A Regression-Based Differential Expression Detection Algorithm for Microarray Studies with Ultra-Low Sample Size
Events
Loading … Spinner

Mendeley | Further Information

{"title"=>"A regression-based differential expression detection algorithm for microarray studies with ultra-low sample size", "type"=>"journal", "authors"=>[{"first_name"=>"Daniel", "last_name"=>"Vasiliu", "scopus_author_id"=>"15069777800"}, {"first_name"=>"Samuel", "last_name"=>"Clamons", "scopus_author_id"=>"56466089300"}, {"first_name"=>"Molly", "last_name"=>"McDonough", "scopus_author_id"=>"37661700900"}, {"first_name"=>"Brian", "last_name"=>"Rabe", "scopus_author_id"=>"37071102600"}, {"first_name"=>"Margaret", "last_name"=>"Saha", "scopus_author_id"=>"7102365402"}], "year"=>2015, "source"=>"PLoS ONE", "identifiers"=>{"pmid"=>"25738861", "doi"=>"10.1371/journal.pone.0118198", "sgr"=>"84929224276", "scopus"=>"2-s2.0-84929224276", "issn"=>"19326203", "pui"=>"604166290"}, "id"=>"f60328fc-4ca7-3372-b3c3-ecd5ed71fcb2", "abstract"=>"Global gene expression analysis using microarrays and, more recently, RNA-seq, has allowed investigators to understand biological processes at a system level. However, the identification of differentially expressed genes in experiments with small sample size, high dimensionality, and high variance remains challenging, limiting the usability of these tens of thousands of publicly available, and possibly many more unpublished, gene expression datasets. We propose a novel variable selection algorithm for ultra-low-n microarray studies using generalized linear model-based variable selection with a penalized binomial regression algorithm called penalized Euclidean distance (PED). Our method uses PED to build a classifier on the experimental data to rank genes by importance. In place of cross-validation, which is required by most similar methods but not reliable for experiments with small sample size, we use a simulation-based approach to additively build a list of differentially expressed genes from the rank-ordered list. Our simulation-based approach maintains a low false discovery rate while maximizing the number of differentially expressed genes identified, a feature critical for downstream pathway analysis. We apply our method to microarray data from an experiment perturbing the Notch signaling pathway in Xenopus laevis embryos. This dataset was chosen because it showed very little differential expression according to limma, a powerful and widely-used method for microarray analysis. Our method was able to detect a significant number of differentially expressed genes in this dataset and suggest future directions for investigation. Our method is easily adaptable for analysis of data from RNA-seq and other global expression experiments with low sample size and high dimensionality.", "link"=>"http://www.mendeley.com/research/regressionbased-differential-expression-detection-algorithm-microarray-studies-ultralow-sample-size", "reader_count"=>15, "reader_count_by_academic_status"=>{"Unspecified"=>2, "Researcher"=>4, "Student > Ph. D. Student"=>3, "Student > Postgraduate"=>1, "Student > Master"=>2, "Other"=>1, "Student > Bachelor"=>2}, "reader_count_by_user_role"=>{"Unspecified"=>2, "Researcher"=>4, "Student > Ph. D. Student"=>3, "Student > Postgraduate"=>1, "Student > Master"=>2, "Other"=>1, "Student > Bachelor"=>2}, "reader_count_by_subject_area"=>{"Unspecified"=>2, "Engineering"=>1, "Biochemistry, Genetics and Molecular Biology"=>5, "Mathematics"=>2, "Agricultural and Biological Sciences"=>3, "Veterinary Science and Veterinary Medicine"=>1, "Computer Science"=>1}, "reader_count_by_subdiscipline"=>{"Engineering"=>{"Engineering"=>1}, "Agricultural and Biological Sciences"=>{"Agricultural and Biological Sciences"=>3}, "Computer Science"=>{"Computer Science"=>1}, "Biochemistry, Genetics and Molecular Biology"=>{"Biochemistry, Genetics and Molecular Biology"=>5}, "Mathematics"=>{"Mathematics"=>2}, "Unspecified"=>{"Unspecified"=>2}, "Veterinary Science and Veterinary Medicine"=>{"Veterinary Science and Veterinary Medicine"=>1}}, "reader_count_by_country"=>{"Sweden"=>1, "United Kingdom"=>1, "France"=>1}, "group_count"=>1}

