Generation and Characterization of Novel Magnetic Field-Responsive Biomaterials
Publication Date
July 24, 2015
Journal
PLOS ONE
Authors
Modesto T. Lopez Lopez, Giuseppe Scionti, Ana C. Oliveira, Juan D. G. Duran, et al
Volume
10
Issue
7
Pages
e0133878
DOI
https://dx.plos.org/10.1371/journal.pone.0133878
Publisher URL
http://journals.plos.org/plosone/article?id=10.1371%2Fjournal.pone.0133878
PubMed
http://www.ncbi.nlm.nih.gov/pubmed/26207995
PubMed Central
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4514776
Europe PMC
http://europepmc.org/abstract/MED/26207995
Web of Science
000358622000163
Scopus
84941928529
Mendeley
http://www.mendeley.com/research/generation-characterization-novel-magnetic-fieldresponsive-biomaterials-1
Events
Loading … Spinner

Mendeley | Further Information

{"title"=>"Generation and Characterization of Novel Magnetic Field-Responsive Biomaterials", "type"=>"journal", "authors"=>[{"first_name"=>"Modesto T.", "last_name"=>"Lopez-Lopez"}, {"first_name"=>"Giuseppe", "last_name"=>"Scionti"}, {"first_name"=>"Ana C.", "last_name"=>"Oliveira"}, {"first_name"=>"Juan D. G.", "last_name"=>"Duran"}, {"first_name"=>"Antonio", "last_name"=>"Campos"}, {"first_name"=>"Miguel", "last_name"=>"Alaminos"}, {"first_name"=>"Ismael A.", "last_name"=>"Rodriguez"}], "year"=>2015, "source"=>"PLOS ONE", "identifiers"=>{"issn"=>"1932-6203", "pmid"=>"26207995", "doi"=>"10.1371/journal.pone.0133878"}, "id"=>"07b732b8-f030-365c-91fe-d0b0d99f3624", "abstract"=>"We report the preparation of novel magnetic field-responsive tissue substitutes based on biocompatible multi-domain magnetic particles dispersed in a fibrin-agarose biopolymer scaffold. We characterized our biomaterials with several experimental techniques. First we analyzed their microstructure and found that it was strongly affected by the presence of magnetic particles, especially when a magnetic field was applied at the start of polymer gelation. In these samples we observed parallel stripes consisting of closely packed fibers, separated by more isotropic net-like spaces. We then studied the viability of oral mucosa fibroblasts in the magnetic scaffolds and found no significant differences compared to positive control samples. Finally, we analyzed the magnetic and mechanical properties of the tissue substitutes. Differences in microstructural patterns of the tissue substitutes correlated with their macroscopic mechanical properties. We also found that the mechanical properties of our magnetic tissue substitutes could be reversibly tuned by noncontact magnetic forces. This unique advantage with respect to other biomaterials could be used to match the mechanical properties of the tissue substitutes to those of potential target tissues in tissue engineering applications.", "link"=>"http://www.mendeley.com/research/generation-characterization-novel-magnetic-fieldresponsive-biomaterials-1", "reader_count"=>24, "reader_count_by_academic_status"=>{"Professor > Associate Professor"=>2, "Researcher"=>4, "Student > Doctoral Student"=>3, "Student > Ph. D. Student"=>7, "Other"=>1, "Student > Master"=>5, "Student > Bachelor"=>2}, "reader_count_by_user_role"=>{"Professor > Associate Professor"=>2, "Researcher"=>4, "Student > Doctoral Student"=>3, "Student > Ph. D. Student"=>7, "Other"=>1, "Student > Master"=>5, "Student > Bachelor"=>2}, "reader_count_by_subject_area"=>{"Engineering"=>5, "Biochemistry, Genetics and Molecular Biology"=>2, "Materials Science"=>8, "Mathematics"=>1, "Agricultural and Biological Sciences"=>2, "Medicine and Dentistry"=>3, "Physics and Astronomy"=>1, "Chemistry"=>2}, "reader_count_by_subdiscipline"=>{"Engineering"=>{"Engineering"=>5}, "Materials Science"=>{"Materials Science"=>8}, "Medicine and Dentistry"=>{"Medicine and Dentistry"=>3}, "Chemistry"=>{"Chemistry"=>2}, "Physics and Astronomy"=>{"Physics and Astronomy"=>1}, "Agricultural and Biological Sciences"=>{"Agricultural and Biological Sciences"=>2}, "Biochemistry, Genetics and Molecular Biology"=>{"Biochemistry, Genetics and Molecular Biology"=>2}, "Mathematics"=>{"Mathematics"=>1}}, "reader_count_by_country"=>{"Canada"=>1}, "group_count"=>1}

Scopus | Further Information

{"@_fa"=>"true", "link"=>[{"@_fa"=>"true", "@ref"=>"self", "@href"=>"https://api.elsevier.com/content/abstract/scopus_id/84941928529"}, {"@_fa"=>"true", "@ref"=>"author-affiliation", "@href"=>"https://api.elsevier.com/content/abstract/scopus_id/84941928529?field=author,affiliation"}, {"@_fa"=>"true", "@ref"=>"scopus", "@href"=>"https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=84941928529&origin=inward"}, {"@_fa"=>"true", "@ref"=>"scopus-citedby", "@href"=>"https://www.scopus.com/inward/citedby.uri?partnerID=HzOxMe3b&scp=84941928529&origin=inward"}], "prism:url"=>"https://api.elsevier.com/content/abstract/scopus_id/84941928529", "dc:identifier"=>"SCOPUS_ID:84941928529", "eid"=>"2-s2.0-84941928529", "dc:title"=>"Generation and characterization of novel magnetic field-responsive biomaterials", "dc:creator"=>"Lopez-Lopez M.", "prism:publicationName"=>"PLoS ONE", "prism:eIssn"=>"19326203", "prism:volume"=>"10", "prism:issueIdentifier"=>"7", "prism:pageRange"=>nil, "prism:coverDate"=>"2015-07-24", "prism:coverDisplayDate"=>"24 July 2015", "prism:doi"=>"10.1371/journal.pone.0133878", "citedby-count"=>"35", "affiliation"=>[{"@_fa"=>"true", "affilname"=>"Universidad de Granada, Facultad de Ciencias", "affiliation-city"=>"Granada", "affiliation-country"=>"Spain"}, {"@_fa"=>"true", "affilname"=>"Instituto de Investigación Biosanitaria de Granada (ibs.GRANADA)", "affiliation-city"=>"Granada", "affiliation-country"=>"Spain"}], "pubmed-id"=>"26207995", "prism:aggregationType"=>"Journal", "subtype"=>"ar", "subtypeDescription"=>"Article", "article-number"=>"e0133878", "source-id"=>"10600153309", "openaccess"=>"1", "openaccessFlag"=>true}

