Quantitative Determination of Technological Improvement from Patent Data
Events
Loading … Spinner

Mendeley | Further Information

{"title"=>"Quantitative determination of technological improvement from patent data", "type"=>"journal", "authors"=>[{"first_name"=>"Christopher L.", "last_name"=>"Benson", "scopus_author_id"=>"55516864200"}, {"first_name"=>"Christopher L.", "last_name"=>"Magee", "scopus_author_id"=>"7101620153"}], "year"=>2015, "source"=>"PLoS ONE", "identifiers"=>{"pui"=>"604107272", "issn"=>"19326203", "isbn"=>"1932-6203", "doi"=>"10.1371/journal.pone.0121635", "scopus"=>"2-s2.0-84928902544", "pmid"=>"25874447", "sgr"=>"84928902544"}, "id"=>"c9906689-93b0-38b0-a6cf-6a0c8002b700", "abstract"=>"The results in this paper establish that information contained in patents in a technological domain is strongly correlated with the rate of technological progress in that domain. The importance of patents in a domain, the recency of patents in a domain and the immediacy of patents in a domain are all strongly correlated with increases in the rate of performance improvement in the domain of interest. A patent metric that combines both importance and immediacy is not only highly correlated (r = 0.76, p = 2.6∗10<sup>-6</sup>) with the performance improvement rate but the correlation is also very robust to domain selection and appears to have good predictive power for more than ten years into the future. Linear regressions with all three causal concepts indicate realistic value in practical use to estimate the important performance improvement rate of a technological domain.", "link"=>"http://www.mendeley.com/research/quantitative-determination-technological-improvement-patent-data", "reader_count"=>58, "reader_count_by_academic_status"=>{"Professor > Associate Professor"=>2, "Researcher"=>12, "Student > Doctoral Student"=>2, "Student > Ph. D. Student"=>20, "Student > Postgraduate"=>1, "Student > Master"=>11, "Other"=>4, "Student > Bachelor"=>4, "Professor"=>2}, "reader_count_by_user_role"=>{"Professor > Associate Professor"=>2, "Researcher"=>12, "Student > Doctoral Student"=>2, "Student > Ph. D. Student"=>20, "Student > Postgraduate"=>1, "Student > Master"=>11, "Other"=>4, "Student > Bachelor"=>4, "Professor"=>2}, "reader_count_by_subject_area"=>{"Unspecified"=>2, "Agricultural and Biological Sciences"=>3, "Arts and Humanities"=>1, "Business, Management and Accounting"=>9, "Chemical Engineering"=>1, "Computer Science"=>7, "Economics, Econometrics and Finance"=>8, "Energy"=>1, "Engineering"=>14, "Environmental Science"=>1, "Materials Science"=>1, "Mathematics"=>1, "Medicine and Dentistry"=>2, "Design"=>2, "Physics and Astronomy"=>3, "Social Sciences"=>2}, "reader_count_by_subdiscipline"=>{"Materials Science"=>{"Materials Science"=>1}, "Medicine and Dentistry"=>{"Medicine and Dentistry"=>2}, "Social Sciences"=>{"Social Sciences"=>2}, "Physics and Astronomy"=>{"Physics and Astronomy"=>3}, "Mathematics"=>{"Mathematics"=>1}, "Unspecified"=>{"Unspecified"=>2}, "Environmental Science"=>{"Environmental Science"=>1}, "Chemical Engineering"=>{"Chemical Engineering"=>1}, "Arts and Humanities"=>{"Arts and Humanities"=>1}, "Design"=>{"Design"=>2}, "Engineering"=>{"Engineering"=>14}, "Energy"=>{"Energy"=>1}, "Economics, Econometrics and Finance"=>{"Economics, Econometrics and Finance"=>8}, "Agricultural and Biological Sciences"=>{"Agricultural and Biological Sciences"=>3}, "Computer Science"=>{"Computer Science"=>7}, "Business, Management and Accounting"=>{"Business, Management and Accounting"=>9}}, "reader_count_by_country"=>{"Netherlands"=>2, "United States"=>3, "United Kingdom"=>1}, "group_count"=>5}

