Effects of Different Missing Data Imputation Techniques on the Performance of Undiagnosed Diabetes Risk Prediction Models in a Mixed-Ancestry Population of South Africa
Events
Loading … Spinner

Mendeley | Further Information

{"title"=>"Effects of different missing data imputation techniques on the performance of undiagnosed diabetes risk prediction models in a mixed-ancestry population of South Africa", "type"=>"journal", "authors"=>[{"first_name"=>"Katya L.", "last_name"=>"Masconi", "scopus_author_id"=>"55534847200"}, {"first_name"=>"Tandi E.", "last_name"=>"Matsha", "scopus_author_id"=>"6506590014"}, {"first_name"=>"Rajiv T.", "last_name"=>"Erasmus", "scopus_author_id"=>"55406641700"}, {"first_name"=>"Andre P.", "last_name"=>"Kengne", "scopus_author_id"=>"7801322838"}], "year"=>2015, "source"=>"PLoS ONE", "identifiers"=>{"scopus"=>"2-s2.0-84947262801", "pui"=>"606879312", "pmid"=>"25987905", "issn"=>"19326203", "isbn"=>"1932-6203", "doi"=>"10.1371/journal.pone.0139210", "sgr"=>"84947262801"}, "id"=>"2faa644d-abba-365e-9c06-8715ee585637", "abstract"=>"Background Imputation techniques used to handle missing data are based on the principle of replacement. It is widely advocated that multiple imputation is superior to other imputation methods, however studies have suggested that simple methods for filling missing data can be just as accurate as complex methods. The objective of this study was to implement a number of simple and more complex imputation methods, and assess the effect of these techniques on the performance of undiagnosed diabetes risk prediction models during external validation. Methods Data from the Cape Town Bellville-South cohort served as the basis for this study. Imputation methods and models were identified via recent systematic reviews. Models' discrimination was assessed and compared using C-statistic and non-parametric methods, before and after recalibration through simple intercept adjustment. Results The study sample consisted of 1256 individuals, of whom 173 were excluded due to previously diagnosed diabetes. Of the final 1083 individuals, 329 (30.4%) had missing data. Family history had the highest proportion of missing data (25%). Imputation of the outcome, undiagnosed diabetes, was highest in stochastic regression imputation (163 individuals). Overall, deletion resulted in the lowest model performances while simple imputation yielded the highest C-statistic for the Cambridge Diabetes Risk model, Kuwaiti Risk model, Omani Diabetes Risk model and Rotterdam Predictive model. Multiple imputation only yielded the highest C-statistic for the Rotterdam Predictive model, which were matched by simpler imputation methods. Conclusions Deletion was confirmed as a poor technique for handling missing data. However, despite the emphasized disadvantages of simpler imputation methods, this study showed that implementing these methods results in similar predictive utility for undiagnosed diabetes when compared to multiple imputation.", "link"=>"http://www.mendeley.com/research/effects-different-missing-data-imputation-techniques-performance-undiagnosed-diabetes-risk-predictio", "reader_count"=>15, "reader_count_by_academic_status"=>{"Unspecified"=>2, "Professor > Associate Professor"=>1, "Librarian"=>2, "Student > Doctoral Student"=>2, "Researcher"=>2, "Student > Ph. D. Student"=>2, "Other"=>1, "Student > Master"=>3}, "reader_count_by_user_role"=>{"Unspecified"=>2, "Professor > Associate Professor"=>1, "Librarian"=>2, "Student > Doctoral Student"=>2, "Researcher"=>2, "Student > Ph. D. Student"=>2, "Other"=>1, "Student > Master"=>3}, "reader_count_by_subject_area"=>{"Engineering"=>1, "Unspecified"=>3, "Mathematics"=>1, "Medicine and Dentistry"=>4, "Agricultural and Biological Sciences"=>1, "Psychology"=>1, "Social Sciences"=>1, "Computer Science"=>3}, "reader_count_by_subdiscipline"=>{"Engineering"=>{"Engineering"=>1}, "Medicine and Dentistry"=>{"Medicine and Dentistry"=>4}, "Social Sciences"=>{"Social Sciences"=>1}, "Psychology"=>{"Psychology"=>1}, "Agricultural and Biological Sciences"=>{"Agricultural and Biological Sciences"=>1}, "Computer Science"=>{"Computer Science"=>3}, "Mathematics"=>{"Mathematics"=>1}, "Unspecified"=>{"Unspecified"=>3}}, "reader_count_by_country"=>{"Portugal"=>1}, "group_count"=>1}

Scopus | Further Information

{"@_fa"=>"true", "link"=>[{"@_fa"=>"true", "@ref"=>"self", "@href"=>"https://api.elsevier.com/content/abstract/scopus_id/84947262801"}, {"@_fa"=>"true", "@ref"=>"author-affiliation", "@href"=>"https://api.elsevier.com/content/abstract/scopus_id/84947262801?field=author,affiliation"}, {"@_fa"=>"true", "@ref"=>"scopus", "@href"=>"https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=84947262801&origin=inward"}, {"@_fa"=>"true", "@ref"=>"scopus-citedby", "@href"=>"https://www.scopus.com/inward/citedby.uri?partnerID=HzOxMe3b&scp=84947262801&origin=inward"}], "prism:url"=>"https://api.elsevier.com/content/abstract/scopus_id/84947262801", "dc:identifier"=>"SCOPUS_ID:84947262801", "eid"=>"2-s2.0-84947262801", "dc:title"=>"Effects of different missing data imputation techniques on the performance of undiagnosed diabetes risk prediction models in a mixed-ancestry population of South Africa", "dc:creator"=>"Masconi K.", "prism:publicationName"=>"PLoS ONE", "prism:eIssn"=>"19326203", "prism:volume"=>"10", "prism:issueIdentifier"=>"9", "prism:pageRange"=>nil, "prism:coverDate"=>"2015-09-25", "prism:coverDisplayDate"=>"25 September 2015", "prism:doi"=>"10.1371/journal.pone.0139210", "citedby-count"=>"4", "affiliation"=>[{"@_fa"=>"true", "affilname"=>"South African Medical Research Council", "affiliation-city"=>"Tygerberg", "affiliation-country"=>"South Africa"}, {"@_fa"=>"true", "affilname"=>"Universiteit Stellenbosch", "affiliation-city"=>"Stellenbosch", "affiliation-country"=>"South Africa"}], "pubmed-id"=>"26406594", "prism:aggregationType"=>"Journal", "subtype"=>"ar", "subtypeDescription"=>"Article", "article-number"=>"e0139210", "source-id"=>"10600153309", "openaccess"=>"1", "openaccessFlag"=>true}

Facebook

  • {"url"=>"http%3A%2F%2Fjournals.plos.org%2Fplosone%2Farticle%3Fid%3D10.1371%252Fjournal.pone.0139210", "share_count"=>0, "like_count"=>0, "comment_count"=>0, "click_count"=>0, "total_count"=>0}

Counter

  • {"month"=>"9", "year"=>"2015", "pdf_views"=>"24", "xml_views"=>"10", "html_views"=>"382"}
  • {"month"=>"10", "year"=>"2015", "pdf_views"=>"19", "xml_views"=>"1", "html_views"=>"78"}
  • {"month"=>"11", "year"=>"2015", "pdf_views"=>"13", "xml_views"=>"1", "html_views"=>"42"}
  • {"month"=>"12", "year"=>"2015", "pdf_views"=>"5", "xml_views"=>"0", "html_views"=>"51"}
