Transformer Incipient Fault Prediction Using Combined Artificial Neural Network and Various Particle Swarm Optimisation Techniques
Events
Loading … Spinner

Mendeley | Further Information

{"title"=>"Transformer incipient fault prediction using combined artificial neural network and various particle swarm optimisation techniques", "type"=>"journal", "authors"=>[{"first_name"=>"Hazlee Azil", "last_name"=>"Illias", "scopus_author_id"=>"26633053900"}, {"first_name"=>"Xin Rui", "last_name"=>"Chai", "scopus_author_id"=>"56779561500"}, {"first_name"=>"Ab Halim Abu", "last_name"=>"Bakar", "scopus_author_id"=>"24447916700"}, {"first_name"=>"Hazlie", "last_name"=>"Mokhlis", "scopus_author_id"=>"8136874200"}], "year"=>2015, "source"=>"PLoS ONE", "identifiers"=>{"sgr"=>"84939188532", "pui"=>"605585504", "scopus"=>"2-s2.0-84939188532", "issn"=>"19326203", "doi"=>"10.1371/journal.pone.0129363"}, "id"=>"a248ef7c-e7e8-3cb3-b17e-e29c04202ea0", "abstract"=>"It is important to predict the incipient fault in transformer oil accurately so that the maintenance of transformer oil can be performed correctly, reducing the cost of maintenance and minimise the error. Dissolved gas analysis (DGA) has been widely used to predict the incipient fault in power transformers. However, sometimes the existing DGA methods yield inaccurate prediction of the incipient fault in transformer oil because each method is only suitable for certain conditions. Many previous works have reported on the use of intelligence methods to predict the transformer faults. However, it is believed that the accuracy of the previously proposed methods can still be improved. Since artificial neural network (ANN) and particle swarm optimisation (PSO) techniques have never been used in the previously reported work, this work proposes a combination of ANN and various PSO techniques to predict the transformer incipient fault. The advantages of PSO are simplicity and easy implementation. The effectiveness of various PSO techniques in combination with ANN is validated by comparison with the results from the actual fault diagnosis, an existing diagnosis method and ANN alone. Comparison of the results from the proposed methods with the previously reported work was also performed to show the improvement of the proposed methods. It was found that the proposed ANN-Evolutionary PSO method yields the highest percentage of correct identification for transformer fault type than the existing diagnosis method and previously reported works.", "link"=>"http://www.mendeley.com/research/transformer-incipient-fault-prediction-using-combined-artificial-neural-network-various-particle-swa", "reader_count"=>7, "reader_count_by_academic_status"=>{"Researcher"=>1, "Other"=>1, "Student > Master"=>2, "Lecturer > Senior Lecturer"=>1, "Professor"=>1, "Student > Bachelor"=>1}, "reader_count_by_user_role"=>{"Researcher"=>1, "Other"=>1, "Student > Master"=>2, "Lecturer > Senior Lecturer"=>1, "Professor"=>1, "Student > Bachelor"=>1}, "reader_count_by_subject_area"=>{"Unspecified"=>1, "Engineering"=>4, "Mathematics"=>1, "Computer Science"=>1}, "reader_count_by_subdiscipline"=>{"Engineering"=>{"Engineering"=>4}, "Computer Science"=>{"Computer Science"=>1}, "Mathematics"=>{"Mathematics"=>1}, "Unspecified"=>{"Unspecified"=>1}}, "reader_count_by_country"=>{"Hong Kong"=>1, "Indonesia"=>1}, "group_count"=>0}

Scopus | Further Information