Scopus | Further Information

{"@_fa"=>"true", "link"=>[{"@_fa"=>"true", "@ref"=>"self", "@href"=>"https://api.elsevier.com/content/abstract/scopus_id/84929224276"}, {"@_fa"=>"true", "@ref"=>"author-affiliation", "@href"=>"https://api.elsevier.com/content/abstract/scopus_id/84929224276?field=author,affiliation"}, {"@_fa"=>"true", "@ref"=>"scopus", "@href"=>"https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=84929224276&origin=inward"}, {"@_fa"=>"true", "@ref"=>"scopus-citedby", "@href"=>"https://www.scopus.com/inward/citedby.uri?partnerID=HzOxMe3b&scp=84929224276&origin=inward"}], "prism:url"=>"https://api.elsevier.com/content/abstract/scopus_id/84929224276", "dc:identifier"=>"SCOPUS_ID:84929224276", "eid"=>"2-s2.0-84929224276", "dc:title"=>"A regression-based differential expression detection algorithm for microarray studies with ultra-low sample size", "dc:creator"=>"Vasiliu D.", "prism:publicationName"=>"PLoS ONE", "prism:eIssn"=>"19326203", "prism:volume"=>"10", "prism:issueIdentifier"=>"3", "prism:pageRange"=>nil, "prism:coverDate"=>"2015-03-04", "prism:coverDisplayDate"=>"4 March 2015", "prism:doi"=>"10.1371/journal.pone.0118198", "citedby-count"=>"3", "affiliation"=>[{"@_fa"=>"true", "affilname"=>"The College of William and Mary", "affiliation-city"=>"Williamsburg", "affiliation-country"=>"United States"}], "pubmed-id"=>"25738861", "prism:aggregationType"=>"Journal", "subtype"=>"ar", "subtypeDescription"=>"Article", "article-number"=>"e0118198", "source-id"=>"10600153309", "openaccess"=>"1", "openaccessFlag"=>true}

Facebook

  • {"url"=>"http%3A%2F%2Fjournals.plos.org%2Fplosone%2Farticle%3Fid%3D10.1371%252Fjournal.pone.0118198", "share_count"=>1, "like_count"=>0, "comment_count"=>4, "click_count"=>0, "total_count"=>5}

Counter

  • {"month"=>"3", "year"=>"2015", "pdf_views"=>"94", "xml_views"=>"15", "html_views"=>"530"}
  • {"month"=>"4", "year"=>"2015", "pdf_views"=>"44", "xml_views"=>"2", "html_views"=>"99"}
  • {"month"=>"5", "year"=>"2015", "pdf_views"=>"17", "xml_views"=>"0", "html_views"=>"177"}
  • {"month"=>"6", "year"=>"2015", "pdf_views"=>"14", "xml_views"=>"0", "html_views"=>"58"}
  • {"month"=>"7", "year"=>"2015", "pdf_views"=>"7", "xml_views"=>"0", "html_views"=>"32"}
  • {"month"=>"8", "year"=>"2015", "pdf_views"=>"6", "xml_views"=>"0", "html_views"=>"36"}
  • {"month"=>"9", "year"=>"2015", "pdf_views"=>"8", "xml_views"=>"1", "html_views"=>"68"}
  • {"month"=>"10", "year"=>"2015", "pdf_views"=>"3", "xml_views"=>"0", "html_views"=>"57"}
  • {"month"=>"11", "year"=>"2015", "pdf_views"=>"4", "xml_views"=>"1", "html_views"=>"23"}
  • {"month"=>"12", "year"=>"2015", "pdf_views"=>"2", "xml_views"=>"0", "html_views"=>"28"}
  • {"month"=>"1", "year"=>"2016", "pdf_views"=>"6", "xml_views"=>"0", "html_views"=>"59"}
  • {"month"=>"2", "year"=>"2016", "pdf_views"=>"4", "xml_views"=>"0", "html_views"=>"26"}
  • {"month"=>"3", "year"=>"2016", "pdf_views"=>"2", "xml_views"=>"0", "html_views"=>"19"}
  • {"month"=>"4", "year"=>"2016", "pdf_views"=>"6", "xml_views"=>"0", "html_views"=>"35"}
  • {"month"=>"5", "year"=>"2016", "pdf_views"=>"3", "xml_views"=>"0", "html_views"=>"13"}
  • {"month"=>"6", "year"=>"2016", "pdf_views"=>"0", "xml_views"=>"0", "html_views"=>"23"}
  • {"month"=>"7", "year"=>"2016", "pdf_views"=>"4", "xml_views"=>"0", "html_views"=>"27"}