  • {"month"=>"1", "year"=>"2016", "pdf_views"=>"8", "xml_views"=>"1", "html_views"=>"29"}
  • {"month"=>"2", "year"=>"2016", "pdf_views"=>"3", "xml_views"=>"0", "html_views"=>"29"}
  • {"month"=>"3", "year"=>"2016", "pdf_views"=>"3", "xml_views"=>"0", "html_views"=>"36"}
  • {"month"=>"4", "year"=>"2016", "pdf_views"=>"6", "xml_views"=>"0", "html_views"=>"50"}
  • {"month"=>"5", "year"=>"2016", "pdf_views"=>"4", "xml_views"=>"0", "html_views"=>"18"}
  • {"month"=>"6", "year"=>"2016", "pdf_views"=>"5", "xml_views"=>"0", "html_views"=>"27"}
  • {"month"=>"7", "year"=>"2016", "pdf_views"=>"7", "xml_views"=>"0", "html_views"=>"26"}
  • {"month"=>"8", "year"=>"2016", "pdf_views"=>"7", "xml_views"=>"0", "html_views"=>"25"}
  • {"month"=>"9", "year"=>"2016", "pdf_views"=>"9", "xml_views"=>"0", "html_views"=>"32"}
  • {"month"=>"10", "year"=>"2016", "pdf_views"=>"17", "xml_views"=>"0", "html_views"=>"20"}
  • {"month"=>"11", "year"=>"2016", "pdf_views"=>"3", "xml_views"=>"0", "html_views"=>"17"}
  • {"month"=>"12", "year"=>"2016", "pdf_views"=>"3", "xml_views"=>"0", "html_views"=>"17"}
  • {"month"=>"1", "year"=>"2017", "pdf_views"=>"4", "xml_views"=>"0", "html_views"=>"22"}
  • {"month"=>"2", "year"=>"2017", "pdf_views"=>"3", "xml_views"=>"0", "html_views"=>"49"}
  • {"month"=>"3", "year"=>"2017", "pdf_views"=>"8", "xml_views"=>"0", "html_views"=>"28"}
  • {"month"=>"4", "year"=>"2017", "pdf_views"=>"8", "xml_views"=>"0", "html_views"=>"31"}
  • {"month"=>"5", "year"=>"2017", "pdf_views"=>"2", "xml_views"=>"0", "html_views"=>"36"}
  • {"month"=>"6", "year"=>"2017", "pdf_views"=>"8", "xml_views"=>"0", "html_views"=>"34"}
  • {"month"=>"7", "year"=>"2017", "pdf_views"=>"9", "xml_views"=>"1", "html_views"=>"25"}
  • {"month"=>"8", "year"=>"2017", "pdf_views"=>"3", "xml_views"=>"1", "html_views"=>"14"}
  • {"month"=>"9", "year"=>"2017", "pdf_views"=>"5", "xml_views"=>"0", "html_views"=>"17"}
  • {"month"=>"10", "year"=>"2017", "pdf_views"=>"2", "xml_views"=>"0", "html_views"=>"32"}
  • {"month"=>"11", "year"=>"2017", "pdf_views"=>"5", "xml_views"=>"0", "html_views"=>"69"}
  • {"month"=>"12", "year"=>"2017", "pdf_views"=>"2", "xml_views"=>"1", "html_views"=>"89"}
  • {"month"=>"1", "year"=>"2018", "pdf_views"=>"3", "xml_views"=>"0", "html_views"=>"16"}
  • {"month"=>"2", "year"=>"2018", "pdf_views"=>"3", "xml_views"=>"0", "html_views"=>"31"}
  • {"month"=>"3", "year"=>"2018", "pdf_views"=>"10", "xml_views"=>"1", "html_views"=>"23"}
  • {"month"=>"4", "year"=>"2018", "pdf_views"=>"8", "xml_views"=>"0", "html_views"=>"15"}
  • {"month"=>"5", "year"=>"2018", "pdf_views"=>"16", "xml_views"=>"0", "html_views"=>"20"}
  • {"month"=>"6", "year"=>"2018", "pdf_views"=>"10", "xml_views"=>"1", "html_views"=>"23"}
  • {"month"=>"7", "year"=>"2018", "pdf_views"=>"3", "xml_views"=>"3", "html_views"=>"7"}
  • {"month"=>"8", "year"=>"2018", "pdf_views"=>"13", "xml_views"=>"1", "html_views"=>"17"}
  • {"month"=>"9", "year"=>"2018", "pdf_views"=>"9", "xml_views"=>"0", "html_views"=>"12"}
  • {"month"=>"10", "year"=>"2018", "pdf_views"=>"12", "xml_views"=>"1", "html_views"=>"8"}
  • {"month"=>"11", "year"=>"2018", "pdf_views"=>"2", "xml_views"=>"0", "html_views"=>"7"}
  • {"month"=>"12", "year"=>"2018", "pdf_views"=>"3", "xml_views"=>"0", "html_views"=>"13"}
