"0", "scanned-summary"=>"0", "scanned-page-browse"=>"0", "figure"=>"0", "supp-data"=>"0", "cited-by"=>"0", "year"=>"2018", "month"=>"1"}
  • {"unique-ip"=>"1", "full-text"=>"1", "pdf"=>"0", "abstract"=>"0", "scanned-summary"=>"0", "scanned-page-browse"=>"0", "figure"=>"0", "supp-data"=>"0", "cited-by"=>"0", "year"=>"2018", "month"=>"2"}
  • {"unique-ip"=>"17", "full-text"=>"16", "pdf"=>"5", "abstract"=>"0", "scanned-summary"=>"0", "scanned-page-browse"=>"0", "figure"=>"0", "supp-data"=>"2", "cited-by"=>"0", "year"=>"2018", "month"=>"3"}
  • {"unique-ip"=>"23", "full-text"=>"25", "pdf"=>"9", "scanned-summary"=>"0", "scanned-page-browse"=>"0", "figure"=>"3", "supp-data"=>"0", "cited-by"=>"0", "year"=>"2019", "month"=>"1"}
  • {"unique-ip"=>"30", "full-text"=>"32", "pdf"=>"5", "scanned-summary"=>"0", "scanned-page-browse"=>"0", "figure"=>"0", "supp-data"=>"5", "cited-by"=>"0", "year"=>"2018", "month"=>"12"}
  • {"unique-ip"=>"18", "full-text"=>"19", "pdf"=>"4", "scanned-summary"=>"0", "scanned-page-browse"=>"0", "figure"=>"1", "supp-data"=>"3", "cited-by"=>"0", "year"=>"2018", "month"=>"5"}
  • {"unique-ip"=>"13", "full-text"=>"15", "pdf"=>"5", "scanned-summary"=>"0", "scanned-page-browse"=>"0", "figure"=>"0", "supp-data"=>"1", "cited-by"=>"0", "year"=>"2018", "month"=>"6"}
  • {"unique-ip"=>"20", "full-text"=>"13", "pdf"=>"10", "scanned-summary"=>"0", "scanned-page-browse"=>"0", "figure"=>"0", "supp-data"=>"1", "cited-by"=>"0", "year"=>"2018", "month"=>"8"}
  • {"unique-ip"=>"21", "full-text"=>"25", "pdf"=>"1", "scanned-summary"=>"0", "scanned-page-browse"=>"0", "figure"=>"0", "supp-data"=>"1", "cited-by"=>"0", "year"=>"2018", "month"=>"4"}
  • {"unique-ip"=>"24", "full-text"=>"22", "pdf"=>"5", "scanned-summary"=>"0", "scanned-page-browse"=>"0", "figure"=>"2", "supp-data"=>"5", "cited-by"=>"0", "year"=>"2018", "month"=>"7"}
  • {"unique-ip"=>"17", "full-text"=>"16", "pdf"=>"3", "scanned-summary"=>"0", "scanned-page-browse"=>"0", "figure"=>"1", "supp-data"=>"0", "cited-by"=>"0", "year"=>"2018", "month"=>"10"}
  • {"unique-ip"=>"17", "full-text"=>"17", "pdf"=>"3", "scanned-summary"=>"0", "scanned-page-browse"=>"0", "figure"=>"0", "supp-data"=>"2", "cited-by"=>"0", "year"=>"2018", "month"=>"11"}
  • {"unique-ip"=>"9", "full-text"=>"12", "pdf"=>"5", "scanned-summary"=>"0", "scanned-page-browse"=>"0", "figure"=>"0", "supp-data"=>"1", "cited-by"=>"0", "year"=>"2018", "month"=>"9"}
  • {"unique-ip"=>"29", "full-text"=>"30", "pdf"=>"8", "scanned-summary"=>"0", "scanned-page-browse"=>"0", "figure"=>"0", "supp-data"=>"0", "cited-by"=>"0", "year"=>"2019", "month"=>"2"}
  • {"unique-ip"=>"38", "full-text"=>"33", "pdf"=>"13", "scanned-summary"=>"0", "scanned-page-browse"=>"0", "figure"=>"0", "supp-data"=>"2", "cited-by"=>"1", "year"=>"2019", "month"=>"3"}
  • {"unique-ip"=>"29", "full-text"=>"30", "pdf"=>"7", "scanned-summary"=>"0", "scanned-page-browse"=>"0", "figure"=>"0", "supp-data"=>"0", "cited-by"=>"0", "year"=>"2019", "month"=>"4"}
  • {"unique-ip"=>"45", "full-text"=>"50", "pdf"=>"7", "scanned-summary"=>"0", "scanned-page-browse"=>"0", "figure"=>"0", "supp-data"=>"0", "cited-by"=>"0", "year"=>"2019", "month"=>"5"}
  • {"unique-ip"=>"33", "full-text"=>"34", "pdf"=>"7", "scanned-summary"=>"0", "scanned-page-browse"=>"0", "figure"=>"0", "supp-data"=>"0", "cited-by"=>"0", "year"=>"2019", "month"=>"8"}
  • {"unique-ip"=>"35", "full-text"=>"33", "pdf"=>"7", "scanned-summary"=>"0", "scanned-page-browse"=>"0", "figure"=>"0", "supp-data"=>"0", "cited-by"=>"0", "year"=>"2019", "month"=>"9"}