  • {"month"=>"8", "year"=>"2016", "pdf_views"=>"2", "xml_views"=>"0", "html_views"=>"17"}
  • {"month"=>"9", "year"=>"2016", "pdf_views"=>"6", "xml_views"=>"0", "html_views"=>"23"}
  • {"month"=>"10", "year"=>"2016", "pdf_views"=>"3", "xml_views"=>"0", "html_views"=>"16"}
  • {"month"=>"11", "year"=>"2016", "pdf_views"=>"2", "xml_views"=>"0", "html_views"=>"28"}
  • {"month"=>"12", "year"=>"2016", "pdf_views"=>"8", "xml_views"=>"0", "html_views"=>"24"}
  • {"month"=>"1", "year"=>"2017", "pdf_views"=>"3", "xml_views"=>"0", "html_views"=>"46"}
  • {"month"=>"2", "year"=>"2017", "pdf_views"=>"7", "xml_views"=>"0", "html_views"=>"63"}
  • {"month"=>"3", "year"=>"2017", "pdf_views"=>"1", "xml_views"=>"0", "html_views"=>"61"}
  • {"month"=>"4", "year"=>"2017", "pdf_views"=>"10", "xml_views"=>"0", "html_views"=>"93"}
  • {"month"=>"5", "year"=>"2017", "pdf_views"=>"30", "xml_views"=>"0", "html_views"=>"94"}
  • {"month"=>"6", "year"=>"2017", "pdf_views"=>"2", "xml_views"=>"0", "html_views"=>"81"}
  • {"month"=>"7", "year"=>"2017", "pdf_views"=>"12", "xml_views"=>"0", "html_views"=>"81"}
  • {"month"=>"8", "year"=>"2017", "pdf_views"=>"7", "xml_views"=>"0", "html_views"=>"57"}
  • {"month"=>"9", "year"=>"2017", "pdf_views"=>"4", "xml_views"=>"0", "html_views"=>"100"}
  • {"month"=>"10", "year"=>"2017", "pdf_views"=>"3", "xml_views"=>"0", "html_views"=>"104"}
  • {"month"=>"11", "year"=>"2017", "pdf_views"=>"5", "xml_views"=>"0", "html_views"=>"155"}
  • {"month"=>"12", "year"=>"2017", "pdf_views"=>"1", "xml_views"=>"1", "html_views"=>"159"}
  • {"month"=>"1", "year"=>"2018", "pdf_views"=>"6", "xml_views"=>"0", "html_views"=>"82"}
  • {"month"=>"2", "year"=>"2018", "pdf_views"=>"1", "xml_views"=>"0", "html_views"=>"4"}
  • {"month"=>"3", "year"=>"2018", "pdf_views"=>"11", "xml_views"=>"0", "html_views"=>"9"}
  • {"month"=>"4", "year"=>"2018", "pdf_views"=>"5", "xml_views"=>"0", "html_views"=>"15"}
  • {"month"=>"5", "year"=>"2018", "pdf_views"=>"3", "xml_views"=>"0", "html_views"=>"7"}
  • {"month"=>"6", "year"=>"2018", "pdf_views"=>"4", "xml_views"=>"0", "html_views"=>"11"}
  • {"month"=>"7", "year"=>"2018", "pdf_views"=>"3", "xml_views"=>"3", "html_views"=>"13"}
  • {"month"=>"8", "year"=>"2018", "pdf_views"=>"3", "xml_views"=>"1", "html_views"=>"9"}
  • {"month"=>"9", "year"=>"2018", "pdf_views"=>"3", "xml_views"=>"0", "html_views"=>"8"}
  • {"month"=>"10", "year"=>"2018", "pdf_views"=>"1", "xml_views"=>"1", "html_views"=>"5"}
  • {"month"=>"11", "year"=>"2018", "pdf_views"=>"1", "xml_views"=>"0", "html_views"=>"3"}
  • {"month"=>"12", "year"=>"2018", "pdf_views"=>"0", "xml_views"=>"0", "html_views"=>"4"}
  • {"month"=>"1", "year"=>"2019", "pdf_views"=>"5", "xml_views"=>"0", "html_views"=>"6"}
  • {"month"=>"2", "year"=>"2019", "pdf_views"=>"6", "xml_views"=>"0", "html_views"=>"2"}
  • {"month"=>"3", "year"=>"2019", "pdf_views"=>"3", "xml_views"=>"0", "html_views"=>"6"}
  • {"month"=>"4", "year"=>"2019", "pdf_views"=>"11", "xml_views"=>"0", "html_views"=>"6"}
  • {"month"=>"5", "year"=>"2019", "pdf_views"=>"5", "xml_views"=>"0", "html_views"=>"5"}
  • {"month"=>"6", "year"=>"2019", "pdf_views"=>"3", "xml_views"=>"0", "html_views"=>"2"}
  • {"month"=>"7", "year"=>"2019", "pdf_views"=>"6", "xml_views"=>"0", "html_views"=>"2"}
  • {"month"=>"8", "year"=>"2019", "pdf_views"=>"2", "xml_views"=>"0", "html_views"=>"2"}
  • {"month"=>"9", "year"=>"2019", "pdf_views"=>"4", "xml_views"=>"0", "html_views"=>"4"}
  • {"month"=>"10", "year"=>"2019", "pdf_views"=>"6", "xml_views"=>"0", "html_views"=>"9"}
  • {"month"=>"11", "year"=>"2019", "pdf_views"=>"3", "xml_views"=>"1", "html_views"=>"3"}
  • {"month"=>"12", "year"=>"2019", "pdf_views"=>"1", "xml_views"=>"0", "html_views"=>"3"}

Figshare