{"@_fa"=>"true", "link"=>[{"@_fa"=>"true", "@ref"=>"self", "@href"=>"https://api.elsevier.com/content/abstract/scopus_id/84939188532"}, {"@_fa"=>"true", "@ref"=>"author-affiliation", "@href"=>"https://api.elsevier.com/content/abstract/scopus_id/84939188532?field=author,affiliation"}, {"@_fa"=>"true", "@ref"=>"scopus", "@href"=>"https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=84939188532&origin=inward"}, {"@_fa"=>"true", "@ref"=>"scopus-citedby", "@href"=>"https://www.scopus.com/inward/citedby.uri?partnerID=HzOxMe3b&scp=84939188532&origin=inward"}], "prism:url"=>"https://api.elsevier.com/content/abstract/scopus_id/84939188532", "dc:identifier"=>"SCOPUS_ID:84939188532", "eid"=>"2-s2.0-84939188532", "dc:title"=>"Transformer incipient fault prediction using combined artificial neural network and various particle swarm optimisation techniques", "dc:creator"=>"Illias H.", "prism:publicationName"=>"PLoS ONE", "prism:eIssn"=>"19326203", "prism:volume"=>"10", "prism:issueIdentifier"=>"6", "prism:pageRange"=>nil, "prism:coverDate"=>"2015-06-23", "prism:coverDisplayDate"=>"23 June 2015", "prism:doi"=>"10.1371/journal.pone.0129363", "citedby-count"=>"19", "affiliation"=>[{"@_fa"=>"true", "affilname"=>"University of Malaya", "affiliation-city"=>"Kuala Lumpur", "affiliation-country"=>"Malaysia"}], "pubmed-id"=>"26103634", "prism:aggregationType"=>"Journal", "subtype"=>"ar", "subtypeDescription"=>"Article", "article-number"=>"e0129363", "source-id"=>"10600153309", "openaccess"=>"1", "openaccessFlag"=>true}

Facebook

  • {"url"=>"http%3A%2F%2Fjournals.plos.org%2Fplosone%2Farticle%3Fid%3D10.1371%252Fjournal.pone.0129363", "share_count"=>0, "like_count"=>0, "comment_count"=>0, "click_count"=>0, "total_count"=>0}

Counter

  • {"month"=>"6", "year"=>"2015", "pdf_views"=>"24", "xml_views"=>"11", "html_views"=>"589"}
  • {"month"=>"7", "year"=>"2015", "pdf_views"=>"24", "xml_views"=>"1", "html_views"=>"101"}
  • {"month"=>"8", "year"=>"2015", "pdf_views"=>"9", "xml_views"=>"1", "html_views"=>"57"}
  • {"month"=>"9", "year"=>"2015", "pdf_views"=>"9", "xml_views"=>"1", "html_views"=>"32"}
  • {"month"=>"10", "year"=>"2015", "pdf_views"=>"8", "xml_views"=>"0", "html_views"=>"53"}
  • {"month"=>"11", "year"=>"2015", "pdf_views"=>"8", "xml_views"=>"1", "html_views"=>"20"}
  • {"month"=>"12", "year"=>"2015", "pdf_views"=>"9", "xml_views"=>"0", "html_views"=>"37"}
  • {"month"=>"1", "year"=>"2016", "pdf_views"=>"5", "xml_views"=>"0", "html_views"=>"37"}
  • {"month"=>"2", "year"=>"2016", "pdf_views"=>"4", "xml_views"=>"1", "html_views"=>"26"}
  • {"month"=>"3", "year"=>"2016", "pdf_views"=>"8", "xml_views"=>"0", "html_views"=>"52"}
  • {"month"=>"4", "year"=>"2016", "pdf_views"=>"5", "xml_views"=>"0", "html_views"=>"43"}
  • {"month"=>"5", "year"=>"2016", "pdf_views"=>"9", "xml_views"=>"0", "html_views"=>"23"}
  • {"month"=>"6", "year"=>"2016", "pdf_views"=>"10", "xml_views"=>"0", "html_views"=>"27"}
  • {"month"=>"7", "year"=>"2016", "pdf_views"=>"9", "xml_views"=>"0", "html_views"=>"28"}
  • {"month"=>"8", "year"=>"2016", "pdf_views"=>"6", "xml_views"=>"0", "html_views"=>"36"}
  • {"month"=>"9", "year"=>"2016", "pdf_views"=>"11", "xml_views"=>"0", "html_views"=>"36"}
  • {"month"=>"10", "year"=>"2016", "pdf_views"=>"13", "xml_views"=>"0", "html_views"=>"24"}
  • {"month"=>"11", "year"=>"2016", "pdf_views"=>"4", "xml_views"=>"0", "html_views"=>"25"}
  • {"month"=>"12", "year"=>"2016", "pdf_views"=>"18", "xml_views"=>"0", "html_views"=>"61"}
  • {"month"=>"1", "year"=>"2017", "pdf_views"=>"6", "xml_views"=>"2", "html_views"=>"49"}
  • {"month"=>"2", "year"=>"2017", "pdf_views"=>"7", "xml_views"=>"0", "html_views"=>"46"}
  • {"month"=>"3", "year"=>"2017", "pdf_views"=>"3", "xml_views"=>"0", "html_views"=>"53"}
  • {"month"=>"4", "year"=>"2017", "pdf_views"=>"19", "xml_views"=>"1", "html_views"=>"45"}
  • {"month"=>"5", "year"=>"2017", "pdf_views"=>"4", "xml_views"=>"0", "html_views"=>"61"}
  • {"month"=>"6", "year"=>"2017", "pdf_views"=>"8", "xml_views"=>"0", "html_views"=>"29"}
  • {"month"=>"7", "year"=>"2017", "pdf_views"=>"17", "xml_views"=>"4", "html_views"=>"44"}
  • {"month"=>"8", "year"=>"2017", "pdf_views"=>"4", "xml_views"=>"1", "html_views"=>"22"}
  • {"month"=>"9", "year"=>"2017", "pdf_views"=>"4", "xml_views"=>"2", "html_views"=>"24"}
  • {"month"=>"10", "year"=>"2017", "pdf_views"=>"6", "xml_views"=>"0", "html_views"=>"62"}
  • {"month"=>"11", "year"=>"2017", "pdf_views"=>"7", "xml_views"=>"0", "html_views"=>"47"}
  • {"month"=>"12", "year"=>"2017", "pdf_views"=>"4", "xml_views"=>"1", "html_views"=>"35"}