  • {"month"=>"1", "year"=>"2019", "pdf_views"=>"6", "xml_views"=>"0", "html_views"=>"11"}
  • {"month"=>"2", "year"=>"2019", "pdf_views"=>"5", "xml_views"=>"0", "html_views"=>"11"}
  • {"month"=>"3", "year"=>"2019", "pdf_views"=>"4", "xml_views"=>"0", "html_views"=>"11"}
  • {"month"=>"4", "year"=>"2019", "pdf_views"=>"4", "xml_views"=>"0", "html_views"=>"16"}
  • {"month"=>"5", "year"=>"2019", "pdf_views"=>"4", "xml_views"=>"0", "html_views"=>"11"}
  • {"month"=>"6", "year"=>"2019", "pdf_views"=>"8", "xml_views"=>"0", "html_views"=>"14"}
  • {"month"=>"7", "year"=>"2019", "pdf_views"=>"17", "xml_views"=>"4", "html_views"=>"10"}
  • {"month"=>"8", "year"=>"2019", "pdf_views"=>"8", "xml_views"=>"0", "html_views"=>"8"}
  • {"month"=>"9", "year"=>"2019", "pdf_views"=>"4", "xml_views"=>"0", "html_views"=>"19"}
  • {"month"=>"10", "year"=>"2019", "pdf_views"=>"3", "xml_views"=>"0", "html_views"=>"7"}
  • {"month"=>"11", "year"=>"2019", "pdf_views"=>"7", "xml_views"=>"0", "html_views"=>"22"}
  • {"month"=>"12", "year"=>"2019", "pdf_views"=>"4", "xml_views"=>"0", "html_views"=>"5"}

Figshare

  • {"files"=>["https://ndownloader.figshare.com/files/2290538"], "description"=>"<p>*BMI, Body Mass Index; WC, Waist Circumference; SBP, Systolic Blood Pressure; DBP, Diastolic Blood Pressure; FH, Family History; Cort, Corticosteroids; med, medication; Hpt, Hypertensive.</p>", "links"=>[], "tags"=>["Rotterdam Predictive model", "undiagnosed diabetes", "South Africa BackgroundImputation techniques", "undiagnosed diabetes risk prediction models", "Kuwaiti Risk model", "Data Imputation Techniques", "Cambridge Diabetes Risk model", "imputation methods", "Omani Diabetes Risk model", "intercept adjustment.ResultsThe study sample", "data"], "article_id"=>1557816, "categories"=>["Biological Sciences"], "users"=>["Katya L. Masconi", "Tandi E. Matsha", "Rajiv T. Erasmus", "Andre P. Kengne"], "doi"=>"https://dx.doi.org/10.1371/journal.pone.0139210.g001", "stats"=>{"downloads"=>5, "page_views"=>19, "likes"=>0}, "figshare_url"=>"https://figshare.com/articles/_Histogram_showing_the_proportion_of_missing_for_each_variable_/1557816", "title"=>"Histogram showing the proportion of missing for each variable.", "pos_in_sequence"=>0, "defined_type"=>1, "published_date"=>"2015-09-25 05:17:04"}
  • {"files"=>["https://ndownloader.figshare.com/files/2290540"], "description"=>"<p>*BMI, Body Mass Index; WC, Waist Circumference; SBP, Systolic Blood Pressure; DBP, Diastolic Blood Pressure; FH, Family History; Cort, Corticosteroids; med, medication; Hpt, Hypertensive.</p>", "links"=>[], "tags"=>["Rotterdam Predictive model", "undiagnosed diabetes", "South Africa BackgroundImputation techniques", "undiagnosed diabetes risk prediction models", "Kuwaiti Risk model", "Data Imputation Techniques", "Cambridge Diabetes Risk model", "imputation methods", "Omani Diabetes Risk model", "intercept adjustment.ResultsThe study sample", "data"], "article_id"=>1557818, "categories"=>["Biological Sciences"], "users"=>["Katya L. Masconi", "Tandi E. Matsha", "Rajiv T. Erasmus", "Andre P. Kengne"], "doi"=>"https://dx.doi.org/10.1371/journal.pone.0139210.g002", "stats"=>{"downloads"=>2, "page_views"=>14, "likes"=>0}, "figshare_url"=>"https://figshare.com/articles/_Aggregation_plot_showing_all_combinations_of_missing_red_and_non_missing_blue_values_in_the_variables_from_the_highest_to_lowest_frequency_/1557818", "title"=>"Aggregation plot showing all combinations of missing (red) and non-missing (blue) values in the variables, from the highest to lowest frequency.", "pos_in_sequence"=>0, "defined_type"=>1, "published_date"=>"2015-09-25 05:17:04"}