Facebook

  • {"url"=>"http%3A%2F%2Fjournals.plos.org%2Fplosone%2Farticle%3Fid%3D10.1371%252Fjournal.pone.0133878", "share_count"=>2, "like_count"=>53, "comment_count"=>11, "click_count"=>0, "total_count"=>66}

Counter

  • {"month"=>"7", "year"=>"2015", "pdf_views"=>"37", "xml_views"=>"4", "html_views"=>"165"}
  • {"month"=>"8", "year"=>"2015", "pdf_views"=>"37", "xml_views"=>"0", "html_views"=>"183"}
  • {"month"=>"9", "year"=>"2015", "pdf_views"=>"14", "xml_views"=>"1", "html_views"=>"46"}
  • {"month"=>"10", "year"=>"2015", "pdf_views"=>"13", "xml_views"=>"0", "html_views"=>"31"}
  • {"month"=>"11", "year"=>"2015", "pdf_views"=>"6", "xml_views"=>"0", "html_views"=>"27"}
  • {"month"=>"12", "year"=>"2015", "pdf_views"=>"3", "xml_views"=>"0", "html_views"=>"38"}
  • {"month"=>"1", "year"=>"2016", "pdf_views"=>"11", "xml_views"=>"0", "html_views"=>"55"}
  • {"month"=>"2", "year"=>"2016", "pdf_views"=>"11", "xml_views"=>"0", "html_views"=>"62"}
  • {"month"=>"3", "year"=>"2016", "pdf_views"=>"10", "xml_views"=>"0", "html_views"=>"62"}
  • {"month"=>"4", "year"=>"2016", "pdf_views"=>"12", "xml_views"=>"0", "html_views"=>"58"}
  • {"month"=>"5", "year"=>"2016", "pdf_views"=>"23", "xml_views"=>"0", "html_views"=>"31"}
  • {"month"=>"6", "year"=>"2016", "pdf_views"=>"7", "xml_views"=>"0", "html_views"=>"41"}
  • {"month"=>"7", "year"=>"2016", "pdf_views"=>"7", "xml_views"=>"0", "html_views"=>"29"}
  • {"month"=>"8", "year"=>"2016", "pdf_views"=>"12", "xml_views"=>"0", "html_views"=>"41"}
  • {"month"=>"9", "year"=>"2016", "pdf_views"=>"8", "xml_views"=>"0", "html_views"=>"49"}
  • {"month"=>"10", "year"=>"2016", "pdf_views"=>"9", "xml_views"=>"0", "html_views"=>"32"}
  • {"month"=>"11", "year"=>"2016", "pdf_views"=>"7", "xml_views"=>"0", "html_views"=>"39"}
  • {"month"=>"12", "year"=>"2016", "pdf_views"=>"5", "xml_views"=>"0", "html_views"=>"29"}
  • {"month"=>"1", "year"=>"2017", "pdf_views"=>"4", "xml_views"=>"0", "html_views"=>"45"}
  • {"month"=>"2", "year"=>"2017", "pdf_views"=>"9", "xml_views"=>"0", "html_views"=>"41"}
  • {"month"=>"3", "year"=>"2017", "pdf_views"=>"13", "xml_views"=>"1", "html_views"=>"61"}
  • {"month"=>"4", "year"=>"2017", "pdf_views"=>"6", "xml_views"=>"0", "html_views"=>"37"}
  • {"month"=>"5", "year"=>"2017", "pdf_views"=>"7", "xml_views"=>"0", "html_views"=>"55"}
  • {"month"=>"6", "year"=>"2017", "pdf_views"=>"9", "xml_views"=>"0", "html_views"=>"44"}
  • {"month"=>"7", "year"=>"2017", "pdf_views"=>"13", "xml_views"=>"0", "html_views"=>"30"}
  • {"month"=>"8", "year"=>"2017", "pdf_views"=>"7", "xml_views"=>"1", "html_views"=>"23"}
  • {"month"=>"9", "year"=>"2017", "pdf_views"=>"3", "xml_views"=>"2", "html_views"=>"27"}
  • {"month"=>"10", "year"=>"2017", "pdf_views"=>"9", "xml_views"=>"1", "html_views"=>"42"}
  • {"month"=>"11", "year"=>"2017", "pdf_views"=>"8", "xml_views"=>"0", "html_views"=>"66"}
  • {"month"=>"12", "year"=>"2017", "pdf_views"=>"6", "xml_views"=>"2", "html_views"=>"30"}
  • {"month"=>"1", "year"=>"2018", "pdf_views"=>"8", "xml_views"=>"0", "html_views"=>"21"}
  • {"month"=>"2", "year"=>"2018", "pdf_views"=>"3", "xml_views"=>"0", "html_views"=>"24"}
  • {"month"=>"3", "year"=>"2018", "pdf_views"=>"9", "xml_views"=>"0", "html_views"=>"32"}
  • {"month"=>"4", "year"=>"2018", "pdf_views"=>"10", "xml_views"=>"0", "html_views"=>"20"}
  • {"month"=>"5", "year"=>"2018", "pdf_views"=>"11", "xml_views"=>"0", "html_views"=>"16"}
  • {"month"=>"6", "year"=>"2018", "pdf_views"=>"5", "xml_views"=>"1", "html_views"=>"20"}
  • {"month"=>"7", "year"=>"2018", "pdf_views"=>"5", "xml_views"=>"3", "html_views"=>"18"}
  • {"month"=>"8", "year"=>"2018", "pdf_views"=>"4", "xml_views"=>"1", "html_views"=>"16"}
  • {"month"=>"9", "year"=>"2018", "pdf_views"=>"11", "xml_views"=>"0", "html_views"=>"42"}
  • {"month"=>"10", "year"=>"2018", "pdf_views"=>"9", "xml_views"=>"2", "html_views"=>"21"}
  • {"month"=>"11", "year"=>"2018", "pdf_views"=>"4", "xml_views"=>"0", "html_views"=>"13"}
  • {"month"=>"12", "year"=>"2018", "pdf_views"=>"3", "xml_views"=>"0", "html_views"=>"27"}
  • {"month"=>"1", "year"=>"2019", "pdf_views"=>"7", "xml_views"=>"0", "html_views"=>"22"}
  • {"month"=>"2", "year"=>"2019", "pdf_views"=>"9", "xml_views"=>"0", "html_views"=>"12"}
  • {"month"=>"3", "year"=>"2019", "pdf_views"=>"6", "xml_views"=>"0", "html_views"=>"7"}
  • {"month"=>"4", "year"=>"2019", "pdf_views"=>"4", "xml_views"=>"0", "html_views"=>"21"}
  • {"month"=>"5", "year"=>"2019", "pdf_views"=>"5", "xml_views"=>"0", "html_views"=>"14"}
  • {"month"=>"6", "year"=>"2019", "pdf_views"=>"3", "xml_views"=>"0", "html_views"=>"11"}
  • {"month"=>"7", "year"=>"2019", "pdf_views"=>"9", "xml_views"=>"0", "html_views"=>"28"}
  • {"month"=>"8", "year"=>"2019", "pdf_views"=>"28", "xml_views"=>"0", "html_views"=>"15"}
  • {"month"=>"9", "year"=>"2019", "pdf_views"=>"6", "xml_views"=>"0", "html_views"=>"17"}
  • {"month"=>"10", "year"=>"2019", "pdf_views"=>"4", "xml_views"=>"0", "html_views"=>"15"}
  • {"month"=>"11", "year"=>"2019", "pdf_views"=>"3", "xml_views"=>"0", "html_views"=>"24"}
  • {"month"=>"12", "year"=>"2019", "pdf_views"=>"5", "xml_views"=>"0", "html_views"=>"20"}
  • {"month"=>"1", "year"=>"2020", "pdf_views"=>"11", "xml_views"=>"0", "html_views"=>"17"}
  • {"month"=>"2", "year"=>"2020", "pdf_views"=>"8", "xml_views"=>"1", "html_views"=>"10"}
  • {"month"=>"3", "year"=>"2020", "pdf_views"=>"5", "xml_views"=>"0", "html_views"=>"13"}