  • {"files"=>["https://ndownloader.figshare.com/files/1935582"], "description"=>"<p>Selection sizes for Notch data with other variable selection methods.</p>", "links"=>[], "tags"=>["Xenopus laevis embryos", "method", "differentially", "experiment", "binomial regression algorithm", "Expression Detection Algorithm", "sample size", "ped", "microarray", "gene expression datasets", "analysis"], "article_id"=>1325865, "categories"=>["Biological Sciences"], "users"=>["Daniel Vasiliu", "Samuel Clamons", "Molly McDonough", "Brian Rabe", "Margaret Saha"], "doi"=>"https://dx.doi.org/10.1371/journal.pone.0118198.t004", "stats"=>{"downloads"=>0, "page_views"=>10, "likes"=>0}, "figshare_url"=>"https://figshare.com/articles/_Selection_sizes_for_Notch_data_with_other_variable_selection_methods_/1325865", "title"=>"Selection sizes for Notch data with other variable selection methods.", "pos_in_sequence"=>0, "defined_type"=>3, "published_date"=>"2015-03-04 03:40:14"}
  • {"files"=>["https://ndownloader.figshare.com/files/1935580"], "description"=>"<p>Selection sizes for Notch data and the permutations of the real data with 1% empirical FDR.</p>", "links"=>[], "tags"=>["Xenopus laevis embryos", "method", "differentially", "experiment", "binomial regression algorithm", "Expression Detection Algorithm", "sample size", "ped", "microarray", "gene expression datasets", "analysis"], "article_id"=>1325863, "categories"=>["Biological Sciences"], "users"=>["Daniel Vasiliu", "Samuel Clamons", "Molly McDonough", "Brian Rabe", "Margaret Saha"], "doi"=>"https://dx.doi.org/10.1371/journal.pone.0118198.t002", "stats"=>{"downloads"=>1, "page_views"=>10, "likes"=>0}, "figshare_url"=>"https://figshare.com/articles/_Selection_sizes_for_Notch_data_and_the_permutations_of_the_real_data_with_1_empirical_FDR_/1325863", "title"=>"Selection sizes for Notch data and the permutations of the real data with 1% empirical FDR.", "pos_in_sequence"=>0, "defined_type"=>3, "published_date"=>"2015-03-04 03:40:14"}
  • {"files"=>["https://ndownloader.figshare.com/files/1935581"], "description"=>"<p>Selection sizes for simulated data with null signal and its permutations.</p>", "links"=>[], "tags"=>["Xenopus laevis embryos", "method", "differentially", "experiment", "binomial regression algorithm", "Expression Detection Algorithm", "sample size", "ped", "microarray", "gene expression datasets", "analysis"], "article_id"=>1325864, "categories"=>["Biological Sciences"], "users"=>["Daniel Vasiliu", "Samuel Clamons", "Molly McDonough", "Brian Rabe", "Margaret Saha"], "doi"=>"https://dx.doi.org/10.1371/journal.pone.0118198.t003", "stats"=>{"downloads"=>0, "page_views"=>9, "likes"=>0}, "figshare_url"=>"https://figshare.com/articles/_Selection_sizes_for_simulated_data_with_null_signal_and_its_permutations_/1325864", "title"=>"Selection sizes for simulated data with null signal and its permutations.", "pos_in_sequence"=>0, "defined_type"=>3, "published_date"=>"2015-03-04 03:40:14"}
  • {"files"=>["https://ndownloader.figshare.com/files/1935579"], "description"=>"<p>Selection sizes for Notch data with Limma.</p>", "links"=>[], "tags"=>["Xenopus laevis embryos", "method", "differentially", "experiment", "binomial regression algorithm", "Expression Detection Algorithm", "sample size", "ped", "microarray", "gene expression datasets", "analysis"], "article_id"=>1325862, "categories"=>["Biological Sciences"], "users"=>["Daniel Vasiliu", "Samuel Clamons", "Molly McDonough", "Brian Rabe", "Margaret Saha"], "doi"=>"https://dx.doi.org/10.1371/journal.pone.0118198.t001", "stats"=>{"downloads"=>0, "page_views"=>9, "likes"=>0}, "figshare_url"=>"https://figshare.com/articles/_Selection_sizes_for_Notch_data_with_Limma_/1325862", "title"=>"Selection sizes for Notch data with Limma.", "pos_in_sequence"=>0, "defined_type"=>3, "published_date"=>"2015-03-04 03:40:14"}