  • {"files"=>["https://ndownloader.figshare.com/files/2290541"], "description"=>"<p>Missingness analysis.</p>", "links"=>[], "tags"=>["Rotterdam Predictive model", "undiagnosed diabetes", "South Africa BackgroundImputation techniques", "undiagnosed diabetes risk prediction models", "Kuwaiti Risk model", "Data Imputation Techniques", "Cambridge Diabetes Risk model", "imputation methods", "Omani Diabetes Risk model", "intercept adjustment.ResultsThe study sample", "data"], "article_id"=>1557819, "categories"=>["Biological Sciences"], "users"=>["Katya L. Masconi", "Tandi E. Matsha", "Rajiv T. Erasmus", "Andre P. Kengne"], "doi"=>"https://dx.doi.org/10.1371/journal.pone.0139210.t002", "stats"=>{"downloads"=>3, "page_views"=>9, "likes"=>0}, "figshare_url"=>"https://figshare.com/articles/_Missingness_analysis_/1557819", "title"=>"Missingness analysis.", "pos_in_sequence"=>0, "defined_type"=>3, "published_date"=>"2015-09-25 05:17:04"}
  • {"files"=>["https://ndownloader.figshare.com/files/2290542"], "description"=>"<p>Characteristics comparison of participants for the original database and five imputation methods.</p>", "links"=>[], "tags"=>["Rotterdam Predictive model", "undiagnosed diabetes", "South Africa BackgroundImputation techniques", "undiagnosed diabetes risk prediction models", "Kuwaiti Risk model", "Data Imputation Techniques", "Cambridge Diabetes Risk model", "imputation methods", "Omani Diabetes Risk model", "intercept adjustment.ResultsThe study sample", "data"], "article_id"=>1557820, "categories"=>["Biological Sciences"], "users"=>["Katya L. Masconi", "Tandi E. Matsha", "Rajiv T. Erasmus", "Andre P. Kengne"], "doi"=>"https://dx.doi.org/10.1371/journal.pone.0139210.t003", "stats"=>{"downloads"=>1, "page_views"=>23, "likes"=>0}, "figshare_url"=>"https://figshare.com/articles/_Characteristics_comparison_of_participants_for_the_original_database_and_five_imputation_methods_/1557820", "title"=>"Characteristics comparison of participants for the original database and five imputation methods.", "pos_in_sequence"=>0, "defined_type"=>3, "published_date"=>"2015-09-25 05:17:04"}
  • {"files"=>["https://ndownloader.figshare.com/files/2290543"], "description"=>"<p>Characteristics comparison of participants for five multiple imputation datasets.</p>", "links"=>[], "tags"=>["Rotterdam Predictive model", "undiagnosed diabetes", "South Africa BackgroundImputation techniques", "undiagnosed diabetes risk prediction models", "Kuwaiti Risk model", "Data Imputation Techniques", "Cambridge Diabetes Risk model", "imputation methods", "Omani Diabetes Risk model", "intercept adjustment.ResultsThe study sample", "data"], "article_id"=>1557821, "categories"=>["Biological Sciences"], "users"=>["Katya L. Masconi", "Tandi E. Matsha", "Rajiv T. Erasmus", "Andre P. Kengne"], "doi"=>"https://dx.doi.org/10.1371/journal.pone.0139210.t004", "stats"=>{"downloads"=>1, "page_views"=>5, "likes"=>0}, "figshare_url"=>"https://figshare.com/articles/_Characteristics_comparison_of_participants_for_five_multiple_imputation_datasets_/1557821", "title"=>"Characteristics comparison of participants for five multiple imputation datasets.", "pos_in_sequence"=>0, "defined_type"=>3, "published_date"=>"2015-09-25 05:17:04"}