  • {"month"=>"4", "year"=>"2020", "pdf_views"=>"17", "xml_views"=>"1", "html_views"=>"13"}
  • {"month"=>"5", "year"=>"2020", "pdf_views"=>"8", "xml_views"=>"1", "html_views"=>"15"}
  • {"month"=>"6", "year"=>"2020", "pdf_views"=>"24", "xml_views"=>"2", "html_views"=>"13"}
  • {"month"=>"7", "year"=>"2020", "pdf_views"=>"8", "xml_views"=>"0", "html_views"=>"15"}
  • {"month"=>"8", "year"=>"2020", "pdf_views"=>"3", "xml_views"=>"1", "html_views"=>"13"}
  • {"month"=>"9", "year"=>"2020", "pdf_views"=>"18", "xml_views"=>"0", "html_views"=>"13"}
  • {"month"=>"10", "year"=>"2020", "pdf_views"=>"20", "xml_views"=>"1", "html_views"=>"12"}
  • {"month"=>"11", "year"=>"2020", "pdf_views"=>"3", "xml_views"=>"0", "html_views"=>"7"}

Figshare

  • {"files"=>["https://ndownloader.figshare.com/files/2189340"], "description"=>"<p>(a) Elastic modulus as a function of the amplitude of shear strain in oscillatory tests at an oscillation frequency of 1 Hz. (b) Shear stress as a function of shear strain obtained under steady-state conditions. Experimental groups: Ctrl-MF0 and Ctrl-MF16: control (nonmagnetic) tissue substitute without particles, gelled in the absence of a magnetic field or during application of a 16 kA m<sup>-1</sup> field, respectively; Ctrl-NP: control (nonmagnetic) tissue substitute with nonmagnetic polymer particles; M-MF0: magnetic tissue substitute gelled in the absence of a magnetic field; M-MF16, M-MF32 and M-MF48: magnetic tissue substitutes gelled during application of a 16 kA m<sup>-1</sup>, 32 kA m<sup>-1</sup> or 48 kA m<sup>-1</sup> field, respectively.</p>", "links"=>[], "tags"=>["presence", "generation", "fibrin", "control samples", "biomaterial", "microstructure", "macroscopic", "noncontact", "preparation", "scaffold", "technique", "viability", "microstructural patterns", "biocompatible", "tissue substitutes", "mucosa fibroblasts", "reversibly", "stripe", "differences", "first", "biopolymer", "characterization", "target tissues", "polymer gelation", "tissue engineering applications"], "article_id"=>1493888, "categories"=>["Biological Sciences"], "users"=>["Modesto T. Lopez-Lopez", "Giuseppe Scionti", "Ana C. Oliveira", "Juan D. G. Duran", "Antonio Campos", "Miguel Alaminos", "Ismael A. Rodriguez"], "doi"=>"https://dx.doi.org/10.1371/journal.pone.0133878.g005", "stats"=>{"downloads"=>1, "page_views"=>17, "likes"=>0}, "figshare_url"=>"https://figshare.com/articles/_Mechanical_properties_of_tissue_substitutes_in_the_absence_of_a_magnetic_field_/1493888", "title"=>"Mechanical properties of tissue substitutes in the absence of a magnetic field.", "pos_in_sequence"=>0, "defined_type"=>1, "published_date"=>"2015-07-24 03:53:38"}
  • {"files"=>["https://ndownloader.figshare.com/files/2189338"], "description"=>"<p>Filled squares: tissue substitute gelled in the absence of a magnetic field (M-MF0); open circles: tissue substitute gelled during application of a 16 kA m<sup>-1</sup> field (M-MF16); open triangles: tissue substitute gelled during application of a 32 kA m<sup>-1</sup> field (M-MF32); filled triangles: tissue substitute gelled during application of a 48 kA m<sup>-1</sup> field (M-MF48). Values for saturation magnetization (kA/m) were obtained according to the Fröhlich–Kennely law [<a href=\"http://www.plosone.org/article/info:doi/10.1371/journal.pone.0133878#pone.0133878.ref036\" target=\"_blank\">36</a>]: M-MF0: 4.7 ± 0.3; M-MF16: 4.04 ± 0.24; M-MF32: 2.67 ± 0.15; M-MF48: 3.57 ± 0.20.</p>", "links"=>[], "tags"=>["presence", "generation", "fibrin", "control samples", "biomaterial", "microstructure", "macroscopic", "noncontact", "preparation", "scaffold", "technique", "viability", "microstructural patterns", "biocompatible", "tissue substitutes", "mucosa fibroblasts", "reversibly", "stripe", "differences", "first", "biopolymer", "characterization", "target tissues", "polymer gelation", "tissue engineering applications"], "article_id"=>1493886, "categories"=>["Biological Sciences"], "users"=>["Modesto T. Lopez-Lopez", "Giuseppe Scionti", "Ana C. Oliveira", "Juan D. G. Duran", "Antonio Campos", "Miguel Alaminos", "Ismael A. Rodriguez"], "doi"=>"https://dx.doi.org/10.1371/journal.pone.0133878.g004", "stats"=>{"downloads"=>1, "page_views"=>17, "likes"=>0}, "figshare_url"=>"https://figshare.com/articles/_Magnetization_curves_of_magnetic_tissue_substitutes_/1493886", "title"=>"Magnetization curves of magnetic tissue substitutes.", "pos_in_sequence"=>0, "defined_type"=>1, "published_date"=>"2015-07-24 03:53:38"}
  • {"files"=>["https://ndownloader.figshare.com/files/2189335"], "description"=>"<p>Fluorescence microscopy images (scale bar: 100 μm) representative of each experimental group. Live cells are stained green, and dead cells red. The graph shows the mean values ± standard deviations for live cells from 8 independent experiments for each experimental group. Ctrl-MF0: control (nonmagnetic) tissue substitute without particles, gelled in the absence of a magnetic field; Ctrl-NP: control (nonmagnetic) tissue substitute with nonmagnetic polymer particles; M-MF0: magnetic tissue substitute gelled in the absence of a magnetic field; M-MF16, M-MF32 and M-MF48: magnetic tissue substitutes gelled during application of a 16 kA m<sup>-1</sup>, 32 kA m<sup>-1</sup> or 48 kA m<sup>-1</sup> field, respectively.</p>", "links"=>[], "tags"=>["presence", "generation", "fibrin", "control samples", "biomaterial", "microstructure", "macroscopic", "noncontact", "preparation", "scaffold", "technique", "viability", "microstructural patterns", "biocompatible", "tissue substitutes", "mucosa fibroblasts", "reversibly", "stripe", "differences", "first", "biopolymer", "characterization", "target tissues", "polymer gelation", "tissue engineering applications"], "article_id"=>1493883, "categories"=>["Biological Sciences"], "users"=>["Modesto T. Lopez-Lopez", "Giuseppe Scionti", "Ana C. Oliveira", "Juan D. G. Duran", "Antonio Campos", "Miguel Alaminos", "Ismael A. Rodriguez"], "doi"=>"https://dx.doi.org/10.1371/journal.pone.0133878.g002", "stats"=>{"downloads"=>0, "page_views"=>10, "likes"=>0}, "figshare_url"=>"https://figshare.com/articles/_Cell_viability_tests_/1493883", "title"=>"Cell viability tests.", "pos_in_sequence"=>0, "defined_type"=>1, "published_date"=>"2015-07-24 03:53:38"}