Scopus | Further Information

{"@_fa"=>"true", "link"=>[{"@_fa"=>"true", "@ref"=>"self", "@href"=>"https://api.elsevier.com/content/abstract/scopus_id/84928902544"}, {"@_fa"=>"true", "@ref"=>"author-affiliation", "@href"=>"https://api.elsevier.com/content/abstract/scopus_id/84928902544?field=author,affiliation"}, {"@_fa"=>"true", "@ref"=>"scopus", "@href"=>"https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=84928902544&origin=inward"}, {"@_fa"=>"true", "@ref"=>"scopus-citedby", "@href"=>"https://www.scopus.com/inward/citedby.uri?partnerID=HzOxMe3b&scp=84928902544&origin=inward"}], "prism:url"=>"https://api.elsevier.com/content/abstract/scopus_id/84928902544", "dc:identifier"=>"SCOPUS_ID:84928902544", "eid"=>"2-s2.0-84928902544", "dc:title"=>"Quantitative determination of technological improvement from patent data", "dc:creator"=>"Benson C.", "prism:publicationName"=>"PLoS ONE", "prism:eIssn"=>"19326203", "prism:volume"=>"10", "prism:issueIdentifier"=>"4", "prism:pageRange"=>nil, "prism:coverDate"=>"2015-04-15", "prism:coverDisplayDate"=>"15 April 2015", "prism:doi"=>"10.1371/journal.pone.0121635", "citedby-count"=>"27", "affiliation"=>[{"@_fa"=>"true", "affilname"=>"Massachusetts Institute of Technology", "affiliation-city"=>"Cambridge", "affiliation-country"=>"United States"}], "pubmed-id"=>"25874447", "prism:aggregationType"=>"Journal", "subtype"=>"ar", "subtypeDescription"=>"Article", "article-number"=>"e0121635", "source-id"=>"10600153309", "openaccess"=>"1", "openaccessFlag"=>true}

Article Coverage

Facebook

  • {"url"=>"http%3A%2F%2Fjournals.plos.org%2Fplosone%2Farticle%3Fid%3D10.1371%252Fjournal.pone.0121635", "share_count"=>4, "like_count"=>0, "comment_count"=>1, "click_count"=>0, "total_count"=>5}