  • {"files"=>["https://ndownloader.figshare.com/files/2290544"], "description"=>"<p>Overview of the performance of the undiagnosed diabetes risk prediction models across the five multiple imputation datasets.</p>", "links"=>[], "tags"=>["Rotterdam Predictive model", "undiagnosed diabetes", "South Africa BackgroundImputation techniques", "undiagnosed diabetes risk prediction models", "Kuwaiti Risk model", "Data Imputation Techniques", "Cambridge Diabetes Risk model", "imputation methods", "Omani Diabetes Risk model", "intercept adjustment.ResultsThe study sample", "data"], "article_id"=>1557822, "categories"=>["Biological Sciences"], "users"=>["Katya L. Masconi", "Tandi E. Matsha", "Rajiv T. Erasmus", "Andre P. Kengne"], "doi"=>"https://dx.doi.org/10.1371/journal.pone.0139210.t005", "stats"=>{"downloads"=>1, "page_views"=>7, "likes"=>0}, "figshare_url"=>"https://figshare.com/articles/_Overview_of_the_performance_of_the_undiagnosed_diabetes_risk_prediction_models_across_the_five_multiple_imputation_datasets_/1557822", "title"=>"Overview of the performance of the undiagnosed diabetes risk prediction models across the five multiple imputation datasets.", "pos_in_sequence"=>0, "defined_type"=>3, "published_date"=>"2015-09-25 05:17:04"}

PMC Usage Stats | Further Information

  • {"unique-ip"=>"11", "full-text"=>"11", "pdf"=>"3", "abstract"=>"0", "scanned-summary"=>"0", "scanned-page-browse"=>"0", "figure"=>"0", "supp-data"=>"0", "cited-by"=>"0", "year"=>"2015", "month"=>"10"}
  • {"unique-ip"=>"2", "full-text"=>"2", "pdf"=>"0", "abstract"=>"0", "scanned-summary"=>"0", "scanned-page-browse"=>"0", "figure"=>"0", "supp-data"=>"0", "cited-by"=>"0", "year"=>"2016", "month"=>"2"}
  • {"unique-ip"=>"9", "full-text"=>"11", "pdf"=>"8", "abstract"=>"0", "scanned-summary"=>"0", "scanned-page-browse"=>"0", "figure"=>"0", "supp-data"=>"0", "cited-by"=>"0", "year"=>"2015", "month"=>"11"}
  • {"unique-ip"=>"12", "full-text"=>"9", "pdf"=>"6", "abstract"=>"0", "scanned-summary"=>"0", "scanned-page-browse"=>"0", "figure"=>"0", "supp-data"=>"0", "cited-by"=>"0", "year"=>"2015", "month"=>"12"}
  • {"unique-ip"=>"10", "full-text"=>"8", "pdf"=>"4", "abstract"=>"0", "scanned-summary"=>"0", "scanned-page-browse"=>"0", "figure"=>"0", "supp-data"=>"0", "cited-by"=>"0", "year"=>"2016", "month"=>"1"}
  • {"unique-ip"=>"4", "full-text"=>"4", "pdf"=>"1", "abstract"=>"0", "scanned-summary"=>"0", "scanned-page-browse"=>"0", "figure"=>"0", "supp-data"=>"0", "cited-by"=>"0", "year"=>"2016", "month"=>"3"}
  • {"unique-ip"=>"7", "full-text"=>"6", "pdf"=>"3", "abstract"=>"0", "scanned-summary"=>"0", "scanned-page-browse"=>"0", "figure"=>"0", "supp-data"=>"0", "cited-by"=>"0", "year"=>"2016", "month"=>"4"}
  • {"unique-ip"=>"6", "full-text"=>"5", "pdf"=>"1", "abstract"=>"0", "scanned-summary"=>"0", "scanned-page-browse"=>"0", "figure"=>"2", "supp-data"=>"0", "cited-by"=>"0", "year"=>"2016", "month"=>"5"}
  • {"unique-ip"=>"10", "full-text"=>"9", "pdf"=>"1", "abstract"=>"0", "scanned-summary"=>"0", "scanned-page-browse"=>"0", "figure"=>"2", "supp-data"=>"0", "cited-by"=>"0", "year"=>"2016", "month"=>"6"}