  • {"files"=>["https://ndownloader.figshare.com/files/2189348"], "description"=>"<p><sup>a</sup> Experimental groups: M-MF0: magnetic tissue substitute gelled in the absence of a magnetic field; M-MF16, M-MF32 and M-MF48: magnetic tissue substitutes gelled during application of a 16 kA m<sup>-1</sup>, 32 kA m<sup>-1</sup> or 48 kA m<sup>-1</sup> field, respectively.</p><p>Note the mean value of the shear modulus in control samples without particles (Ctrl-MF0 to Ctrl-MF48), G<sub>control</sub> = 101 ± 10 Pa. Uncertainties were estimated according to the theory of error propagation.</p>", "links"=>[], "tags"=>["presence", "generation", "fibrin", "control samples", "biomaterial", "microstructure", "macroscopic", "noncontact", "preparation", "scaffold", "technique", "viability", "microstructural patterns", "biocompatible", "tissue substitutes", "mucosa fibroblasts", "reversibly", "stripe", "differences", "first", "biopolymer", "characterization", "target tissues", "polymer gelation", "tissue engineering applications"], "article_id"=>1493896, "categories"=>["Biological Sciences"], "users"=>["Modesto T. Lopez-Lopez", "Giuseppe Scionti", "Ana C. Oliveira", "Juan D. G. Duran", "Antonio Campos", "Miguel Alaminos", "Ismael A. Rodriguez"], "doi"=>"https://dx.doi.org/10.1371/journal.pone.0133878.t003", "stats"=>{"downloads"=>6, "page_views"=>14, "likes"=>0}, "figshare_url"=>"https://figshare.com/articles/_Shear_modulus_of_the_continuous_matrix_of_magnetic_tissue_substitutes_as_calculated_with_Eq_3_/1493896", "title"=>"Shear modulus of the continuous matrix of magnetic tissue substitutes, as calculated with Eq (3).", "pos_in_sequence"=>0, "defined_type"=>3, "published_date"=>"2015-07-24 03:53:38"}
  • {"files"=>["https://ndownloader.figshare.com/files/2189361"], "description"=>"<div><p>We report the preparation of novel magnetic field-responsive tissue substitutes based on biocompatible multi-domain magnetic particles dispersed in a fibrin–agarose biopolymer scaffold. We characterized our biomaterials with several experimental techniques. First we analyzed their microstructure and found that it was strongly affected by the presence of magnetic particles, especially when a magnetic field was applied at the start of polymer gelation. In these samples we observed parallel stripes consisting of closely packed fibers, separated by more isotropic net-like spaces. We then studied the viability of oral mucosa fibroblasts in the magnetic scaffolds and found no significant differences compared to positive control samples. Finally, we analyzed the magnetic and mechanical properties of the tissue substitutes. Differences in microstructural patterns of the tissue substitutes correlated with their macroscopic mechanical properties. We also found that the mechanical properties of our magnetic tissue substitutes could be reversibly tuned by noncontact magnetic forces. This unique advantage with respect to other biomaterials could be used to match the mechanical properties of the tissue substitutes to those of potential target tissues in tissue engineering applications.</p></div>", "links"=>[], "tags"=>["presence", "generation", "fibrin", "control samples", "biomaterial", "microstructure", "macroscopic", "noncontact", "preparation", "scaffold", "technique", "viability", "microstructural patterns", "biocompatible", "tissue substitutes", "mucosa fibroblasts", "reversibly", "stripe", "differences", "first", "biopolymer", "characterization", "target tissues", "polymer gelation", "tissue engineering applications"], "article_id"=>1493909, "categories"=>["Biological Sciences"], "users"=>["Modesto T. Lopez-Lopez", "Giuseppe Scionti", "Ana C. Oliveira", "Juan D. G. Duran", "Antonio Campos", "Miguel Alaminos", "Ismael A. Rodriguez"], "doi"=>"https://dx.doi.org/10.1371/journal.pone.0133878", "stats"=>{"downloads"=>2, "page_views"=>19, "likes"=>0}, "figshare_url"=>"https://figshare.com/articles/_Generation_and_Characterization_of_Novel_Magnetic_Field_Responsive_Biomaterials_/1493909", "title"=>"Generation and Characterization of Novel Magnetic Field-Responsive Biomaterials", "pos_in_sequence"=>0, "defined_type"=>2, "published_date"=>"2015-07-24 03:53:38"}