Twitter

Counter

  • {"month"=>"4", "year"=>"2015", "pdf_views"=>"511", "xml_views"=>"4", "html_views"=>"2432"}
  • {"month"=>"5", "year"=>"2015", "pdf_views"=>"93", "xml_views"=>"2", "html_views"=>"517"}
  • {"month"=>"6", "year"=>"2015", "pdf_views"=>"31", "xml_views"=>"0", "html_views"=>"469"}
  • {"month"=>"7", "year"=>"2015", "pdf_views"=>"25", "xml_views"=>"0", "html_views"=>"331"}
  • {"month"=>"8", "year"=>"2015", "pdf_views"=>"23", "xml_views"=>"0", "html_views"=>"236"}
  • {"month"=>"9", "year"=>"2015", "pdf_views"=>"22", "xml_views"=>"1", "html_views"=>"255"}
  • {"month"=>"10", "year"=>"2015", "pdf_views"=>"13", "xml_views"=>"1", "html_views"=>"147"}
  • {"month"=>"11", "year"=>"2015", "pdf_views"=>"15", "xml_views"=>"1", "html_views"=>"166"}
  • {"month"=>"12", "year"=>"2015", "pdf_views"=>"15", "xml_views"=>"0", "html_views"=>"104"}
  • {"month"=>"1", "year"=>"2016", "pdf_views"=>"28", "xml_views"=>"0", "html_views"=>"144"}
  • {"month"=>"2", "year"=>"2016", "pdf_views"=>"11", "xml_views"=>"0", "html_views"=>"159"}
  • {"month"=>"3", "year"=>"2016", "pdf_views"=>"19", "xml_views"=>"0", "html_views"=>"159"}
  • {"month"=>"4", "year"=>"2016", "pdf_views"=>"21", "xml_views"=>"0", "html_views"=>"215"}
  • {"month"=>"5", "year"=>"2016", "pdf_views"=>"71", "xml_views"=>"0", "html_views"=>"261"}
  • {"month"=>"6", "year"=>"2016", "pdf_views"=>"27", "xml_views"=>"0", "html_views"=>"105"}
  • {"month"=>"7", "year"=>"2016", "pdf_views"=>"13", "xml_views"=>"0", "html_views"=>"96"}
  • {"month"=>"8", "year"=>"2016", "pdf_views"=>"12", "xml_views"=>"0", "html_views"=>"148"}
  • {"month"=>"9", "year"=>"2016", "pdf_views"=>"13", "xml_views"=>"0", "html_views"=>"196"}
  • {"month"=>"10", "year"=>"2016", "pdf_views"=>"22", "xml_views"=>"0", "html_views"=>"406"}
  • {"month"=>"11", "year"=>"2016", "pdf_views"=>"21", "xml_views"=>"0", "html_views"=>"393"}
  • {"month"=>"12", "year"=>"2016", "pdf_views"=>"26", "xml_views"=>"0", "html_views"=>"439"}
  • {"month"=>"1", "year"=>"2017", "pdf_views"=>"29", "xml_views"=>"1", "html_views"=>"435"}
  • {"month"=>"2", "year"=>"2017", "pdf_views"=>"22", "xml_views"=>"0", "html_views"=>"449"}
  • {"month"=>"3", "year"=>"2017", "pdf_views"=>"16", "xml_views"=>"1", "html_views"=>"563"}
  • {"month"=>"4", "year"=>"2017", "pdf_views"=>"21", "xml_views"=>"0", "html_views"=>"624"}
  • {"month"=>"5", "year"=>"2017", "pdf_views"=>"10", "xml_views"=>"2", "html_views"=>"582"}
  • {"month"=>"6", "year"=>"2017", "pdf_views"=>"20", "xml_views"=>"0", "html_views"=>"482"}
  • {"month"=>"7", "year"=>"2017", "pdf_views"=>"23", "xml_views"=>"0", "html_views"=>"436"}