  • {"unique-ip"=>"8", "full-text"=>"6", "pdf"=>"10", "abstract"=>"0", "scanned-summary"=>"0", "scanned-page-browse"=>"0", "figure"=>"0", "supp-data"=>"0", "cited-by"=>"0", "year"=>"2016", "month"=>"7"}
  • {"unique-ip"=>"10", "full-text"=>"9", "pdf"=>"5", "abstract"=>"0", "scanned-summary"=>"0", "scanned-page-browse"=>"0", "figure"=>"1", "supp-data"=>"0", "cited-by"=>"0", "year"=>"2016", "month"=>"8"}
  • {"unique-ip"=>"3", "full-text"=>"4", "pdf"=>"0", "abstract"=>"0", "scanned-summary"=>"0", "scanned-page-browse"=>"0", "figure"=>"0", "supp-data"=>"0", "cited-by"=>"0", "year"=>"2016", "month"=>"9"}
  • {"unique-ip"=>"6", "full-text"=>"6", "pdf"=>"1", "abstract"=>"0", "scanned-summary"=>"0", "scanned-page-browse"=>"0", "figure"=>"1", "supp-data"=>"0", "cited-by"=>"0", "year"=>"2016", "month"=>"10"}
  • {"unique-ip"=>"5", "full-text"=>"5", "pdf"=>"2", "abstract"=>"0", "scanned-summary"=>"0", "scanned-page-browse"=>"0", "figure"=>"0", "supp-data"=>"0", "cited-by"=>"0", "year"=>"2016", "month"=>"11"}
  • {"unique-ip"=>"6", "full-text"=>"7", "pdf"=>"1", "abstract"=>"0", "scanned-summary"=>"0", "scanned-page-browse"=>"0", "figure"=>"0", "supp-data"=>"0", "cited-by"=>"0", "year"=>"2016", "month"=>"12"}
  • {"unique-ip"=>"10", "full-text"=>"5", "pdf"=>"1", "abstract"=>"0", "scanned-summary"=>"0", "scanned-page-browse"=>"0", "figure"=>"0", "supp-data"=>"0", "cited-by"=>"0", "year"=>"2017", "month"=>"1"}
  • {"unique-ip"=>"4", "full-text"=>"6", "pdf"=>"2", "abstract"=>"0", "scanned-summary"=>"0", "scanned-page-browse"=>"0", "figure"=>"0", "supp-data"=>"0", "cited-by"=>"0", "year"=>"2017", "month"=>"2"}
  • {"unique-ip"=>"8", "full-text"=>"8", "pdf"=>"3", "abstract"=>"0", "scanned-summary"=>"0", "scanned-page-browse"=>"0", "figure"=>"0", "supp-data"=>"0", "cited-by"=>"0", "year"=>"2017", "month"=>"3"}
  • {"unique-ip"=>"6", "full-text"=>"6", "pdf"=>"3", "abstract"=>"0", "scanned-summary"=>"0", "scanned-page-browse"=>"0", "figure"=>"0", "supp-data"=>"0", "cited-by"=>"0", "year"=>"2017", "month"=>"4"}
  • {"unique-ip"=>"6", "full-text"=>"7", "pdf"=>"2", "abstract"=>"0", "scanned-summary"=>"0", "scanned-page-browse"=>"0", "figure"=>"0", "supp-data"=>"0", "cited-by"=>"0", "year"=>"2017", "month"=>"5"}
  • {"unique-ip"=>"6", "full-text"=>"7", "pdf"=>"1", "abstract"=>"0", "scanned-summary"=>"0", "scanned-page-browse"=>"0", "figure"=>"0", "supp-data"=>"0", "cited-by"=>"0", "year"=>"2017", "month"=>"6"}
  • {"unique-ip"=>"10", "full-text"=>"10", "pdf"=>"0", "abstract"=>"0", "scanned-summary"=>"0", "scanned-page-browse"=>"0", "figure"=>"0", "supp-data"=>"0", "cited-by"=>"0", "year"=>"2017", "month"=>"7"}
  • {"unique-ip"=>"7", "full-text"=>"7", "pdf"=>"1", "abstract"=>"0", "scanned-summary"=>"0", "scanned-page-browse"=>"0", "figure"=>"0", "supp-data"=>"0", "cited-by"=>"0", "year"=>"2017", "month"=>"8"}
  • {"unique-ip"=>"21", "full-text"=>"19", "pdf"=>"3", "abstract"=>"0", "scanned-summary"=>"0", "scanned-page-browse"=>"0", "figure"=>"0", "supp-data"=>"0", "cited-by"=>"0", "year"=>"2017", "month"=>"9"}
  • {"unique-ip"=>"23", "full-text"=>"24", "pdf"=>"0", "abstract"=>"0", "scanned-summary"=>"0", "scanned-page-browse"=>"0", "figure"=>"0", "supp-data"=>"0", "cited-by"=>"0", "year"=>"2017", "month"=>"10"}