  • {"files"=>["https://ndownloader.figshare.com/files/2189346"], "description"=>"<p><sup>a</sup> Experimental groups: M-MF0: magnetic tissue substitute gelled in the absence of a magnetic field; M-MF16, M-MF32 and M-MF48: magnetic tissue substitutes gelled during application of a 16 kA m<sup>-1</sup>, 32 kA m<sup>-1</sup> or 48 kA m<sup>-1</sup> field, respectively.</p><p>G<sub>control</sub> = 101 ± 10 Pa represents the mean value for control samples without particles (Ctrl-MF0 to Ctrl-MF48). Uncertainties were estimated according to theory of error propagation.</p>", "links"=>[], "tags"=>["presence", "generation", "fibrin", "control samples", "biomaterial", "microstructure", "macroscopic", "noncontact", "preparation", "scaffold", "technique", "viability", "microstructural patterns", "biocompatible", "tissue substitutes", "mucosa fibroblasts", "reversibly", "stripe", "differences", "first", "biopolymer", "characterization", "target tissues", "polymer gelation", "tissue engineering applications"], "article_id"=>1493894, "categories"=>["Biological Sciences"], "users"=>["Modesto T. Lopez-Lopez", "Giuseppe Scionti", "Ana C. Oliveira", "Juan D. G. Duran", "Antonio Campos", "Miguel Alaminos", "Ismael A. Rodriguez"], "doi"=>"https://dx.doi.org/10.1371/journal.pone.0133878.t002", "stats"=>{"downloads"=>3, "page_views"=>13, "likes"=>0}, "figshare_url"=>"https://figshare.com/articles/_Normalized_shear_modulus_Eq_2_of_different_magnetic_tissue_substitutes_/1493894", "title"=>"Normalized shear modulus (Eq 2) of different magnetic tissue substitutes.", "pos_in_sequence"=>0, "defined_type"=>3, "published_date"=>"2015-07-24 03:53:38"}
  • {"files"=>["https://ndownloader.figshare.com/files/2189343"], "description"=>"<p>The elastic modulus, G′, of different magnetic tissue substitutes was normalized to account for the increase with respect to the elastic modulus of control (nonmagnetic) tissue substitutes without particles (Ctrl-MF0 to Ctrl-MF48), G′<sub>control</sub>, per unit volume concentration of magnetic particles, <i>ϕ</i><sub><i>MagP</i>−<i>OH</i></sub>. Experimental groups: M-MF0: magnetic tissue substitute gelled in the absence of a magnetic field; M-MF16, M-MF32 and M-MF48: magnetic tissue substitutes gelled during application of a 16 kA m<sup>-1</sup>, 32 kA m<sup>-1</sup> or 48 kA m<sup>-1</sup> field, respectively.</p>", "links"=>[], "tags"=>["presence", "generation", "fibrin", "control samples", "biomaterial", "microstructure", "macroscopic", "noncontact", "preparation", "scaffold", "technique", "viability", "microstructural patterns", "biocompatible", "tissue substitutes", "mucosa fibroblasts", "reversibly", "stripe", "differences", "first", "biopolymer", "characterization", "target tissues", "polymer gelation", "tissue engineering applications"], "article_id"=>1493891, "categories"=>["Biological Sciences"], "users"=>["Modesto T. Lopez-Lopez", "Giuseppe Scionti", "Ana C. Oliveira", "Juan D. G. Duran", "Antonio Campos", "Miguel Alaminos", "Ismael A. Rodriguez"], "doi"=>"https://dx.doi.org/10.1371/journal.pone.0133878.g006", "stats"=>{"downloads"=>1, "page_views"=>38, "likes"=>0}, "figshare_url"=>"https://figshare.com/articles/_Normalized_elastic_modulus_of_magnetic_tissue_substitutes_plotted_as_a_function_of_shear_strain_amplitude_/1493891", "title"=>"Normalized elastic modulus of magnetic tissue substitutes plotted as a function of shear strain amplitude.", "pos_in_sequence"=>0, "defined_type"=>1, "published_date"=>"2015-07-24 03:53:38"}
  • {"files"=>["https://ndownloader.figshare.com/files/2189337"], "description"=>"<p>Integrity of the nuclear membrane was studied by quantifying the DNA released in the culture medium. The graph shows the mean values ± standard deviations of 8 independent experiments for each experimental group. Ctrl-MF0: control (nonmagnetic) tissue substitute without particles, gelled in the absence of a magnetic field; Ctrl-NP: control (nonmagnetic) tissue substitute with nonmagnetic polymer particles; M-MF0: magnetic tissue substitute gelled in the absence of a magnetic field; M-MF16, M-MF32 and M-MF48: magnetic tissue substitutes gelled during application of a 16 kA m<sup>-1</sup>, 32 kA m<sup>-1</sup> or 48 kA m<sup>-1</sup> field, respectively.</p>", "links"=>[], "tags"=>["presence", "generation", "fibrin", "control samples", "biomaterial", "microstructure", "macroscopic", "noncontact", "preparation", "scaffold", "technique", "viability", "microstructural patterns", "biocompatible", "tissue substitutes", "mucosa fibroblasts", "reversibly", "stripe", "differences", "first", "biopolymer", "characterization", "target tissues", "polymer gelation", "tissue engineering applications"], "article_id"=>1493885, "categories"=>["Biological Sciences"], "users"=>["Modesto T. Lopez-Lopez", "Giuseppe Scionti", "Ana C. Oliveira", "Juan D. G. Duran", "Antonio Campos", "Miguel Alaminos", "Ismael A. Rodriguez"], "doi"=>"https://dx.doi.org/10.1371/journal.pone.0133878.g003", "stats"=>{"downloads"=>1, "page_views"=>12, "likes"=>0}, "figshare_url"=>"https://figshare.com/articles/_Quantification_of_DNA_release_/1493885", "title"=>"Quantification of DNA release.", "pos_in_sequence"=>0, "defined_type"=>1, "published_date"=>"2015-07-24 03:53:38"}
  • {"files"=>["https://ndownloader.figshare.com/files/2189350"], "description"=>"<p><sup>a</sup> Experimental groups: M-MF0: magnetic tissue substitute gelled in the absence of a magnetic field; M-MF16, M-MF32 and M-MF48: magnetic tissue substitutes gelled during application of a 16 kA m<sup>-1</sup>, 32 kA m<sup>-1</sup> or 48 kA m<sup>-1</sup> field, respectively.</p><p>Data in this table correspond to the best linear fit including experimental uncertainties.</p>", "links"=>[], "tags"=>["presence", "generation", "fibrin", "control samples", "biomaterial", "microstructure", "macroscopic", "noncontact", "preparation", "scaffold", "technique", "viability", "microstructural patterns", "biocompatible", "tissue substitutes", "mucosa fibroblasts", "reversibly", "stripe", "differences", "first", "biopolymer", "characterization", "target tissues", "polymer gelation", "tissue engineering applications"], "article_id"=>1493898, "categories"=>["Biological Sciences"], "users"=>["Modesto T. Lopez-Lopez", "Giuseppe Scionti", "Ana C. Oliveira", "Juan D. G. Duran", "Antonio Campos", "Miguel Alaminos", "Ismael A. Rodriguez"], "doi"=>"https://dx.doi.org/10.1371/journal.pone.0133878.t004", "stats"=>{"downloads"=>5, "page_views"=>10, "likes"=>0}, "figshare_url"=>"https://figshare.com/articles/_Effect_of_the_magnetic_field_applied_during_measurement_on_the_shear_modulus_Pa_of_magnetic_tissue_substitutes_/1493898", "title"=>"Effect of the magnetic field applied during measurement on the shear modulus (Pa) of magnetic tissue substitutes.", "pos_in_sequence"=>0, "defined_type"=>3, "published_date"=>"2015-07-24 03:53:38"}