  • {"month"=>"8", "year"=>"2017", "pdf_views"=>"28", "xml_views"=>"2", "html_views"=>"364"}
  • {"month"=>"9", "year"=>"2017", "pdf_views"=>"29", "xml_views"=>"1", "html_views"=>"358"}
  • {"month"=>"10", "year"=>"2017", "pdf_views"=>"35", "xml_views"=>"1", "html_views"=>"248"}
  • {"month"=>"11", "year"=>"2017", "pdf_views"=>"22", "xml_views"=>"0", "html_views"=>"155"}
  • {"month"=>"12", "year"=>"2017", "pdf_views"=>"14", "xml_views"=>"1", "html_views"=>"97"}
  • {"month"=>"1", "year"=>"2018", "pdf_views"=>"12", "xml_views"=>"0", "html_views"=>"100"}
  • {"month"=>"2", "year"=>"2018", "pdf_views"=>"21", "xml_views"=>"0", "html_views"=>"61"}
  • {"month"=>"3", "year"=>"2018", "pdf_views"=>"40", "xml_views"=>"0", "html_views"=>"78"}
  • {"month"=>"4", "year"=>"2018", "pdf_views"=>"25", "xml_views"=>"0", "html_views"=>"66"}
  • {"month"=>"5", "year"=>"2018", "pdf_views"=>"30", "xml_views"=>"0", "html_views"=>"69"}
  • {"month"=>"6", "year"=>"2018", "pdf_views"=>"19", "xml_views"=>"3", "html_views"=>"90"}
  • {"month"=>"7", "year"=>"2018", "pdf_views"=>"12", "xml_views"=>"5", "html_views"=>"58"}
  • {"month"=>"8", "year"=>"2018", "pdf_views"=>"16", "xml_views"=>"1", "html_views"=>"63"}
  • {"month"=>"9", "year"=>"2018", "pdf_views"=>"23", "xml_views"=>"0", "html_views"=>"86"}
  • {"month"=>"10", "year"=>"2018", "pdf_views"=>"26", "xml_views"=>"2", "html_views"=>"72"}
  • {"month"=>"11", "year"=>"2018", "pdf_views"=>"21", "xml_views"=>"1", "html_views"=>"49"}
  • {"month"=>"12", "year"=>"2018", "pdf_views"=>"19", "xml_views"=>"1", "html_views"=>"56"}
  • {"month"=>"1", "year"=>"2019", "pdf_views"=>"44", "xml_views"=>"0", "html_views"=>"57"}
  • {"month"=>"2", "year"=>"2019", "pdf_views"=>"20", "xml_views"=>"0", "html_views"=>"37"}
  • {"month"=>"3", "year"=>"2019", "pdf_views"=>"34", "xml_views"=>"0", "html_views"=>"52"}
  • {"month"=>"4", "year"=>"2019", "pdf_views"=>"31", "xml_views"=>"1", "html_views"=>"48"}
  • {"month"=>"5", "year"=>"2019", "pdf_views"=>"36", "xml_views"=>"2", "html_views"=>"52"}
  • {"month"=>"6", "year"=>"2019", "pdf_views"=>"27", "xml_views"=>"0", "html_views"=>"40"}
  • {"month"=>"7", "year"=>"2019", "pdf_views"=>"24", "xml_views"=>"0", "html_views"=>"53"}
  • {"month"=>"8", "year"=>"2019", "pdf_views"=>"19", "xml_views"=>"0", "html_views"=>"72"}
  • {"month"=>"9", "year"=>"2019", "pdf_views"=>"9", "xml_views"=>"0", "html_views"=>"28"}
  • {"month"=>"10", "year"=>"2019", "pdf_views"=>"8", "xml_views"=>"0", "html_views"=>"31"}
  • {"month"=>"11", "year"=>"2019", "pdf_views"=>"9", "xml_views"=>"0", "html_views"=>"34"}
  • {"month"=>"12", "year"=>"2019", "pdf_views"=>"1", "xml_views"=>"0", "html_views"=>"9"}