  • {"files"=>["https://ndownloader.figshare.com/files/1935583", "https://ndownloader.figshare.com/files/1935584", "https://ndownloader.figshare.com/files/1935585", "https://ndownloader.figshare.com/files/1935586", "https://ndownloader.figshare.com/files/1935587", "https://ndownloader.figshare.com/files/1935588"], "description"=>"<div><p>Global gene expression analysis using microarrays and, more recently, RNA-seq, has allowed investigators to understand biological processes at a system level. However, the identification of differentially expressed genes in experiments with small sample size, high dimensionality, and high variance remains challenging, limiting the usability of these tens of thousands of publicly available, and possibly many more unpublished, gene expression datasets. We propose a novel variable selection algorithm for ultra-low-<i>n</i> microarray studies using generalized linear model-based variable selection with a penalized binomial regression algorithm called penalized Euclidean distance (PED). Our method uses PED to build a classifier on the experimental data to rank genes by importance. In place of cross-validation, which is required by most similar methods but not reliable for experiments with small sample size, we use a simulation-based approach to additively build a list of differentially expressed genes from the rank-ordered list. Our simulation-based approach maintains a low false discovery rate while maximizing the number of differentially expressed genes identified, a feature critical for downstream pathway analysis. We apply our method to microarray data from an experiment perturbing the Notch signaling pathway in <i>Xenopus laevis</i> embryos. This dataset was chosen because it showed very little differential expression according to limma, a powerful and widely-used method for microarray analysis. Our method was able to detect a significant number of differentially expressed genes in this dataset and suggest future directions for investigation. Our method is easily adaptable for analysis of data from RNA-seq and other global expression experiments with low sample size and high dimensionality.</p></div>", "links"=>[], "tags"=>["Xenopus laevis embryos", "method", "differentially", "experiment", "binomial regression algorithm", "Expression Detection Algorithm", "sample size", "ped", "microarray", "gene expression datasets", "analysis"], "article_id"=>1325866, "categories"=>["Biological Sciences"], "users"=>["Daniel Vasiliu", "Samuel Clamons", "Molly McDonough", "Brian Rabe", "Margaret Saha"], "doi"=>["https://dx.doi.org/10.1371/journal.pone.0118198.s001", "https://dx.doi.org/10.1371/journal.pone.0118198.s002", "https://dx.doi.org/10.1371/journal.pone.0118198.s003", "https://dx.doi.org/10.1371/journal.pone.0118198.s004", "https://dx.doi.org/10.1371/journal.pone.0118198.s005", "https://dx.doi.org/10.1371/journal.pone.0118198.s006"], "stats"=>{"downloads"=>0, "page_views"=>9, "likes"=>0}, "figshare_url"=>"https://figshare.com/articles/_A_Regression_Based_Differential_Expression_Detection_Algorithm_for_Microarray_Studies_with_Ultra_Low_Sample_Size_/1325866", "title"=>"A Regression-Based Differential Expression Detection Algorithm for Microarray Studies with Ultra-Low Sample Size", "pos_in_sequence"=>0, "defined_type"=>4, "published_date"=>"2015-03-04 03:40:14"}