  • {"files"=>["https://ndownloader.figshare.com/files/2189345"], "description"=>"<p>ª Magnetite (core)/polymer (shell) MagP-OH particles (Nanomyp).</p><p><sup>b</sup> Nonmagnetic polymer PolymP-C particles (Nanomyp).</p><p>Summary of the different oral mucosa substitutes prepared for this study.</p>", "links"=>[], "tags"=>["presence", "generation", "fibrin", "control samples", "biomaterial", "microstructure", "macroscopic", "noncontact", "preparation", "scaffold", "technique", "viability", "microstructural patterns", "biocompatible", "tissue substitutes", "mucosa fibroblasts", "reversibly", "stripe", "differences", "first", "biopolymer", "characterization", "target tissues", "polymer gelation", "tissue engineering applications"], "article_id"=>1493893, "categories"=>["Biological Sciences"], "users"=>["Modesto T. Lopez-Lopez", "Giuseppe Scionti", "Ana C. Oliveira", "Juan D. G. Duran", "Antonio Campos", "Miguel Alaminos", "Ismael A. Rodriguez"], "doi"=>"https://dx.doi.org/10.1371/journal.pone.0133878.t001", "stats"=>{"downloads"=>1, "page_views"=>9, "likes"=>0}, "figshare_url"=>"https://figshare.com/articles/_Summary_of_the_different_oral_mucosa_substitutes_prepared_for_this_study_/1493893", "title"=>"Summary of the different oral mucosa substitutes prepared for this study.", "pos_in_sequence"=>0, "defined_type"=>3, "published_date"=>"2015-07-24 03:53:38"}
  • {"files"=>["https://ndownloader.figshare.com/files/2189330"], "description"=>"<p>1a-1d: Light microscopy. 1e-1h: Scanning electron micrographs with individual cells shown in the insets. 1a and 1e: control (nonmagnetic) samples gelled in the absence of a magnetic field (Ctrl-MF0). 1b and 1f: control (nonmagnetic) samples with nonmagnetic polymer particles (Ctrl-NP). 1c and 1g: magnetic samples gelled in the absence of a magnetic field (M-MF0). 1d and 1h: magnetic samples gelled during application of a magnetic field (32 kA/m in 1d, and 48 kA/m in 1h). A few of the cells are marked with arrows in Fig 1a to 1d. Scale bars: Fig 1a-1d, 100 μm; Fig 1e-1h, 50 μm including insets, except for insets in Fig 1e and 1f, 20 μm.</p>", "links"=>[], "tags"=>["presence", "generation", "fibrin", "control samples", "biomaterial", "microstructure", "macroscopic", "noncontact", "preparation", "scaffold", "technique", "viability", "microstructural patterns", "biocompatible", "tissue substitutes", "mucosa fibroblasts", "reversibly", "stripe", "differences", "first", "biopolymer", "characterization", "target tissues", "polymer gelation", "tissue engineering applications"], "article_id"=>1493878, "categories"=>["Biological Sciences"], "users"=>["Modesto T. Lopez-Lopez", "Giuseppe Scionti", "Ana C. Oliveira", "Juan D. G. Duran", "Antonio Campos", "Miguel Alaminos", "Ismael A. Rodriguez"], "doi"=>"https://dx.doi.org/10.1371/journal.pone.0133878.g001", "stats"=>{"downloads"=>1, "page_views"=>12, "likes"=>0}, "figshare_url"=>"https://figshare.com/articles/_Microscopic_images_of_tissue_substitutes_/1493878", "title"=>"Microscopic images of tissue substitutes.", "pos_in_sequence"=>0, "defined_type"=>1, "published_date"=>"2015-07-24 03:53:38"}
  • {"files"=>["https://ndownloader.figshare.com/files/2189344"], "description"=>"<p>Sample M-MF32 is a magnetic tissue substitute gelled during application of a 32 kA m<sup>-1</sup> field. The effect of a magnetic field applied during measurement on the mechanical properties of the tissue substitute is shown as (a) the elastic modulus as a function of shear strain amplitude, and (b) the initial portion of the shear stress vs. shear strain curves. The intensities (<i>H</i>) of the magnetic field applied are shown.</p>", "links"=>[], "tags"=>["presence", "generation", "fibrin", "control samples", "biomaterial", "microstructure", "macroscopic", "noncontact", "preparation", "scaffold", "technique", "viability", "microstructural patterns", "biocompatible", "tissue substitutes", "mucosa fibroblasts", "reversibly", "stripe", "differences", "first", "biopolymer", "characterization", "target tissues", "polymer gelation", "tissue engineering applications"], "article_id"=>1493892, "categories"=>["Biological Sciences"], "users"=>["Modesto T. Lopez-Lopez", "Giuseppe Scionti", "Ana C. Oliveira", "Juan D. G. Duran", "Antonio Campos", "Miguel Alaminos", "Ismael A. Rodriguez"], "doi"=>"https://dx.doi.org/10.1371/journal.pone.0133878.g007", "stats"=>{"downloads"=>1, "page_views"=>15, "likes"=>0}, "figshare_url"=>"https://figshare.com/articles/_Effect_of_a_magnetic_field_on_the_mechanical_properties_of_magnetic_tissue_substitutes_/1493892", "title"=>"Effect of a magnetic field on the mechanical properties of magnetic tissue substitutes.", "pos_in_sequence"=>0, "defined_type"=>1, "published_date"=>"2015-07-24 03:53:38"}

PMC Usage Stats | Further Information

  • {"unique-ip"=>"2", "full-text"=>"0", "pdf"=>"0", "abstract"=>"0", "scanned-summary"=>"0", "scanned-page-browse"=>"0", "figure"=>"2", "supp-data"=>"3", "cited-by"=>"0", "year"=>"2015", "month"=>"7"}
  • {"unique-ip"=>"13", "full-text"=>"8", "pdf"=>"5", "abstract"=>"0", "scanned-summary"=>"0", "scanned-page-browse"=>"0", "figure"=>"2", "supp-data"=>"4", "cited-by"=>"0", "year"=>"2015", "month"=>"8"}