Figshare

  • {"files"=>["https://ndownloader.figshare.com/files/2023007"], "description"=>"<p>Least Squares Linear Regression Models for Predicting Technological Improvement Rates with R<sup>2</sup> shown for each model and the coefficients shown for each metric included in the model and its p value.</p>", "links"=>[], "tags"=>["performance improvement", "patent", "Patent Data", "Quantitative Determination", "Technological Improvement", "performance improvement rate", "domain selection", "Linear regressions"], "article_id"=>1381499, "categories"=>["Uncategorised"], "users"=>["Christopher L. Benson", "Christopher L. Magee"], "doi"=>"https://dx.doi.org/10.1371/journal.pone.0121635.t004", "stats"=>{"downloads"=>7, "page_views"=>9, "likes"=>0}, "figshare_url"=>"https://figshare.com/articles/_Least_Squares_Linear_Regression_Models_for_Predicting_Technological_Improvement_Rates_with_R_2_shown_for_each_model_and_the_coefficients_shown_for_each_metric_included_in_the_model_and_its_p_value_/1381499", "title"=>"Least Squares Linear Regression Models for Predicting Technological Improvement Rates with R<sup>2</sup> shown for each model and the coefficients shown for each metric included in the model and its p value.", "pos_in_sequence"=>0, "defined_type"=>3, "published_date"=>"2015-04-15 04:18:39"}
  • {"files"=>["https://ndownloader.figshare.com/files/2023006"], "description"=>"<p>Summary of Domain Robustness Analysis.</p>", "links"=>[], "tags"=>["performance improvement", "patent", "Patent Data", "Quantitative Determination", "Technological Improvement", "performance improvement rate", "domain selection", "Linear regressions"], "article_id"=>1381498, "categories"=>["Uncategorised"], "users"=>["Christopher L. Benson", "Christopher L. Magee"], "doi"=>"https://dx.doi.org/10.1371/journal.pone.0121635.t003", "stats"=>{"downloads"=>0, "page_views"=>5, "likes"=>0}, "figshare_url"=>"https://figshare.com/articles/_Summary_of_Domain_Robustness_Analysis_/1381498", "title"=>"Summary of Domain Robustness Analysis.", "pos_in_sequence"=>0, "defined_type"=>3, "published_date"=>"2015-04-15 04:18:39"}
  • {"files"=>["https://ndownloader.figshare.com/files/2023008"], "description"=>"<div><p>The results in this paper establish that information contained in patents in a technological domain is strongly correlated with the rate of technological progress in that domain. The importance of patents in a domain, the recency of patents in a domain and the immediacy of patents in a domain are all strongly correlated with increases in the rate of performance improvement in the domain of interest. A patent metric that combines both importance and immediacy is not only highly correlated (r = 0.76, p = 2.6*10<sup>-6</sup>) with the performance improvement rate but the correlation is also very robust to domain selection and appears to have good predictive power for more than ten years into the future. Linear regressions with all three causal concepts indicate realistic value in practical use to estimate the important performance improvement rate of a technological domain.</p></div>", "links"=>[], "tags"=>["performance improvement", "patent", "Patent Data", "Quantitative Determination", "Technological Improvement", "performance improvement rate", "domain selection", "Linear regressions"], "article_id"=>1381500, "categories"=>["Uncategorised"], "users"=>["Christopher L. Benson", "Christopher L. Magee"], "doi"=>"https://dx.doi.org/10.1371/journal.pone.0121635", "stats"=>{"downloads"=>13, "page_views"=>14, "likes"=>0}, "figshare_url"=>"https://figshare.com/articles/_Quantitative_Determination_of_Technological_Improvement_from_Patent_Data_/1381500", "title"=>"Quantitative Determination of Technological Improvement from Patent Data", "pos_in_sequence"=>0, "defined_type"=>3, "published_date"=>"2015-04-15 04:18:39"}
  • {"files"=>["https://ndownloader.figshare.com/files/2023005"], "description"=>"<p>Summary Statistics and Correlation Matrix.</p>", "links"=>[], "tags"=>["performance improvement", "patent", "Patent Data", "Quantitative Determination", "Technological Improvement", "performance improvement rate", "domain selection", "Linear regressions"], "article_id"=>1381497, "categories"=>["Uncategorised"], "users"=>["Christopher L. Benson", "Christopher L. Magee"], "doi"=>"https://dx.doi.org/10.1371/journal.pone.0121635.t002", "stats"=>{"downloads"=>0, "page_views"=>15, "likes"=>0}, "figshare_url"=>"https://figshare.com/articles/_Summary_Statistics_and_Correlation_Matrix_/1381497", "title"=>"Summary Statistics and Correlation Matrix.", "pos_in_sequence"=>0, "defined_type"=>3, "published_date"=>"2015-04-15 04:18:39"}
  • {"files"=>["https://ndownloader.figshare.com/files/2023003"], "description"=>"<p>Technological Improvement Rates vs Simple Patent Count (A), ratio of patents with greater than 20 citations (B), and average number of forward citations within 3 years of publication (C); the Pearson correlation coefficient (c<sub>p</sub>), the null hypothesis acceptance (cutoff at p = 0.05) and the values of the independent variable for the domains having maximum and minimum values are shown in the upper right corner.</p>", "links"=>[], "tags"=>["performance improvement", "patent", "Patent Data", "Quantitative Determination", "Technological Improvement", "performance improvement rate", "domain selection", "Linear regressions"], "article_id"=>1381495, "categories"=>["Uncategorised"], "users"=>["Christopher L. Benson", "Christopher L. Magee"], "doi"=>"https://dx.doi.org/10.1371/journal.pone.0121635.g001", "stats"=>{"downloads"=>1, "page_views"=>25, "likes"=>0}, "figshare_url"=>"https://figshare.com/articles/_Technological_Improvement_Rates_vs_Simple_Patent_Count_A_ratio_of_patents_with_greater_than_20_citations_B_and_average_number_of_forward_citations_within_3_years_of_publication_C_the_Pearson_correlation_coefficient_c_p_the_null_hypothesis_acceptance_cuto/1381495", "title"=>"Technological Improvement Rates vs Simple Patent Count (A), ratio of patents with greater than 20 citations (B), and average number of forward citations within 3 years of publication (C); the Pearson correlation coefficient (c<sub>p</sub>), the null hypothesis acceptance (cutoff at p = 0.05) and the values of the independent variable for the domains having maximum and minimum values are shown in the upper right corner.", "pos_in_sequence"=>0, "defined_type"=>1, "published_date"=>"2015-04-15 04:18:39"}
  • {"files"=>["https://ndownloader.figshare.com/files/2023004"], "description"=>"<p>Description of Independent Variables.</p>", "links"=>[], "tags"=>["performance improvement", "patent", "Patent Data", "Quantitative Determination", "Technological Improvement", "performance improvement rate", "domain selection", "Linear regressions"], "article_id"=>1381496, "categories"=>["Uncategorised"], "users"=>["Christopher L. Benson", "Christopher L. Magee"], "doi"=>"https://dx.doi.org/10.1371/journal.pone.0121635.t001", "stats"=>{"downloads"=>1, "page_views"=>12, "likes"=>0}, "figshare_url"=>"https://figshare.com/articles/_Description_of_Independent_Variables_/1381496", "title"=>"Description of Independent Variables.", "pos_in_sequence"=>0, "defined_type"=>3, "published_date"=>"2015-04-15 04:18:39"}