  • {"files"=>["https://ndownloader.figshare.com/files/1935578"], "description"=>"<p>A schematic overview of gene selection by PED.</p>", "links"=>[], "tags"=>["Xenopus laevis embryos", "method", "differentially", "experiment", "binomial regression algorithm", "Expression Detection Algorithm", "sample size", "ped", "microarray", "gene expression datasets", "analysis"], "article_id"=>1325861, "categories"=>["Biological Sciences"], "users"=>["Daniel Vasiliu", "Samuel Clamons", "Molly McDonough", "Brian Rabe", "Margaret Saha"], "doi"=>"https://dx.doi.org/10.1371/journal.pone.0118198.g001", "stats"=>{"downloads"=>0, "page_views"=>20, "likes"=>0}, "figshare_url"=>"https://figshare.com/articles/_A_schematic_overview_of_gene_selection_by_PED_/1325861", "title"=>"A schematic overview of gene selection by PED.", "pos_in_sequence"=>0, "defined_type"=>1, "published_date"=>"2015-03-04 03:40:14"}

PMC Usage Stats | Further Information

  • {"unique-ip"=>"26", "full-text"=>"28", "pdf"=>"11", "abstract"=>"0", "scanned-summary"=>"0", "scanned-page-browse"=>"0", "figure"=>"1", "supp-data"=>"0", "cited-by"=>"0", "year"=>"2015", "month"=>"4"}
  • {"unique-ip"=>"16", "full-text"=>"16", "pdf"=>"3", "abstract"=>"0", "scanned-summary"=>"0", "scanned-page-browse"=>"0", "figure"=>"0", "supp-data"=>"0", "cited-by"=>"0", "year"=>"2015", "month"=>"5"}
  • {"unique-ip"=>"22", "full-text"=>"23", "pdf"=>"9", "abstract"=>"0", "scanned-summary"=>"0", "scanned-page-browse"=>"0", "figure"=>"2", "supp-data"=>"0", "cited-by"=>"0", "year"=>"2015", "month"=>"6"}
  • {"unique-ip"=>"15", "full-text"=>"15", "pdf"=>"4", "abstract"=>"0", "scanned-summary"=>"0", "scanned-page-browse"=>"0", "figure"=>"0", "supp-data"=>"0", "cited-by"=>"0", "year"=>"2015", "month"=>"7"}
  • {"unique-ip"=>"8", "full-text"=>"9", "pdf"=>"3", "abstract"=>"0", "scanned-summary"=>"0", "scanned-page-browse"=>"0", "figure"=>"2", "supp-data"=>"0", "cited-by"=>"0", "year"=>"2015", "month"=>"3"}
  • {"unique-ip"=>"8", "full-text"=>"9", "pdf"=>"4", "abstract"=>"0", "scanned-summary"=>"0", "scanned-page-browse"=>"0", "figure"=>"0", "supp-data"=>"1", "cited-by"=>"0", "year"=>"2015", "month"=>"8"}
  • {"unique-ip"=>"27", "full-text"=>"23", "pdf"=>"4", "abstract"=>"0", "scanned-summary"=>"0", "scanned-page-browse"=>"0", "figure"=>"0", "supp-data"=>"6", "cited-by"=>"0", "year"=>"2015", "month"=>"9"}
  • {"unique-ip"=>"19", "full-text"=>"22", "pdf"=>"1", "abstract"=>"0", "scanned-summary"=>"0", "scanned-page-browse"=>"0", "figure"=>"1", "supp-data"=>"0", "cited-by"=>"1", "year"=>"2015", "month"=>"10"}
  • {"unique-ip"=>"5", "full-text"=>"4", "pdf"=>"2", "abstract"=>"0", "scanned-summary"=>"0", "scanned-page-browse"=>"0", "figure"=>"0", "supp-data"=>"0", "cited-by"=>"0", "year"=>"2016", "month"=>"2"}
  • {"unique-ip"=>"20", "full-text"=>"16", "pdf"=>"8", "abstract"=>"0", "scanned-summary"=>"0", "scanned-page-browse"=>"0", "figure"=>"3", "supp-data"=>"0", "cited-by"=>"0", "year"=>"2015", "month"=>"11"}
  • {"unique-ip"=>"9", "full-text"=>"4", "pdf"=>"6", "abstract"=>"0", "scanned-summary"=>"0", "scanned-page-browse"=>"0", "figure"=>"0", "supp-data"=>"0", "cited-by"=>"0", "year"=>"2015", "month"=>"12"}
  • {"unique-ip"=>"11", "full-text"=>"11", "pdf"=>"2", "abstract"=>"0", "scanned-summary"=>"0", "scanned-page-browse"=>"0", "figure"=>"1", "supp-data"=>"0", "cited-by"=>"0", "year"=>"2016", "month"=>"1"}
  • {"unique-ip"=>"6", "full-text"=>"6", "pdf"=>"1", "abstract"=>"0", "scanned-summary"=>"0", "scanned-page-browse"=>"0", "figure"=>"1", "supp-data"=>"0", "cited-by"=>"0", "year"=>"2016", "month"=>"3"}
  • {"unique-ip"=>"4", "full-text"=>"4", "pdf"=>"0", "abstract"=>"0", "scanned-summary"=>"0", "scanned-page-browse"=>"0", "figure"=>"0", "supp-data"=>"0", "cited-by"=>"0", "year"=>"2016", "month"=>"4"}
  • {"unique-ip"=>"6", "full-text"=>"4", "pdf"=>"1", "abstract"=>"0", "scanned-summary"=>"0", "scanned-page-browse"=>"0", "figure"=>"2", "supp-data"=>"0", "cited-by"=>"0", "year"=>"2016", "month"=>"5"}
  • {"unique-ip"=>"5", "full-text"=>"5", "pdf"=>"1", "abstract"=>"0", "scanned-summary"=>"0", "scanned-page-browse"=>"0", "figure"=>"0", "supp-data"=>"0", "cited-by"=>"0", "year"=>"2016", "month"=>"6"}