  • {"unique-ip"=>"35", "full-text"=>"40", "pdf"=>"5", "scanned-summary"=>"0", "scanned-page-browse"=>"0", "figure"=>"3", "supp-data"=>"0", "cited-by"=>"0", "year"=>"2019", "month"=>"10"}
  • {"unique-ip"=>"30", "full-text"=>"30", "pdf"=>"6", "scanned-summary"=>"0", "scanned-page-browse"=>"0", "figure"=>"1", "supp-data"=>"0", "cited-by"=>"0", "year"=>"2019", "month"=>"12"}
  • {"unique-ip"=>"45", "full-text"=>"57", "pdf"=>"7", "scanned-summary"=>"0", "scanned-page-browse"=>"0", "figure"=>"0", "supp-data"=>"0", "cited-by"=>"0", "year"=>"2020", "month"=>"2"}
  • {"unique-ip"=>"52", "full-text"=>"56", "pdf"=>"15", "scanned-summary"=>"0", "scanned-page-browse"=>"0", "figure"=>"0", "supp-data"=>"0", "cited-by"=>"0", "year"=>"2020", "month"=>"3"}
  • {"unique-ip"=>"41", "full-text"=>"45", "pdf"=>"9", "scanned-summary"=>"0", "scanned-page-browse"=>"0", "figure"=>"2", "supp-data"=>"1", "cited-by"=>"1", "year"=>"2020", "month"=>"4"}
  • {"unique-ip"=>"56", "full-text"=>"74", "pdf"=>"12", "scanned-summary"=>"0", "scanned-page-browse"=>"0", "figure"=>"0", "supp-data"=>"0", "cited-by"=>"0", "year"=>"2020", "month"=>"5"}
  • {"unique-ip"=>"47", "full-text"=>"52", "pdf"=>"10", "scanned-summary"=>"0", "scanned-page-browse"=>"0", "figure"=>"1", "supp-data"=>"1", "cited-by"=>"1", "year"=>"2020", "month"=>"6"}
  • {"unique-ip"=>"71", "full-text"=>"50", "pdf"=>"7", "scanned-summary"=>"0", "scanned-page-browse"=>"0", "figure"=>"0", "supp-data"=>"0", "cited-by"=>"0", "year"=>"2020", "month"=>"7"}
  • {"unique-ip"=>"84", "full-text"=>"47", "pdf"=>"9", "scanned-summary"=>"0", "scanned-page-browse"=>"0", "figure"=>"0", "supp-data"=>"1", "cited-by"=>"0", "year"=>"2020", "month"=>"8"}
  • {"unique-ip"=>"145", "full-text"=>"67", "pdf"=>"7", "scanned-summary"=>"0", "scanned-page-browse"=>"0", "figure"=>"2", "supp-data"=>"1", "cited-by"=>"0", "year"=>"2020", "month"=>"9"}
  • {"unique-ip"=>"235", "full-text"=>"67", "pdf"=>"10", "scanned-summary"=>"0", "scanned-page-browse"=>"0", "figure"=>"0", "supp-data"=>"0", "cited-by"=>"3", "year"=>"2020", "month"=>"10"}

Relative Metric

{"start_date"=>"2013-01-01T00:00:00Z", "end_date"=>"2013-12-31T00:00:00Z", "subject_areas"=>[{"subject_area"=>"/Biology and life sciences", "average_usage"=>[269, 466, 588, 697, 800, 896, 988, 1076, 1165, 1254, 1340, 1417]}, {"subject_area"=>"/Biology and life sciences/Biochemistry", "average_usage"=>[266, 468, 593, 703, 804, 903, 993, 1084, 1171, 1256, 1339, 1422, 1492]}, {"subject_area"=>"/Biology and life sciences/Cell biology", "average_usage"=>[272, 472, 600, 713, 815, 911, 1004, 1094, 1185, 1273, 1358, 1441]}, {"subject_area"=>"/Biology and life sciences/Computational biology", "average_usage"=>[295, 511, 651, 775, 882, 992, 1100, 1201, 1304, 1400, 1486, 1570, 1650]}, {"subject_area"=>"/Biology and life sciences/Genetics", "average_usage"=>[284, 491, 620, 738, 843, 945, 1043, 1137, 1225, 1315, 1400, 1479, 1555]}, {"subject_area"=>"/Computer and information sciences", "average_usage"=>[297, 488, 616, 724, 828, 939, 1038, 1127, 1223, 1311, 1393, 1479, 1556]}, {"subject_area"=>"/Computer and information sciences/Network analysis", "average_usage"=>[340, 548, 701, 844, 945, 1073, 1189, 1282, 1391, 1488, 1562, 1660, 1731]}, {"subject_area"=>"/Medicine and health sciences", "average_usage"=>[264, 460, 584, 692, 794, 887, 978, 1067, 1154, 1241, 1328, 1408, 1474]}, {"subject_area"=>"/Physical sciences", "average_usage"=>[254, 431, 547, 651, 748, 842, 932, 1017, 1098, 1178, 1259, 1336, 1404]}, {"subject_area"=>"/Physical sciences/Mathematics", "average_usage"=>[259, 431, 541, 639, 727, 816, 898, 980, 1061, 1136, 1214, 1294, 1356]}]}
Loading … Spinner
There are currently no alerts