PMC Usage Stats | Further Information

  • {"unique-ip"=>"12", "full-text"=>"11", "pdf"=>"7", "abstract"=>"0", "scanned-summary"=>"0", "scanned-page-browse"=>"0", "figure"=>"0", "supp-data"=>"0", "cited-by"=>"0", "year"=>"2015", "month"=>"4"}
  • {"unique-ip"=>"18", "full-text"=>"19", "pdf"=>"9", "abstract"=>"0", "scanned-summary"=>"0", "scanned-page-browse"=>"0", "figure"=>"0", "supp-data"=>"0", "cited-by"=>"0", "year"=>"2015", "month"=>"5"}
  • {"unique-ip"=>"23", "full-text"=>"18", "pdf"=>"2", "abstract"=>"0", "scanned-summary"=>"0", "scanned-page-browse"=>"0", "figure"=>"1", "supp-data"=>"1", "cited-by"=>"0", "year"=>"2015", "month"=>"6"}
  • {"unique-ip"=>"7", "full-text"=>"5", "pdf"=>"3", "abstract"=>"0", "scanned-summary"=>"0", "scanned-page-browse"=>"0", "figure"=>"2", "supp-data"=>"0", "cited-by"=>"0", "year"=>"2015", "month"=>"7"}
  • {"unique-ip"=>"10", "full-text"=>"12", "pdf"=>"2", "abstract"=>"0", "scanned-summary"=>"0", "scanned-page-browse"=>"0", "figure"=>"1", "supp-data"=>"0", "cited-by"=>"0", "year"=>"2015", "month"=>"8"}
  • {"unique-ip"=>"15", "full-text"=>"17", "pdf"=>"1", "abstract"=>"0", "scanned-summary"=>"0", "scanned-page-browse"=>"0", "figure"=>"0", "supp-data"=>"0", "cited-by"=>"0", "year"=>"2015", "month"=>"9"}
  • {"unique-ip"=>"13", "full-text"=>"12", "pdf"=>"2", "abstract"=>"0", "scanned-summary"=>"0", "scanned-page-browse"=>"0", "figure"=>"0", "supp-data"=>"1", "cited-by"=>"0", "year"=>"2015", "month"=>"10"}
  • {"unique-ip"=>"6", "full-text"=>"5", "pdf"=>"3", "abstract"=>"0", "scanned-summary"=>"0", "scanned-page-browse"=>"0", "figure"=>"0", "supp-data"=>"0", "cited-by"=>"0", "year"=>"2016", "month"=>"2"}
  • {"unique-ip"=>"20", "full-text"=>"19", "pdf"=>"3", "abstract"=>"0", "scanned-summary"=>"0", "scanned-page-browse"=>"0", "figure"=>"0", "supp-data"=>"0", "cited-by"=>"0", "year"=>"2015", "month"=>"11"}
  • {"unique-ip"=>"16", "full-text"=>"15", "pdf"=>"5", "abstract"=>"0", "scanned-summary"=>"0", "scanned-page-browse"=>"0", "figure"=>"0", "supp-data"=>"1", "cited-by"=>"0", "year"=>"2015", "month"=>"12"}
  • {"unique-ip"=>"13", "full-text"=>"11", "pdf"=>"4", "abstract"=>"0", "scanned-summary"=>"0", "scanned-page-browse"=>"0", "figure"=>"0", "supp-data"=>"0", "cited-by"=>"0", "year"=>"2016", "month"=>"1"}
  • {"unique-ip"=>"11", "full-text"=>"11", "pdf"=>"3", "abstract"=>"0", "scanned-summary"=>"0", "scanned-page-browse"=>"0", "figure"=>"0", "supp-data"=>"0", "cited-by"=>"0", "year"=>"2016", "month"=>"3"}
  • {"unique-ip"=>"7", "full-text"=>"7", "pdf"=>"0", "abstract"=>"0", "scanned-summary"=>"0", "scanned-page-browse"=>"0", "figure"=>"0", "supp-data"=>"0", "cited-by"=>"0", "year"=>"2016", "month"=>"4"}
  • {"unique-ip"=>"9", "full-text"=>"13", "pdf"=>"0", "abstract"=>"0", "scanned-summary"=>"0", "scanned-page-browse"=>"0", "figure"=>"2", "supp-data"=>"0", "cited-by"=>"0", "year"=>"2016", "month"=>"5"}
  • {"unique-ip"=>"14", "full-text"=>"14", "pdf"=>"5", "abstract"=>"0", "scanned-summary"=>"0", "scanned-page-browse"=>"0", "figure"=>"0", "supp-data"=>"0", "cited-by"=>"0", "year"=>"2016", "month"=>"6"}
  • {"unique-ip"=>"10", "full-text"=>"9", "pdf"=>"0", "abstract"=>"0", "scanned-summary"=>"0", "scanned-page-browse"=>"0", "figure"=>"1", "supp-data"=>"0", "cited-by"=>"0", "year"=>"2016", "month"=>"7"}
  • {"unique-ip"=>"7", "full-text"=>"7", "pdf"=>"1", "abstract"=>"0", "scanned-summary"=>"0", "scanned-page-browse"=>"0", "figure"=>"0", "supp-data"=>"0", "cited-by"=>"0", "year"=>"2016", "month"=>"8"}