  • {"month"=>"1", "year"=>"2018", "pdf_views"=>"15", "xml_views"=>"0", "html_views"=>"51"}
  • {"month"=>"2", "year"=>"2018", "pdf_views"=>"13", "xml_views"=>"0", "html_views"=>"18"}
  • {"month"=>"3", "year"=>"2018", "pdf_views"=>"24", "xml_views"=>"1", "html_views"=>"26"}
  • {"month"=>"4", "year"=>"2018", "pdf_views"=>"19", "xml_views"=>"0", "html_views"=>"17"}
  • {"month"=>"5", "year"=>"2018", "pdf_views"=>"14", "xml_views"=>"0", "html_views"=>"23"}
  • {"month"=>"6", "year"=>"2018", "pdf_views"=>"31", "xml_views"=>"1", "html_views"=>"20"}
  • {"month"=>"7", "year"=>"2018", "pdf_views"=>"17", "xml_views"=>"3", "html_views"=>"13"}
  • {"month"=>"8", "year"=>"2018", "pdf_views"=>"16", "xml_views"=>"1", "html_views"=>"20"}
  • {"month"=>"9", "year"=>"2018", "pdf_views"=>"15", "xml_views"=>"0", "html_views"=>"22"}
  • {"month"=>"10", "year"=>"2018", "pdf_views"=>"17", "xml_views"=>"1", "html_views"=>"22"}
  • {"month"=>"11", "year"=>"2018", "pdf_views"=>"22", "xml_views"=>"0", "html_views"=>"27"}
  • {"month"=>"12", "year"=>"2018", "pdf_views"=>"17", "xml_views"=>"2", "html_views"=>"18"}
  • {"month"=>"1", "year"=>"2019", "pdf_views"=>"18", "xml_views"=>"1", "html_views"=>"15"}
  • {"month"=>"2", "year"=>"2019", "pdf_views"=>"13", "xml_views"=>"0", "html_views"=>"21"}
  • {"month"=>"3", "year"=>"2019", "pdf_views"=>"15", "xml_views"=>"0", "html_views"=>"13"}
  • {"month"=>"4", "year"=>"2019", "pdf_views"=>"19", "xml_views"=>"0", "html_views"=>"26"}
  • {"month"=>"5", "year"=>"2019", "pdf_views"=>"16", "xml_views"=>"0", "html_views"=>"9"}
  • {"month"=>"6", "year"=>"2019", "pdf_views"=>"7", "xml_views"=>"0", "html_views"=>"7"}
  • {"month"=>"7", "year"=>"2019", "pdf_views"=>"7", "xml_views"=>"0", "html_views"=>"3"}

Figshare

  • {"files"=>["https://ndownloader.figshare.com/files/2133994"], "description"=>"<p>The properties of selected ANN after tuning LR and MC.</p>", "links"=>[], "tags"=>["transformer oil", "Transformer Incipient Fault Prediction", "Various Particle Swarm Optimisation Techniques", "diagnosis method", "transformer fault type", "dga", "Dissolved gas analysis", "Artificial Neural Network", "particle swarm optimisation", "ann", "PSO techniques"], "article_id"=>1461292, "categories"=>["Uncategorised"], "users"=>["Hazlee Azil Illias", "Xin Rui Chai", "Ab Halim Abu Bakar", "Hazlie Mokhlis"], "doi"=>"https://dx.doi.org/10.1371/journal.pone.0129363.t004", "stats"=>{"downloads"=>1, "page_views"=>15, "likes"=>0}, "figshare_url"=>"https://figshare.com/articles/_The_properties_of_selected_ANN_after_tuning_LR_and_MC_/1461292", "title"=>"The properties of selected ANN after tuning LR and MC.", "pos_in_sequence"=>0, "defined_type"=>3, "published_date"=>"2015-06-23 03:16:26"}
  • {"files"=>["https://ndownloader.figshare.com/files/2133991"], "description"=>"<p>Some actual data of incipient transformer fault from an electrical utility.</p>", "links"=>[], "tags"=>["transformer oil", "Transformer Incipient Fault Prediction", "Various Particle Swarm Optimisation Techniques", "diagnosis method", "transformer fault type", "dga", "Dissolved gas analysis", "Artificial Neural Network", "particle swarm optimisation", "ann", "PSO techniques"], "article_id"=>1461289, "categories"=>["Uncategorised"], "users"=>["Hazlee Azil Illias", "Xin Rui Chai", "Ab Halim Abu Bakar", "Hazlie Mokhlis"], "doi"=>"https://dx.doi.org/10.1371/journal.pone.0129363.t001", "stats"=>{"downloads"=>2, "page_views"=>12, "likes"=>0}, "figshare_url"=>"https://figshare.com/articles/_Some_actual_data_of_incipient_transformer_fault_from_an_electrical_utility_/1461289", "title"=>"Some actual data of incipient transformer fault from an electrical utility.", "pos_in_sequence"=>0, "defined_type"=>3, "published_date"=>"2015-06-23 03:16:26"}