  • {"unique-ip"=>"11", "full-text"=>"12", "pdf"=>"4", "abstract"=>"0", "scanned-summary"=>"0", "scanned-page-browse"=>"0", "figure"=>"2", "supp-data"=>"1", "cited-by"=>"0", "year"=>"2015", "month"=>"9"}
  • {"unique-ip"=>"8", "full-text"=>"7", "pdf"=>"3", "abstract"=>"0", "scanned-summary"=>"0", "scanned-page-browse"=>"0", "figure"=>"0", "supp-data"=>"0", "cited-by"=>"0", "year"=>"2015", "month"=>"10"}
  • {"unique-ip"=>"2", "full-text"=>"2", "pdf"=>"0", "abstract"=>"0", "scanned-summary"=>"0", "scanned-page-browse"=>"0", "figure"=>"0", "supp-data"=>"0", "cited-by"=>"0", "year"=>"2016", "month"=>"2"}
  • {"unique-ip"=>"16", "full-text"=>"8", "pdf"=>"15", "abstract"=>"0", "scanned-summary"=>"0", "scanned-page-browse"=>"0", "figure"=>"0", "supp-data"=>"0", "cited-by"=>"0", "year"=>"2015", "month"=>"11"}
  • {"unique-ip"=>"11", "full-text"=>"3", "pdf"=>"9", "abstract"=>"0", "scanned-summary"=>"0", "scanned-page-browse"=>"0", "figure"=>"2", "supp-data"=>"0", "cited-by"=>"0", "year"=>"2015", "month"=>"12"}
  • {"unique-ip"=>"9", "full-text"=>"4", "pdf"=>"5", "abstract"=>"0", "scanned-summary"=>"0", "scanned-page-browse"=>"0", "figure"=>"3", "supp-data"=>"0", "cited-by"=>"0", "year"=>"2016", "month"=>"1"}
  • {"unique-ip"=>"9", "full-text"=>"8", "pdf"=>"7", "abstract"=>"0", "scanned-summary"=>"0", "scanned-page-browse"=>"0", "figure"=>"5", "supp-data"=>"0", "cited-by"=>"0", "year"=>"2016", "month"=>"3"}
  • {"unique-ip"=>"5", "full-text"=>"6", "pdf"=>"3", "abstract"=>"0", "scanned-summary"=>"0", "scanned-page-browse"=>"0", "figure"=>"0", "supp-data"=>"0", "cited-by"=>"0", "year"=>"2016", "month"=>"4"}
  • {"unique-ip"=>"6", "full-text"=>"7", "pdf"=>"2", "abstract"=>"0", "scanned-summary"=>"0", "scanned-page-browse"=>"0", "figure"=>"2", "supp-data"=>"0", "cited-by"=>"0", "year"=>"2016", "month"=>"5"}
  • {"unique-ip"=>"6", "full-text"=>"4", "pdf"=>"3", "abstract"=>"0", "scanned-summary"=>"0", "scanned-page-browse"=>"0", "figure"=>"0", "supp-data"=>"0", "cited-by"=>"0", "year"=>"2016", "month"=>"6"}
  • {"unique-ip"=>"4", "full-text"=>"4", "pdf"=>"2", "abstract"=>"0", "scanned-summary"=>"0", "scanned-page-browse"=>"0", "figure"=>"0", "supp-data"=>"0", "cited-by"=>"0", "year"=>"2016", "month"=>"7"}
  • {"unique-ip"=>"8", "full-text"=>"9", "pdf"=>"4", "abstract"=>"0", "scanned-summary"=>"0", "scanned-page-browse"=>"0", "figure"=>"0", "supp-data"=>"0", "cited-by"=>"0", "year"=>"2016", "month"=>"8"}
  • {"unique-ip"=>"6", "full-text"=>"7", "pdf"=>"2", "abstract"=>"0", "scanned-summary"=>"0", "scanned-page-browse"=>"0", "figure"=>"0", "supp-data"=>"0", "cited-by"=>"0", "year"=>"2016", "month"=>"9"}
  • {"unique-ip"=>"8", "full-text"=>"10", "pdf"=>"2", "abstract"=>"0", "scanned-summary"=>"0", "scanned-page-browse"=>"0", "figure"=>"0", "supp-data"=>"5", "cited-by"=>"0", "year"=>"2016", "month"=>"10"}
  • {"unique-ip"=>"10", "full-text"=>"11", "pdf"=>"2", "abstract"=>"0", "scanned-summary"=>"0", "scanned-page-browse"=>"0", "figure"=>"1", "supp-data"=>"0", "cited-by"=>"0", "year"=>"2016", "month"=>"11"}
  • {"unique-ip"=>"2", "full-text"=>"2", "pdf"=>"0", "abstract"=>"0", "scanned-summary"=>"0", "scanned-page-browse"=>"0", "figure"=>"0", "supp-data"=>"0", "cited-by"=>"0", "year"=>"2016", "month"=>"12"}
  • {"unique-ip"=>"6", "full-text"=>"1", "pdf"=>"0", "abstract"=>"0", "scanned-summary"=>"0", "scanned-page-browse"=>"0", "figure"=>"5", "supp-data"=>"0", "cited-by"=>"0", "year"=>"2017", "month"=>"1"}
  • {"unique-ip"=>"7", "full-text"=>"7", "pdf"=>"1", "abstract"=>"0", "scanned-summary"=>"0", "scanned-page-browse"=>"0", "figure"=>"0", "supp-data"=>"0", "cited-by"=>"0", "year"=>"2017", "month"=>"2"}
  • {"unique-ip"=>"7", "full-text"=>"8", "pdf"=>"2", "abstract"=>"0", "scanned-summary"=>"0", "scanned-page-browse"=>"0", "figure"=>"0", "supp-data"=>"0", "cited-by"=>"0", "year"=>"2017", "month"=>"3"}
  • {"unique-ip"=>"6", "full-text"=>"6", "pdf"=>"2", "abstract"=>"0", "scanned-summary"=>"0", "scanned-page-browse"=>"0", "figure"=>"0", "supp-data"=>"0", "cited-by"=>"0", "year"=>"2017", "month"=>"4"}
  • {"unique-ip"=>"10", "full-text"=>"10", "pdf"=>"4", "abstract"=>"0", "scanned-summary"=>"0", "scanned-page-browse"=>"0", "figure"=>"0", "supp-data"=>"1", "cited-by"=>"0", "year"=>"2017", "month"=>"5"}
  • {"unique-ip"=>"6", "full-text"=>"7", "pdf"=>"2", "abstract"=>"0", "scanned-summary"=>"0", "scanned-page-browse"=>"0", "figure"=>"0", "supp-data"=>"0", "cited-by"=>"0", "year"=>"2017", "month"=>"6"}
  • {"unique-ip"=>"5", "full-text"=>"6", "pdf"=>"0", "abstract"=>"0", "scanned-summary"=>"0", "scanned-page-browse"=>"0", "figure"=>"0", "supp-data"=>"0", "cited-by"=>"0", "year"=>"2017", "month"=>"7"}
  • {"unique-ip"=>"9", "full-text"=>"11", "pdf"=>"1", "abstract"=>"0", "scanned-summary"=>"0", "scanned-page-browse"=>"0", "figure"=>"0", "supp-data"=>"0", "cited-by"=>"0", "year"=>"2017", "month"=>"8"}
  • {"unique-ip"=>"7", "full-text"=>"8", "pdf"=>"2", "abstract"=>"0", "scanned-summary"=>"0", "scanned-page-browse"=>"0", "figure"=>"6", "supp-data"=>"1", "cited-by"=>"0", "year"=>"2017", "month"=>"9"}
  • {"unique-ip"=>"5", "full-text"=>"6", "pdf"=>"1", "abstract"=>"0", "scanned-summary"=>"0", "scanned-page-browse"=>"0", "figure"=>"0", "supp-data"=>"1", "cited-by"=>"0", "year"=>"2017", "month"=>"10"}
  • {"unique-ip"=>"11", "full-text"=>"12", "pdf"=>"5", "abstract"=>"0", "scanned-summary"=>"0", "scanned-page-browse"=>"0", "figure"=>"0", "supp-data"=>"0", "cited-by"=>"0", "year"=>"2017", "month"=>"11"}
  • {"unique-ip"=>"7", "full-text"=>"5", "pdf"=>"1", "abstract"=>"0", "scanned-summary"=>"0", "scanned-page-browse"=>"0", "figure"=>"2", "supp-data"=>"0", "cited-by"=>"0", "year"=>"2017", "month"=>"12"}