  • {"unique-ip"=>"17", "full-text"=>"16", "pdf"=>"3", "abstract"=>"0", "scanned-summary"=>"0", "scanned-page-browse"=>"0", "figure"=>"0", "supp-data"=>"0", "cited-by"=>"0", "year"=>"2016", "month"=>"9"}
  • {"unique-ip"=>"11", "full-text"=>"11", "pdf"=>"3", "abstract"=>"0", "scanned-summary"=>"0", "scanned-page-browse"=>"0", "figure"=>"2", "supp-data"=>"0", "cited-by"=>"0", "year"=>"2016", "month"=>"10"}
  • {"unique-ip"=>"9", "full-text"=>"9", "pdf"=>"1", "abstract"=>"0", "scanned-summary"=>"0", "scanned-page-browse"=>"0", "figure"=>"0", "supp-data"=>"0", "cited-by"=>"0", "year"=>"2016", "month"=>"11"}
  • {"unique-ip"=>"17", "full-text"=>"24", "pdf"=>"2", "abstract"=>"0", "scanned-summary"=>"0", "scanned-page-browse"=>"0", "figure"=>"0", "supp-data"=>"0", "cited-by"=>"2", "year"=>"2016", "month"=>"12"}
  • {"unique-ip"=>"24", "full-text"=>"20", "pdf"=>"1", "abstract"=>"0", "scanned-summary"=>"0", "scanned-page-browse"=>"0", "figure"=>"0", "supp-data"=>"0", "cited-by"=>"0", "year"=>"2017", "month"=>"1"}
  • {"unique-ip"=>"8", "full-text"=>"8", "pdf"=>"1", "abstract"=>"0", "scanned-summary"=>"0", "scanned-page-browse"=>"0", "figure"=>"0", "supp-data"=>"0", "cited-by"=>"0", "year"=>"2017", "month"=>"2"}
  • {"unique-ip"=>"13", "full-text"=>"14", "pdf"=>"2", "abstract"=>"0", "scanned-summary"=>"0", "scanned-page-browse"=>"0", "figure"=>"1", "supp-data"=>"0", "cited-by"=>"0", "year"=>"2017", "month"=>"3"}
  • {"unique-ip"=>"2", "full-text"=>"2", "pdf"=>"0", "abstract"=>"0", "scanned-summary"=>"0", "scanned-page-browse"=>"0", "figure"=>"0", "supp-data"=>"0", "cited-by"=>"0", "year"=>"2017", "month"=>"4"}
  • {"unique-ip"=>"23", "full-text"=>"28", "pdf"=>"4", "abstract"=>"0", "scanned-summary"=>"0", "scanned-page-browse"=>"0", "figure"=>"2", "supp-data"=>"0", "cited-by"=>"0", "year"=>"2017", "month"=>"5"}
  • {"unique-ip"=>"17", "full-text"=>"17", "pdf"=>"3", "abstract"=>"0", "scanned-summary"=>"0", "scanned-page-browse"=>"0", "figure"=>"0", "supp-data"=>"0", "cited-by"=>"0", "year"=>"2017", "month"=>"6"}
  • {"unique-ip"=>"15", "full-text"=>"15", "pdf"=>"1", "abstract"=>"0", "scanned-summary"=>"0", "scanned-page-browse"=>"0", "figure"=>"0", "supp-data"=>"1", "cited-by"=>"0", "year"=>"2017", "month"=>"7"}
  • {"unique-ip"=>"25", "full-text"=>"27", "pdf"=>"1", "abstract"=>"0", "scanned-summary"=>"0", "scanned-page-browse"=>"0", "figure"=>"0", "supp-data"=>"0", "cited-by"=>"0", "year"=>"2017", "month"=>"8"}
  • {"unique-ip"=>"17", "full-text"=>"19", "pdf"=>"2", "abstract"=>"0", "scanned-summary"=>"0", "scanned-page-browse"=>"0", "figure"=>"0", "supp-data"=>"0", "cited-by"=>"0", "year"=>"2017", "month"=>"9"}
  • {"unique-ip"=>"35", "full-text"=>"34", "pdf"=>"2", "abstract"=>"0", "scanned-summary"=>"0", "scanned-page-browse"=>"0", "figure"=>"1", "supp-data"=>"0", "cited-by"=>"1", "year"=>"2017", "month"=>"10"}
  • {"unique-ip"=>"12", "full-text"=>"12", "pdf"=>"0", "abstract"=>"0", "scanned-summary"=>"0", "scanned-page-browse"=>"0", "figure"=>"0", "supp-data"=>"0", "cited-by"=>"0", "year"=>"2017", "month"=>"11"}
  • {"unique-ip"=>"3", "full-text"=>"3", "pdf"=>"0", "abstract"=>"0", "scanned-summary"=>"0", "scanned-page-browse"=>"0", "figure"=>"0", "supp-data"=>"0", "cited-by"=>"0", "year"=>"2017", "month"=>"12"}
  • {"unique-ip"=>"14", "full-text"=>"16", "pdf"=>"1", "abstract"=>"0", "scanned-summary"=>"0", "scanned-page-browse"=>"0", "figure"=>"0", "supp-data"=>"0", "cited-by"=>"0", "year"=>"2018", "month"=>"1"}
  • {"unique-ip"=>"1", "full-text"=>"1", "pdf"=>"0", "abstract"=>"0", "scanned-summary"=>"0", "scanned-page-browse"=>"0", "figure"=>"0", "supp-data"=>"0", "cited-by"=>"0", "year"=>"2018", "month"=>"2"}