  • {"files"=>["https://ndownloader.figshare.com/files/2133989"], "description"=>"<p>Best position vs. iteration for PSO, IPSO and EPSO techniques.</p>", "links"=>[], "tags"=>["transformer oil", "Transformer Incipient Fault Prediction", "Various Particle Swarm Optimisation Techniques", "diagnosis method", "transformer fault type", "dga", "Dissolved gas analysis", "Artificial Neural Network", "particle swarm optimisation", "ann", "PSO techniques"], "article_id"=>1461287, "categories"=>["Uncategorised"], "users"=>["Hazlee Azil Illias", "Xin Rui Chai", "Ab Halim Abu Bakar", "Hazlie Mokhlis"], "doi"=>"https://dx.doi.org/10.1371/journal.pone.0129363.g003", "stats"=>{"downloads"=>0, "page_views"=>16, "likes"=>0}, "figshare_url"=>"https://figshare.com/articles/_Best_position_vs_iteration_for_PSO_IPSO_and_EPSO_techniques_/1461287", "title"=>"Best position vs. iteration for PSO, IPSO and EPSO techniques.", "pos_in_sequence"=>0, "defined_type"=>1, "published_date"=>"2015-06-23 03:16:26"}
  • {"files"=>["https://ndownloader.figshare.com/files/2133990"], "description"=>"<p>Best position vs. iteration for PSO, IPSO and EPSO techniques (closer view).</p>", "links"=>[], "tags"=>["transformer oil", "Transformer Incipient Fault Prediction", "Various Particle Swarm Optimisation Techniques", "diagnosis method", "transformer fault type", "dga", "Dissolved gas analysis", "Artificial Neural Network", "particle swarm optimisation", "ann", "PSO techniques"], "article_id"=>1461288, "categories"=>["Uncategorised"], "users"=>["Hazlee Azil Illias", "Xin Rui Chai", "Ab Halim Abu Bakar", "Hazlie Mokhlis"], "doi"=>"https://dx.doi.org/10.1371/journal.pone.0129363.g004", "stats"=>{"downloads"=>0, "page_views"=>21, "likes"=>0}, "figshare_url"=>"https://figshare.com/articles/_Best_position_vs_iteration_for_PSO_IPSO_and_EPSO_techniques_closer_view_/1461288", "title"=>"Best position vs. iteration for PSO, IPSO and EPSO techniques (closer view).", "pos_in_sequence"=>0, "defined_type"=>1, "published_date"=>"2015-06-23 03:16:26"}
  • {"files"=>["https://ndownloader.figshare.com/files/2133988"], "description"=>"<p>Flowchart of PSO technique.</p>", "links"=>[], "tags"=>["transformer oil", "Transformer Incipient Fault Prediction", "Various Particle Swarm Optimisation Techniques", "diagnosis method", "transformer fault type", "dga", "Dissolved gas analysis", "Artificial Neural Network", "particle swarm optimisation", "ann", "PSO techniques"], "article_id"=>1461286, "categories"=>["Uncategorised"], "users"=>["Hazlee Azil Illias", "Xin Rui Chai", "Ab Halim Abu Bakar", "Hazlie Mokhlis"], "doi"=>"https://dx.doi.org/10.1371/journal.pone.0129363.g002", "stats"=>{"downloads"=>0, "page_views"=>21, "likes"=>0}, "figshare_url"=>"https://figshare.com/articles/_Flowchart_of_PSO_technique_/1461286", "title"=>"Flowchart of PSO technique.", "pos_in_sequence"=>0, "defined_type"=>1, "published_date"=>"2015-06-23 03:16:26"}
  • {"files"=>["https://ndownloader.figshare.com/files/2133999"], "description"=>"<p>Comparison of the results between different techniques.</p>", "links"=>[], "tags"=>["transformer oil", "Transformer Incipient Fault Prediction", "Various Particle Swarm Optimisation Techniques", "diagnosis method", "transformer fault type", "dga", "Dissolved gas analysis", "Artificial Neural Network", "particle swarm optimisation", "ann", "PSO techniques"], "article_id"=>1461297, "categories"=>["Uncategorised"], "users"=>["Hazlee Azil Illias", "Xin Rui Chai", "Ab Halim Abu Bakar", "Hazlie Mokhlis"], "doi"=>"https://dx.doi.org/10.1371/journal.pone.0129363.t008", "stats"=>{"downloads"=>1, "page_views"=>10, "likes"=>0}, "figshare_url"=>"https://figshare.com/articles/_Comparison_of_the_results_between_different_techniques_/1461297", "title"=>"Comparison of the results between different techniques.", "pos_in_sequence"=>0, "defined_type"=>3, "published_date"=>"2015-06-23 03:16:26"}