  • {"unique-ip"=>"6", "full-text"=>"6", "pdf"=>"0", "abstract"=>"0", "scanned-summary"=>"0", "scanned-page-browse"=>"0", "figure"=>"0", "supp-data"=>"0", "cited-by"=>"0", "year"=>"2018", "month"=>"1"}
  • {"unique-ip"=>"11", "full-text"=>"11", "pdf"=>"4", "abstract"=>"0", "scanned-summary"=>"0", "scanned-page-browse"=>"0", "figure"=>"0", "supp-data"=>"0", "cited-by"=>"0", "year"=>"2018", "month"=>"3"}
  • {"unique-ip"=>"12", "full-text"=>"16", "pdf"=>"2", "scanned-summary"=>"0", "scanned-page-browse"=>"0", "figure"=>"4", "supp-data"=>"0", "cited-by"=>"0", "year"=>"2019", "month"=>"1"}
  • {"unique-ip"=>"14", "full-text"=>"15", "pdf"=>"1", "scanned-summary"=>"0", "scanned-page-browse"=>"0", "figure"=>"2", "supp-data"=>"0", "cited-by"=>"0", "year"=>"2018", "month"=>"12"}
  • {"unique-ip"=>"8", "full-text"=>"7", "pdf"=>"5", "scanned-summary"=>"0", "scanned-page-browse"=>"0", "figure"=>"0", "supp-data"=>"0", "cited-by"=>"0", "year"=>"2018", "month"=>"9"}
  • {"unique-ip"=>"5", "full-text"=>"3", "pdf"=>"3", "scanned-summary"=>"0", "scanned-page-browse"=>"0", "figure"=>"1", "supp-data"=>"0", "cited-by"=>"0", "year"=>"2018", "month"=>"4"}
  • {"unique-ip"=>"6", "full-text"=>"8", "pdf"=>"1", "scanned-summary"=>"0", "scanned-page-browse"=>"0", "figure"=>"0", "supp-data"=>"0", "cited-by"=>"0", "year"=>"2018", "month"=>"5"}
  • {"unique-ip"=>"4", "full-text"=>"4", "pdf"=>"1", "scanned-summary"=>"0", "scanned-page-browse"=>"0", "figure"=>"1", "supp-data"=>"0", "cited-by"=>"0", "year"=>"2018", "month"=>"6"}
  • {"unique-ip"=>"11", "full-text"=>"16", "pdf"=>"2", "scanned-summary"=>"0", "scanned-page-browse"=>"0", "figure"=>"0", "supp-data"=>"1", "cited-by"=>"1", "year"=>"2018", "month"=>"7"}
  • {"unique-ip"=>"6", "full-text"=>"6", "pdf"=>"2", "scanned-summary"=>"0", "scanned-page-browse"=>"0", "figure"=>"0", "supp-data"=>"0", "cited-by"=>"0", "year"=>"2018", "month"=>"8"}
  • {"unique-ip"=>"11", "full-text"=>"13", "pdf"=>"2", "scanned-summary"=>"0", "scanned-page-browse"=>"0", "figure"=>"1", "supp-data"=>"0", "cited-by"=>"0", "year"=>"2018", "month"=>"10"}
  • {"unique-ip"=>"11", "full-text"=>"12", "pdf"=>"1", "scanned-summary"=>"0", "scanned-page-browse"=>"0", "figure"=>"0", "supp-data"=>"0", "cited-by"=>"0", "year"=>"2018", "month"=>"11"}
  • {"unique-ip"=>"9", "full-text"=>"7", "pdf"=>"2", "scanned-summary"=>"0", "scanned-page-browse"=>"0", "figure"=>"1", "supp-data"=>"0", "cited-by"=>"0", "year"=>"2019", "month"=>"2"}
  • {"unique-ip"=>"4", "full-text"=>"3", "pdf"=>"2", "scanned-summary"=>"0", "scanned-page-browse"=>"0", "figure"=>"0", "supp-data"=>"0", "cited-by"=>"0", "year"=>"2019", "month"=>"3"}
  • {"unique-ip"=>"4", "full-text"=>"3", "pdf"=>"1", "scanned-summary"=>"0", "scanned-page-browse"=>"0", "figure"=>"0", "supp-data"=>"0", "cited-by"=>"0", "year"=>"2019", "month"=>"4"}
  • {"unique-ip"=>"7", "full-text"=>"8", "pdf"=>"1", "scanned-summary"=>"0", "scanned-page-browse"=>"0", "figure"=>"0", "supp-data"=>"1", "cited-by"=>"0", "year"=>"2019", "month"=>"5"}
  • {"unique-ip"=>"11", "full-text"=>"11", "pdf"=>"2", "scanned-summary"=>"0", "scanned-page-browse"=>"0", "figure"=>"0", "supp-data"=>"1", "cited-by"=>"0", "year"=>"2019", "month"=>"8"}
  • {"unique-ip"=>"9", "full-text"=>"10", "pdf"=>"0", "scanned-summary"=>"0", "scanned-page-browse"=>"0", "figure"=>"0", "supp-data"=>"0", "cited-by"=>"0", "year"=>"2019", "month"=>"9"}
  • {"unique-ip"=>"4", "full-text"=>"4", "pdf"=>"0", "scanned-summary"=>"0", "scanned-page-browse"=>"0", "figure"=>"0", "supp-data"=>"0", "cited-by"=>"0", "year"=>"2019", "month"=>"10"}
  • {"unique-ip"=>"4", "full-text"=>"2", "pdf"=>"3", "scanned-summary"=>"0", "scanned-page-browse"=>"0", "figure"=>"0", "supp-data"=>"0", "cited-by"=>"0", "year"=>"2019", "month"=>"12"}
  • {"unique-ip"=>"10", "full-text"=>"8", "pdf"=>"4", "scanned-summary"=>"0", "scanned-page-browse"=>"0", "figure"=>"0", "supp-data"=>"0", "cited-by"=>"0", "year"=>"2020", "month"=>"2"}
  • {"unique-ip"=>"6", "full-text"=>"6", "pdf"=>"1", "scanned-summary"=>"0", "scanned-page-browse"=>"0", "figure"=>"0", "supp-data"=>"0", "cited-by"=>"0", "year"=>"2020", "month"=>"3"}
  • {"unique-ip"=>"7", "full-text"=>"6", "pdf"=>"2", "scanned-summary"=>"0", "scanned-page-browse"=>"0", "figure"=>"0", "supp-data"=>"0", "cited-by"=>"0", "year"=>"2020", "month"=>"4"}
  • {"unique-ip"=>"9", "full-text"=>"10", "pdf"=>"3", "scanned-summary"=>"0", "scanned-page-browse"=>"0", "figure"=>"0", "supp-data"=>"0", "cited-by"=>"0", "year"=>"2020", "month"=>"5"}
  • {"unique-ip"=>"12", "full-text"=>"12", "pdf"=>"2", "scanned-summary"=>"0", "scanned-page-browse"=>"0", "figure"=>"0", "supp-data"=>"0", "cited-by"=>"0", "year"=>"2020", "month"=>"6"}
  • {"unique-ip"=>"14", "full-text"=>"13", "pdf"=>"2", "scanned-summary"=>"0", "scanned-page-browse"=>"0", "figure"=>"1", "supp-data"=>"1", "cited-by"=>"0", "year"=>"2020", "month"=>"7"}
  • {"unique-ip"=>"3", "full-text"=>"2", "pdf"=>"1", "scanned-summary"=>"0", "scanned-page-browse"=>"0", "figure"=>"0", "supp-data"=>"0", "cited-by"=>"0", "year"=>"2020", "month"=>"8"}
  • {"unique-ip"=>"4", "full-text"=>"4", "pdf"=>"0", "scanned-summary"=>"0", "scanned-page-browse"=>"0", "figure"=>"0", "supp-data"=>"0", "cited-by"=>"0", "year"=>"2020", "month"=>"9"}
  • {"unique-ip"=>"7", "full-text"=>"7", "pdf"=>"2", "scanned-summary"=>"0", "scanned-page-browse"=>"0", "figure"=>"0", "supp-data"=>"0", "cited-by"=>"0", "year"=>"2020", "month"=>"10"}

Relative Metric

{"start_date"=>"2015-01-01T00:00:00Z", "end_date"=>"2015-12-31T00:00:00Z", "subject_areas"=>[]}
Loading … Spinner
There are currently no alerts