  • {"unique-ip"=>"23", "full-text"=>"23", "pdf"=>"3", "abstract"=>"0", "scanned-summary"=>"0", "scanned-page-browse"=>"0", "figure"=>"3", "supp-data"=>"1", "cited-by"=>"0", "year"=>"2018", "month"=>"3"}
  • {"unique-ip"=>"17", "full-text"=>"18", "pdf"=>"2", "scanned-summary"=>"0", "scanned-page-browse"=>"0", "figure"=>"0", "supp-data"=>"0", "cited-by"=>"0", "year"=>"2019", "month"=>"1"}
  • {"unique-ip"=>"14", "full-text"=>"15", "pdf"=>"1", "scanned-summary"=>"0", "scanned-page-browse"=>"0", "figure"=>"0", "supp-data"=>"1", "cited-by"=>"0", "year"=>"2018", "month"=>"11"}
  • {"unique-ip"=>"24", "full-text"=>"28", "pdf"=>"0", "scanned-summary"=>"0", "scanned-page-browse"=>"0", "figure"=>"1", "supp-data"=>"0", "cited-by"=>"0", "year"=>"2018", "month"=>"9"}
  • {"unique-ip"=>"10", "full-text"=>"11", "pdf"=>"1", "scanned-summary"=>"0", "scanned-page-browse"=>"0", "figure"=>"0", "supp-data"=>"0", "cited-by"=>"0", "year"=>"2018", "month"=>"4"}
  • {"unique-ip"=>"15", "full-text"=>"15", "pdf"=>"1", "scanned-summary"=>"0", "scanned-page-browse"=>"0", "figure"=>"0", "supp-data"=>"0", "cited-by"=>"0", "year"=>"2018", "month"=>"5"}
  • {"unique-ip"=>"28", "full-text"=>"30", "pdf"=>"1", "scanned-summary"=>"0", "scanned-page-browse"=>"0", "figure"=>"0", "supp-data"=>"1", "cited-by"=>"0", "year"=>"2018", "month"=>"6"}
  • {"unique-ip"=>"20", "full-text"=>"18", "pdf"=>"3", "scanned-summary"=>"0", "scanned-page-browse"=>"0", "figure"=>"0", "supp-data"=>"1", "cited-by"=>"0", "year"=>"2018", "month"=>"7"}
  • {"unique-ip"=>"16", "full-text"=>"18", "pdf"=>"1", "scanned-summary"=>"0", "scanned-page-browse"=>"0", "figure"=>"0", "supp-data"=>"0", "cited-by"=>"0", "year"=>"2018", "month"=>"10"}
  • {"unique-ip"=>"12", "full-text"=>"11", "pdf"=>"2", "scanned-summary"=>"0", "scanned-page-browse"=>"0", "figure"=>"0", "supp-data"=>"2", "cited-by"=>"0", "year"=>"2018", "month"=>"8"}
  • {"unique-ip"=>"38", "full-text"=>"43", "pdf"=>"0", "scanned-summary"=>"0", "scanned-page-browse"=>"0", "figure"=>"0", "supp-data"=>"0", "cited-by"=>"0", "year"=>"2018", "month"=>"12"}
  • {"unique-ip"=>"10", "full-text"=>"12", "pdf"=>"0", "scanned-summary"=>"0", "scanned-page-browse"=>"0", "figure"=>"0", "supp-data"=>"0", "cited-by"=>"0", "year"=>"2019", "month"=>"2"}
  • {"unique-ip"=>"14", "full-text"=>"19", "pdf"=>"1", "scanned-summary"=>"0", "scanned-page-browse"=>"0", "figure"=>"0", "supp-data"=>"0", "cited-by"=>"0", "year"=>"2019", "month"=>"3"}
  • {"unique-ip"=>"23", "full-text"=>"20", "pdf"=>"5", "scanned-summary"=>"0", "scanned-page-browse"=>"0", "figure"=>"0", "supp-data"=>"0", "cited-by"=>"0", "year"=>"2019", "month"=>"4"}
  • {"unique-ip"=>"18", "full-text"=>"18", "pdf"=>"1", "scanned-summary"=>"0", "scanned-page-browse"=>"0", "figure"=>"0", "supp-data"=>"1", "cited-by"=>"0", "year"=>"2019", "month"=>"5"}
  • {"unique-ip"=>"26", "full-text"=>"29", "pdf"=>"1", "scanned-summary"=>"0", "scanned-page-browse"=>"0", "figure"=>"0", "supp-data"=>"0", "cited-by"=>"0", "year"=>"2019", "month"=>"8"}
  • {"unique-ip"=>"41", "full-text"=>"43", "pdf"=>"3", "scanned-summary"=>"0", "scanned-page-browse"=>"0", "figure"=>"0", "supp-data"=>"0", "cited-by"=>"0", "year"=>"2019", "month"=>"9"}
  • {"unique-ip"=>"35", "full-text"=>"40", "pdf"=>"0", "scanned-summary"=>"0", "scanned-page-browse"=>"0", "figure"=>"0", "supp-data"=>"0", "cited-by"=>"1", "year"=>"2019", "month"=>"10"}

Relative Metric

{"start_date"=>"2015-01-01T00:00:00Z", "end_date"=>"2015-12-31T00:00:00Z", "subject_areas"=>[]}
Loading … Spinner
There are currently no alerts