  • {"files"=>["https://ndownloader.figshare.com/files/2133997"], "description"=>"<p>Properties of the selected ANN combined with IPSO.</p>", "links"=>[], "tags"=>["transformer oil", "Transformer Incipient Fault Prediction", "Various Particle Swarm Optimisation Techniques", "diagnosis method", "transformer fault type", "dga", "Dissolved gas analysis", "Artificial Neural Network", "particle swarm optimisation", "ann", "PSO techniques"], "article_id"=>1461295, "categories"=>["Uncategorised"], "users"=>["Hazlee Azil Illias", "Xin Rui Chai", "Ab Halim Abu Bakar", "Hazlie Mokhlis"], "doi"=>"https://dx.doi.org/10.1371/journal.pone.0129363.t006", "stats"=>{"downloads"=>0, "page_views"=>8, "likes"=>0}, "figshare_url"=>"https://figshare.com/articles/_Properties_of_the_selected_ANN_combined_with_IPSO_/1461295", "title"=>"Properties of the selected ANN combined with IPSO.", "pos_in_sequence"=>0, "defined_type"=>3, "published_date"=>"2015-06-23 03:16:26"}
  • {"files"=>["https://ndownloader.figshare.com/files/2133998"], "description"=>"<p>The properties of selected ANN combined with EPSO.</p>", "links"=>[], "tags"=>["transformer oil", "Transformer Incipient Fault Prediction", "Various Particle Swarm Optimisation Techniques", "diagnosis method", "transformer fault type", "dga", "Dissolved gas analysis", "Artificial Neural Network", "particle swarm optimisation", "ann", "PSO techniques"], "article_id"=>1461296, "categories"=>["Uncategorised"], "users"=>["Hazlee Azil Illias", "Xin Rui Chai", "Ab Halim Abu Bakar", "Hazlie Mokhlis"], "doi"=>"https://dx.doi.org/10.1371/journal.pone.0129363.t007", "stats"=>{"downloads"=>2, "page_views"=>17, "likes"=>0}, "figshare_url"=>"https://figshare.com/articles/_The_properties_of_selected_ANN_combined_with_EPSO_/1461296", "title"=>"The properties of selected ANN combined with EPSO.", "pos_in_sequence"=>0, "defined_type"=>3, "published_date"=>"2015-06-23 03:16:26"}
  • {"files"=>["https://ndownloader.figshare.com/files/2133996"], "description"=>"<p>Properties of the selected ANN combined with PSO.</p>", "links"=>[], "tags"=>["transformer oil", "Transformer Incipient Fault Prediction", "Various Particle Swarm Optimisation Techniques", "diagnosis method", "transformer fault type", "dga", "Dissolved gas analysis", "Artificial Neural Network", "particle swarm optimisation", "ann", "PSO techniques"], "article_id"=>1461294, "categories"=>["Uncategorised"], "users"=>["Hazlee Azil Illias", "Xin Rui Chai", "Ab Halim Abu Bakar", "Hazlie Mokhlis"], "doi"=>"https://dx.doi.org/10.1371/journal.pone.0129363.t005", "stats"=>{"downloads"=>1, "page_views"=>8, "likes"=>0}, "figshare_url"=>"https://figshare.com/articles/_Properties_of_the_selected_ANN_combined_with_PSO_/1461294", "title"=>"Properties of the selected ANN combined with PSO.", "pos_in_sequence"=>0, "defined_type"=>3, "published_date"=>"2015-06-23 03:16:26"}
  • {"files"=>["https://ndownloader.figshare.com/files/2133993"], "description"=>"<p>Properties of the selected ANN using default LR and MC.</p>", "links"=>[], "tags"=>["transformer oil", "Transformer Incipient Fault Prediction", "Various Particle Swarm Optimisation Techniques", "diagnosis method", "transformer fault type", "dga", "Dissolved gas analysis", "Artificial Neural Network", "particle swarm optimisation", "ann", "PSO techniques"], "article_id"=>1461291, "categories"=>["Uncategorised"], "users"=>["Hazlee Azil Illias", "Xin Rui Chai", "Ab Halim Abu Bakar", "Hazlie Mokhlis"], "doi"=>"https://dx.doi.org/10.1371/journal.pone.0129363.t003", "stats"=>{"downloads"=>1, "page_views"=>31, "likes"=>0}, "figshare_url"=>"https://figshare.com/articles/_Properties_of_the_selected_ANN_using_default_LR_and_MC_/1461291", "title"=>"Properties of the selected ANN using default LR and MC.", "pos_in_sequence"=>0, "defined_type"=>3, "published_date"=>"2015-06-23 03:16:26"}