  • {"unique-ip"=>"3", "full-text"=>"2", "pdf"=>"1", "abstract"=>"0", "scanned-summary"=>"0", "scanned-page-browse"=>"0", "figure"=>"0", "supp-data"=>"0", "cited-by"=>"0", "year"=>"2016", "month"=>"7"}
  • {"unique-ip"=>"8", "full-text"=>"9", "pdf"=>"0", "abstract"=>"0", "scanned-summary"=>"0", "scanned-page-browse"=>"0", "figure"=>"2", "supp-data"=>"0", "cited-by"=>"0", "year"=>"2016", "month"=>"8"}
  • {"unique-ip"=>"5", "full-text"=>"5", "pdf"=>"1", "abstract"=>"0", "scanned-summary"=>"0", "scanned-page-browse"=>"0", "figure"=>"0", "supp-data"=>"0", "cited-by"=>"0", "year"=>"2016", "month"=>"9"}
  • {"unique-ip"=>"9", "full-text"=>"7", "pdf"=>"5", "abstract"=>"0", "scanned-summary"=>"0", "scanned-page-browse"=>"0", "figure"=>"1", "supp-data"=>"0", "cited-by"=>"0", "year"=>"2016", "month"=>"10"}
  • {"unique-ip"=>"6", "full-text"=>"7", "pdf"=>"1", "abstract"=>"0", "scanned-summary"=>"0", "scanned-page-browse"=>"0", "figure"=>"0", "supp-data"=>"0", "cited-by"=>"0", "year"=>"2016", "month"=>"11"}
  • {"unique-ip"=>"3", "full-text"=>"3", "pdf"=>"0", "abstract"=>"0", "scanned-summary"=>"0", "scanned-page-browse"=>"0", "figure"=>"0", "supp-data"=>"0", "cited-by"=>"0", "year"=>"2016", "month"=>"12"}
  • {"unique-ip"=>"1", "full-text"=>"0", "pdf"=>"0", "abstract"=>"0", "scanned-summary"=>"0", "scanned-page-browse"=>"0", "figure"=>"1", "supp-data"=>"0", "cited-by"=>"0", "year"=>"2017", "month"=>"1"}
  • {"unique-ip"=>"3", "full-text"=>"4", "pdf"=>"3", "abstract"=>"0", "scanned-summary"=>"0", "scanned-page-browse"=>"0", "figure"=>"0", "supp-data"=>"0", "cited-by"=>"0", "year"=>"2017", "month"=>"2"}
  • {"unique-ip"=>"3", "full-text"=>"3", "pdf"=>"0", "abstract"=>"0", "scanned-summary"=>"0", "scanned-page-browse"=>"0", "figure"=>"0", "supp-data"=>"0", "cited-by"=>"0", "year"=>"2017", "month"=>"3"}
  • {"unique-ip"=>"5", "full-text"=>"6", "pdf"=>"1", "abstract"=>"0", "scanned-summary"=>"0", "scanned-page-browse"=>"0", "figure"=>"1", "supp-data"=>"0", "cited-by"=>"0", "year"=>"2017", "month"=>"4"}
  • {"unique-ip"=>"13", "full-text"=>"12", "pdf"=>"2", "abstract"=>"0", "scanned-summary"=>"0", "scanned-page-browse"=>"0", "figure"=>"2", "supp-data"=>"0", "cited-by"=>"0", "year"=>"2017", "month"=>"5"}
  • {"unique-ip"=>"6", "full-text"=>"4", "pdf"=>"4", "abstract"=>"0", "scanned-summary"=>"0", "scanned-page-browse"=>"0", "figure"=>"2", "supp-data"=>"0", "cited-by"=>"0", "year"=>"2017", "month"=>"6"}
  • {"unique-ip"=>"11", "full-text"=>"13", "pdf"=>"5", "abstract"=>"0", "scanned-summary"=>"0", "scanned-page-browse"=>"0", "figure"=>"3", "supp-data"=>"0", "cited-by"=>"0", "year"=>"2017", "month"=>"7"}
  • {"unique-ip"=>"5", "full-text"=>"5", "pdf"=>"0", "abstract"=>"0", "scanned-summary"=>"0", "scanned-page-browse"=>"0", "figure"=>"2", "supp-data"=>"0", "cited-by"=>"0", "year"=>"2017", "month"=>"8"}
  • {"unique-ip"=>"6", "full-text"=>"6", "pdf"=>"2", "abstract"=>"0", "scanned-summary"=>"0", "scanned-page-browse"=>"0", "figure"=>"0", "supp-data"=>"0", "cited-by"=>"0", "year"=>"2017", "month"=>"9"}
  • {"unique-ip"=>"8", "full-text"=>"9", "pdf"=>"0", "abstract"=>"0", "scanned-summary"=>"0", "scanned-page-browse"=>"0", "figure"=>"0", "supp-data"=>"0", "cited-by"=>"0", "year"=>"2017", "month"=>"10"}
  • {"unique-ip"=>"12", "full-text"=>"9", "pdf"=>"1", "abstract"=>"0", "scanned-summary"=>"0", "scanned-page-browse"=>"0", "figure"=>"0", "supp-data"=>"0", "cited-by"=>"0", "year"=>"2017", "month"=>"11"}
  • {"unique-ip"=>"11", "full-text"=>"7", "pdf"=>"1", "abstract"=>"0", "scanned-summary"=>"0", "scanned-page-browse"=>"0", "figure"=>"0", "supp-data"=>"0", "cited-by"=>"0", "year"=>"2017", "month"=>"12"}
  • {"unique-ip"=>"6", "full-text"=>"5", "pdf"=>"1", "abstract"=>"0", "scanned-summary"=>"0", "scanned-page-browse"=>"0", "figure"=>"0", "supp-data"=>"0", "cited-by"=>"0", "year"=>"2018", "month"=>"1"}