  • {"files"=>["https://ndownloader.figshare.com/files/2133992"], "description"=>"<p>Comparison of the indicated result by IEC 60599 with the actual result.</p>", "links"=>[], "tags"=>["transformer oil", "Transformer Incipient Fault Prediction", "Various Particle Swarm Optimisation Techniques", "diagnosis method", "transformer fault type", "dga", "Dissolved gas analysis", "Artificial Neural Network", "particle swarm optimisation", "ann", "PSO techniques"], "article_id"=>1461290, "categories"=>["Uncategorised"], "users"=>["Hazlee Azil Illias", "Xin Rui Chai", "Ab Halim Abu Bakar", "Hazlie Mokhlis"], "doi"=>"https://dx.doi.org/10.1371/journal.pone.0129363.t002", "stats"=>{"downloads"=>1, "page_views"=>21, "likes"=>0}, "figshare_url"=>"https://figshare.com/articles/_Comparison_of_the_indicated_result_by_IEC_60599_with_the_actual_result_/1461290", "title"=>"Comparison of the indicated result by IEC 60599 with the actual result.", "pos_in_sequence"=>0, "defined_type"=>3, "published_date"=>"2015-06-23 03:16:26"}
  • {"files"=>["https://ndownloader.figshare.com/files/2133987"], "description"=>"<p>Flowchart of ANN algorithm.</p>", "links"=>[], "tags"=>["transformer oil", "Transformer Incipient Fault Prediction", "Various Particle Swarm Optimisation Techniques", "diagnosis method", "transformer fault type", "dga", "Dissolved gas analysis", "Artificial Neural Network", "particle swarm optimisation", "ann", "PSO techniques"], "article_id"=>1461285, "categories"=>["Uncategorised"], "users"=>["Hazlee Azil Illias", "Xin Rui Chai", "Ab Halim Abu Bakar", "Hazlie Mokhlis"], "doi"=>"https://dx.doi.org/10.1371/journal.pone.0129363.g001", "stats"=>{"downloads"=>0, "page_views"=>13, "likes"=>0}, "figshare_url"=>"https://figshare.com/articles/_Flowchart_of_ANN_algorithm_/1461285", "title"=>"Flowchart of ANN algorithm.", "pos_in_sequence"=>0, "defined_type"=>1, "published_date"=>"2015-06-23 03:16:26"}
  • {"files"=>["https://ndownloader.figshare.com/files/2134000"], "description"=>"<p>Comparison of the proposed methods with previous methods.</p>", "links"=>[], "tags"=>["transformer oil", "Transformer Incipient Fault Prediction", "Various Particle Swarm Optimisation Techniques", "diagnosis method", "transformer fault type", "dga", "Dissolved gas analysis", "Artificial Neural Network", "particle swarm optimisation", "ann", "PSO techniques"], "article_id"=>1461298, "categories"=>["Uncategorised"], "users"=>["Hazlee Azil Illias", "Xin Rui Chai", "Ab Halim Abu Bakar", "Hazlie Mokhlis"], "doi"=>"https://dx.doi.org/10.1371/journal.pone.0129363.t009", "stats"=>{"downloads"=>6, "page_views"=>28, "likes"=>0}, "figshare_url"=>"https://figshare.com/articles/_Comparison_of_the_proposed_methods_with_previous_methods_/1461298", "title"=>"Comparison of the proposed methods with previous methods.", "pos_in_sequence"=>0, "defined_type"=>3, "published_date"=>"2015-06-23 03:16:26"}

PMC Usage Stats | Further Information

  • {"unique-ip"=>"18", "full-text"=>"15", "pdf"=>"3", "abstract"=>"0", "scanned-summary"=>"0", "scanned-page-browse"=>"0", "figure"=>"0", "supp-data"=>"0", "cited-by"=>"0", "year"=>"2015", "month"=>"7"}
  • {"unique-ip"=>"15", "full-text"=>"20", "pdf"=>"3", "abstract"=>"0", "scanned-summary"=>"0", "scanned-page-browse"=>"0", "figure"=>"0", "supp-data"=>"0", "cited-by"=>"0", "year"=>"2015", "month"=>"8"}
  • {"unique-ip"=>"17", "full-text"=>"16", "pdf"=>"2", "abstract"=>"0", "scanned-summary"=>"0", "scanned-page-browse"=>"0", "figure"=>"1", "supp-data"=>"0", "cited-by"=>"0", "year"=>"2015", "month"=>"9"}
  • {"unique-ip"=>"18", "full-text"=>"15", "pdf"=>"8", "abstract"=>"0", "scanned-summary"=>"0", "scanned-page-browse"=>"0", "figure"=>"1", "supp-data"=>"0", "cited-by"=>"0", "year"=>"2015", "month"=>"10"}
  • {"unique-ip"=>"18", "full-text"=>"18", "pdf"=>"2", "abstract"=>"0", "scanned-summary"=>"0", "scanned-page-browse"=>"0", "figure"=>"0", "supp-data"=>"0", "cited-by"=>"0", "year"=>"2016", "month"=>"1"}
  • {"unique-ip"=>"17", "full-text"=>"15", "pdf"=>"2", "abstract"=>"0", "scanned-summary"=>"0", "scanned-page-browse"=>"0", "figure"=>"0", "supp-data"=>"0", "cited-by"=>"0", "year"=>"2016", "month"=>"2"}
  • {"unique-ip"=>"15", "full-text"=>"13", "pdf"=>"6", "abstract"=>"0", "scanned-summary"=>"0", "scanned-page-browse"=>"0", "figure"=>"0", "supp-data"=>"0", "cited-by"=>"0", "year"=>"2015", "month"=>"11"}
  • {"unique-ip"=>"16", "full-text"=>"18", "pdf"=>"3", "abstract"=>"0", "scanned-summary"=>"0", "scanned-page-browse"=>"0", "figure"=>"0", "supp-data"=>"0", "cited-by"=>"0", "year"=>"2015", "month"=>"12"}
  • {"unique-ip"=>"18", "full-text"=>"18", "pdf"=>"2", "abstract"=>"0", "scanned-summary"=>"0", "scanned-page-browse"=>"0", "figure"=>"1", "supp-data"=>"0", "cited-by"=>"0", "year"=>"2016", "month"=>"3"}
  • {"unique-ip"=>"29", "full-text"=>"18", "pdf"=>"2", "abstract"=>"0", "scanned-summary"=>"0", "scanned-page-browse"=>"0", "figure"=>"4", "supp-data"=>"0", "cited-by"=>"0", "year"=>"2016", "month"=>"4"}
  • {"unique-ip"=>"10", "full-text"=>"15", "pdf"=>"2", "abstract"=>"0", "scanned-summary"=>"0", "scanned-page-browse"=>"0", "figure"=>"2", "supp-data"=>"0", "cited-by"=>"0", "year"=>"2016", "month"=>"5"}
  • {"unique-ip"=>"18", "full-text"=>"18", "pdf"=>"3", "abstract"=>"0", "scanned-summary"=>"0", "scanned-page-browse"=>"0", "figure"=>"1", "supp-data"=>"0", "cited-by"=>"0", "year"=>"2016", "month"=>"6"}
  • {"unique-ip"=>"25", "full-text"=>"28", "pdf"=>"1", "abstract"=>"0", "scanned-summary"=>"0", "scanned-page-browse"=>"0", "figure"=>"2", "supp-data"=>"0", "cited-by"=>"0", "year"=>"2016", "month"=>"7"}
  • {"unique-ip"=>"29", "full-text"=>"31", "pdf"=>"0", "abstract"=>"0", "scanned-summary"=>"0", "scanned-page-browse"=>"0", "figure"=>"1", "supp-data"=>"0", "cited-by"=>"0", "year"=>"2016", "month"=>"8"}
  • {"unique-ip"=>"24", "full-text"=>"27", "pdf"=>"3", "abstract"=>"0", "scanned-summary"=>"0", "scanned-page-browse"=>"0", "figure"=>"0", "supp-data"=>"0", "cited-by"=>"0", "year"=>"2016", "month"=>"9"}
  • {"unique-ip"=>"26", "full-text"=>"26", "pdf"=>"2", "abstract"=>"0", "scanned-summary"=>"0", "scanned-page-browse"=>"0", "figure"=>"0", "supp-data"=>"0", "cited-by"=>"0", "year"=>"2016", "month"=>"10"}
  • {"unique-ip"=>"10", "full-text"=>"9", "pdf"=>"1", "abstract"=>"0", "scanned-summary"=>"0", "scanned-page-browse"=>"0", "figure"=>"0", "supp-data"=>"0", "cited-by"=>"0", "year"=>"2016", "month"=>"11"}
  • {"unique-ip"=>"16", "full-text"=>"16", "pdf"=>"3", "abstract"=>"0", "scanned-summary"=>"0", "scanned-page-browse"=>"0", "figure"=>"1", "supp-data"=>"0", "cited-by"=>"0", "year"=>"2016", "month"=>"12"}
  • {"unique-ip"=>"22", "full-text"=>"16", "pdf"=>"3", "abstract"=>"0", "scanned-summary"=>"0", "scanned-page-browse"=>"0", "figure"=>"0", "supp-data"=>"0", "cited-by"=>"0", "year"=>"2017", "month"=>"1"}
  • {"unique-ip"=>"6", "full-text"=>"8", "pdf"=>"1", "abstract"=>"0", "scanned-summary"=>"0", "scanned-page-browse"=>"0", "figure"=>"0", "supp-data"=>"0", "cited-by"=>"0", "year"=>"2017", "month"=>"2"}
  • {"unique-ip"=>"19", "full-text"=>"19", "pdf"=>"2", "abstract"=>"0", "scanned-summary"=>"0", "scanned-page-browse"=>"0", "figure"=>"1", "supp-data"=>"0", "cited-by"=>"0", "year"=>"2017", "month"=>"3"}
  • {"unique-ip"=>"47", "full-text"=>"54", "pdf"=>"2", "abstract"=>"0", "scanned-summary"=>"0", "scanned-page-browse"=>"0", "figure"=>"1", "supp-data"=>"0", "cited-by"=>"0", "year"=>"2017", "month"=>"4"}
  • {"unique-ip"=>"29", "full-text"=>"27", "pdf"=>"4", "abstract"=>"0", "scanned-summary"=>"0", "scanned-page-browse"=>"0", "figure"=>"5", "supp-data"=>"0", "cited-by"=>"0", "year"=>"2017", "month"=>"5"}
  • {"unique-ip"=>"31", "full-text"=>"38", "pdf"=>"2", "abstract"=>"0", "scanned-summary"=>"0", "scanned-page-browse"=>"0", "figure"=>"0", "supp-data"=>"0", "cited-by"=>"0", "year"=>"2017", "month"=>"6"}
  • {"unique-ip"=>"25", "full-text"=>"28", "pdf"=>"1", "abstract"=>"0", "scanned-summary"=>"0", "scanned-page-browse"=>"0", "figure"=>"11", "supp-data"=>"0", "cited-by"=>"0", "year"=>"2017", "month"=>"7"}
  • {"unique-ip"=>"26", "full-text"=>"33", "pdf"=>"1", "abstract"=>"0", "scanned-summary"=>"0", "scanned-page-browse"=>"0", "figure"=>"2", "supp-data"=>"0", "cited-by"=>"0", "year"=>"2017", "month"=>"8"}
  • {"unique-ip"=>"50", "full-text"=>"59", "pdf"=>"5", "abstract"=>"0", "scanned-summary"=>"0", "scanned-page-browse"=>"0", "figure"=>"2", "supp-data"=>"0", "cited-by"=>"0", "year"=>"2017", "month"=>"9"}