  • {"unique-ip"=>"1", "full-text"=>"1", "pdf"=>"0", "abstract"=>"0", "scanned-summary"=>"0", "scanned-page-browse"=>"0", "figure"=>"0", "supp-data"=>"0", "cited-by"=>"0", "year"=>"2018", "month"=>"2"}
  • {"unique-ip"=>"10", "full-text"=>"11", "pdf"=>"2", "abstract"=>"0", "scanned-summary"=>"0", "scanned-page-browse"=>"0", "figure"=>"0", "supp-data"=>"0", "cited-by"=>"0", "year"=>"2018", "month"=>"3"}
  • {"unique-ip"=>"7", "full-text"=>"7", "pdf"=>"0", "scanned-summary"=>"0", "scanned-page-browse"=>"0", "figure"=>"0", "supp-data"=>"0", "cited-by"=>"0", "year"=>"2019", "month"=>"1"}
  • {"unique-ip"=>"15", "full-text"=>"16", "pdf"=>"0", "scanned-summary"=>"0", "scanned-page-browse"=>"0", "figure"=>"0", "supp-data"=>"0", "cited-by"=>"0", "year"=>"2018", "month"=>"12"}
  • {"unique-ip"=>"11", "full-text"=>"10", "pdf"=>"1", "scanned-summary"=>"0", "scanned-page-browse"=>"0", "figure"=>"0", "supp-data"=>"0", "cited-by"=>"0", "year"=>"2018", "month"=>"11"}
  • {"unique-ip"=>"9", "full-text"=>"8", "pdf"=>"3", "scanned-summary"=>"0", "scanned-page-browse"=>"0", "figure"=>"0", "supp-data"=>"0", "cited-by"=>"0", "year"=>"2018", "month"=>"4"}
  • {"unique-ip"=>"3", "full-text"=>"3", "pdf"=>"1", "scanned-summary"=>"0", "scanned-page-browse"=>"0", "figure"=>"0", "supp-data"=>"0", "cited-by"=>"0", "year"=>"2018", "month"=>"9"}
  • {"unique-ip"=>"13", "full-text"=>"13", "pdf"=>"2", "scanned-summary"=>"0", "scanned-page-browse"=>"0", "figure"=>"0", "supp-data"=>"0", "cited-by"=>"0", "year"=>"2018", "month"=>"5"}
  • {"unique-ip"=>"14", "full-text"=>"9", "pdf"=>"1", "scanned-summary"=>"0", "scanned-page-browse"=>"0", "figure"=>"0", "supp-data"=>"6", "cited-by"=>"0", "year"=>"2018", "month"=>"6"}
  • {"unique-ip"=>"11", "full-text"=>"9", "pdf"=>"0", "scanned-summary"=>"0", "scanned-page-browse"=>"0", "figure"=>"0", "supp-data"=>"3", "cited-by"=>"0", "year"=>"2018", "month"=>"7"}
  • {"unique-ip"=>"4", "full-text"=>"4", "pdf"=>"0", "scanned-summary"=>"0", "scanned-page-browse"=>"0", "figure"=>"0", "supp-data"=>"0", "cited-by"=>"0", "year"=>"2018", "month"=>"8"}
  • {"unique-ip"=>"13", "full-text"=>"9", "pdf"=>"6", "scanned-summary"=>"0", "scanned-page-browse"=>"0", "figure"=>"0", "supp-data"=>"0", "cited-by"=>"0", "year"=>"2018", "month"=>"10"}
  • {"unique-ip"=>"8", "full-text"=>"8", "pdf"=>"1", "scanned-summary"=>"0", "scanned-page-browse"=>"0", "figure"=>"0", "supp-data"=>"0", "cited-by"=>"0", "year"=>"2019", "month"=>"2"}
  • {"unique-ip"=>"10", "full-text"=>"10", "pdf"=>"1", "scanned-summary"=>"0", "scanned-page-browse"=>"0", "figure"=>"0", "supp-data"=>"0", "cited-by"=>"0", "year"=>"2019", "month"=>"3"}
  • {"unique-ip"=>"13", "full-text"=>"12", "pdf"=>"1", "scanned-summary"=>"0", "scanned-page-browse"=>"0", "figure"=>"0", "supp-data"=>"0", "cited-by"=>"0", "year"=>"2019", "month"=>"4"}
  • {"unique-ip"=>"5", "full-text"=>"7", "pdf"=>"0", "scanned-summary"=>"0", "scanned-page-browse"=>"0", "figure"=>"0", "supp-data"=>"0", "cited-by"=>"0", "year"=>"2019", "month"=>"5"}
  • {"unique-ip"=>"3", "full-text"=>"3", "pdf"=>"1", "scanned-summary"=>"0", "scanned-page-browse"=>"0", "figure"=>"0", "supp-data"=>"0", "cited-by"=>"0", "year"=>"2019", "month"=>"8"}
  • {"unique-ip"=>"6", "full-text"=>"3", "pdf"=>"3", "scanned-summary"=>"0", "scanned-page-browse"=>"0", "figure"=>"0", "supp-data"=>"0", "cited-by"=>"0", "year"=>"2019", "month"=>"9"}
  • {"unique-ip"=>"7", "full-text"=>"8", "pdf"=>"0", "scanned-summary"=>"0", "scanned-page-browse"=>"0", "figure"=>"0", "supp-data"=>"0", "cited-by"=>"0", "year"=>"2019", "month"=>"10"}

Relative Metric

{"start_date"=>"2015-01-01T00:00:00Z", "end_date"=>"2015-12-31T00:00:00Z", "subject_areas"=>[]}
Loading … Spinner
There are currently no alerts