  • {"unique-ip"=>"31", "full-text"=>"35", "pdf"=>"4", "abstract"=>"0", "scanned-summary"=>"0", "scanned-page-browse"=>"0", "figure"=>"2", "supp-data"=>"0", "cited-by"=>"0", "year"=>"2017", "month"=>"10"}
  • {"unique-ip"=>"55", "full-text"=>"51", "pdf"=>"1", "abstract"=>"0", "scanned-summary"=>"0", "scanned-page-browse"=>"0", "figure"=>"1", "supp-data"=>"0", "cited-by"=>"0", "year"=>"2017", "month"=>"11"}
  • {"unique-ip"=>"17", "full-text"=>"17", "pdf"=>"1", "abstract"=>"0", "scanned-summary"=>"0", "scanned-page-browse"=>"0", "figure"=>"4", "supp-data"=>"0", "cited-by"=>"0", "year"=>"2017", "month"=>"12"}
  • {"unique-ip"=>"32", "full-text"=>"32", "pdf"=>"3", "abstract"=>"0", "scanned-summary"=>"0", "scanned-page-browse"=>"0", "figure"=>"1", "supp-data"=>"0", "cited-by"=>"0", "year"=>"2018", "month"=>"1"}
  • {"unique-ip"=>"3", "full-text"=>"2", "pdf"=>"1", "abstract"=>"0", "scanned-summary"=>"0", "scanned-page-browse"=>"0", "figure"=>"0", "supp-data"=>"0", "cited-by"=>"0", "year"=>"2018", "month"=>"2"}
  • {"unique-ip"=>"30", "full-text"=>"30", "pdf"=>"3", "abstract"=>"0", "scanned-summary"=>"0", "scanned-page-browse"=>"0", "figure"=>"2", "supp-data"=>"0", "cited-by"=>"1", "year"=>"2018", "month"=>"3"}
  • {"unique-ip"=>"18", "full-text"=>"19", "pdf"=>"1", "scanned-summary"=>"0", "scanned-page-browse"=>"0", "figure"=>"0", "supp-data"=>"0", "cited-by"=>"0", "year"=>"2019", "month"=>"1"}
  • {"unique-ip"=>"20", "full-text"=>"22", "pdf"=>"1", "scanned-summary"=>"0", "scanned-page-browse"=>"0", "figure"=>"0", "supp-data"=>"0", "cited-by"=>"0", "year"=>"2018", "month"=>"12"}
  • {"unique-ip"=>"30", "full-text"=>"30", "pdf"=>"1", "scanned-summary"=>"0", "scanned-page-browse"=>"0", "figure"=>"0", "supp-data"=>"0", "cited-by"=>"0", "year"=>"2018", "month"=>"4"}
  • {"unique-ip"=>"14", "full-text"=>"15", "pdf"=>"0", "scanned-summary"=>"0", "scanned-page-browse"=>"0", "figure"=>"0", "supp-data"=>"0", "cited-by"=>"0", "year"=>"2018", "month"=>"6"}
  • {"unique-ip"=>"22", "full-text"=>"23", "pdf"=>"2", "scanned-summary"=>"0", "scanned-page-browse"=>"0", "figure"=>"0", "supp-data"=>"0", "cited-by"=>"0", "year"=>"2018", "month"=>"5"}
  • {"unique-ip"=>"11", "full-text"=>"12", "pdf"=>"2", "scanned-summary"=>"0", "scanned-page-browse"=>"0", "figure"=>"0", "supp-data"=>"0", "cited-by"=>"0", "year"=>"2018", "month"=>"7"}
  • {"unique-ip"=>"14", "full-text"=>"13", "pdf"=>"1", "scanned-summary"=>"0", "scanned-page-browse"=>"0", "figure"=>"0", "supp-data"=>"0", "cited-by"=>"0", "year"=>"2018", "month"=>"8"}
  • {"unique-ip"=>"12", "full-text"=>"11", "pdf"=>"2", "scanned-summary"=>"0", "scanned-page-browse"=>"0", "figure"=>"0", "supp-data"=>"0", "cited-by"=>"0", "year"=>"2018", "month"=>"10"}
  • {"unique-ip"=>"19", "full-text"=>"21", "pdf"=>"1", "scanned-summary"=>"0", "scanned-page-browse"=>"0", "figure"=>"0", "supp-data"=>"0", "cited-by"=>"0", "year"=>"2018", "month"=>"11"}
  • {"unique-ip"=>"22", "full-text"=>"24", "pdf"=>"1", "scanned-summary"=>"0", "scanned-page-browse"=>"0", "figure"=>"0", "supp-data"=>"0", "cited-by"=>"0", "year"=>"2018", "month"=>"9"}
  • {"unique-ip"=>"12", "full-text"=>"13", "pdf"=>"0", "scanned-summary"=>"0", "scanned-page-browse"=>"0", "figure"=>"0", "supp-data"=>"0", "cited-by"=>"0", "year"=>"2019", "month"=>"2"}
  • {"unique-ip"=>"20", "full-text"=>"26", "pdf"=>"1", "scanned-summary"=>"0", "scanned-page-browse"=>"0", "figure"=>"1", "supp-data"=>"0", "cited-by"=>"0", "year"=>"2019", "month"=>"3"}
  • {"unique-ip"=>"22", "full-text"=>"25", "pdf"=>"3", "scanned-summary"=>"0", "scanned-page-browse"=>"0", "figure"=>"0", "supp-data"=>"0", "cited-by"=>"0", "year"=>"2019", "month"=>"4"}
  • {"unique-ip"=>"21", "full-text"=>"28", "pdf"=>"4", "scanned-summary"=>"0", "scanned-page-browse"=>"0", "figure"=>"0", "supp-data"=>"0", "cited-by"=>"0", "year"=>"2019", "month"=>"5"}

Relative Metric

{"start_date"=>"2015-01-01T00:00:00Z", "end_date"=>"2015-12-31T00:00:00Z", "subject_areas"=>[]}
Loading … Spinner
There are currently no alerts