  • {"unique-ip"=>"32", "full-text"=>"36", "pdf"=>"3", "abstract"=>"0", "scanned-summary"=>"0", "scanned-page-browse"=>"0", "figure"=>"2", "supp-data"=>"0", "cited-by"=>"0", "year"=>"2017", "month"=>"11"}
  • {"unique-ip"=>"17", "full-text"=>"19", "pdf"=>"3", "abstract"=>"0", "scanned-summary"=>"0", "scanned-page-browse"=>"0", "figure"=>"0", "supp-data"=>"0", "cited-by"=>"0", "year"=>"2017", "month"=>"12"}
  • {"unique-ip"=>"31", "full-text"=>"44", "pdf"=>"2", "abstract"=>"0", "scanned-summary"=>"0", "scanned-page-browse"=>"0", "figure"=>"3", "supp-data"=>"0", "cited-by"=>"0", "year"=>"2018", "month"=>"1"}
  • {"unique-ip"=>"29", "full-text"=>"28", "pdf"=>"4", "abstract"=>"0", "scanned-summary"=>"0", "scanned-page-browse"=>"0", "figure"=>"0", "supp-data"=>"0", "cited-by"=>"0", "year"=>"2018", "month"=>"3"}
  • {"unique-ip"=>"18", "full-text"=>"24", "pdf"=>"3", "scanned-summary"=>"0", "scanned-page-browse"=>"0", "figure"=>"0", "supp-data"=>"0", "cited-by"=>"1", "year"=>"2019", "month"=>"1"}
  • {"unique-ip"=>"20", "full-text"=>"21", "pdf"=>"2", "scanned-summary"=>"0", "scanned-page-browse"=>"0", "figure"=>"0", "supp-data"=>"0", "cited-by"=>"0", "year"=>"2018", "month"=>"9"}
  • {"unique-ip"=>"42", "full-text"=>"43", "pdf"=>"4", "scanned-summary"=>"0", "scanned-page-browse"=>"0", "figure"=>"0", "supp-data"=>"0", "cited-by"=>"0", "year"=>"2018", "month"=>"4"}
  • {"unique-ip"=>"25", "full-text"=>"27", "pdf"=>"2", "scanned-summary"=>"0", "scanned-page-browse"=>"0", "figure"=>"0", "supp-data"=>"0", "cited-by"=>"0", "year"=>"2018", "month"=>"5"}
  • {"unique-ip"=>"26", "full-text"=>"26", "pdf"=>"0", "scanned-summary"=>"0", "scanned-page-browse"=>"0", "figure"=>"1", "supp-data"=>"0", "cited-by"=>"0", "year"=>"2018", "month"=>"6"}
  • {"unique-ip"=>"14", "full-text"=>"15", "pdf"=>"4", "scanned-summary"=>"0", "scanned-page-browse"=>"0", "figure"=>"0", "supp-data"=>"0", "cited-by"=>"0", "year"=>"2018", "month"=>"7"}
  • {"unique-ip"=>"23", "full-text"=>"22", "pdf"=>"4", "scanned-summary"=>"0", "scanned-page-browse"=>"0", "figure"=>"0", "supp-data"=>"0", "cited-by"=>"0", "year"=>"2018", "month"=>"10"}
  • {"unique-ip"=>"28", "full-text"=>"25", "pdf"=>"6", "scanned-summary"=>"0", "scanned-page-browse"=>"0", "figure"=>"1", "supp-data"=>"0", "cited-by"=>"0", "year"=>"2018", "month"=>"8"}
  • {"unique-ip"=>"12", "full-text"=>"12", "pdf"=>"1", "scanned-summary"=>"0", "scanned-page-browse"=>"0", "figure"=>"0", "supp-data"=>"0", "cited-by"=>"0", "year"=>"2018", "month"=>"12"}
  • {"unique-ip"=>"21", "full-text"=>"27", "pdf"=>"2", "scanned-summary"=>"0", "scanned-page-browse"=>"0", "figure"=>"0", "supp-data"=>"0", "cited-by"=>"0", "year"=>"2018", "month"=>"11"}
  • {"unique-ip"=>"13", "full-text"=>"13", "pdf"=>"2", "scanned-summary"=>"0", "scanned-page-browse"=>"0", "figure"=>"0", "supp-data"=>"0", "cited-by"=>"0", "year"=>"2019", "month"=>"2"}
  • {"unique-ip"=>"14", "full-text"=>"14", "pdf"=>"3", "scanned-summary"=>"0", "scanned-page-browse"=>"0", "figure"=>"0", "supp-data"=>"0", "cited-by"=>"0", "year"=>"2019", "month"=>"3"}
  • {"unique-ip"=>"16", "full-text"=>"18", "pdf"=>"3", "scanned-summary"=>"0", "scanned-page-browse"=>"0", "figure"=>"1", "supp-data"=>"0", "cited-by"=>"0", "year"=>"2019", "month"=>"4"}
  • {"unique-ip"=>"37", "full-text"=>"36", "pdf"=>"9", "scanned-summary"=>"0", "scanned-page-browse"=>"0", "figure"=>"0", "supp-data"=>"0", "cited-by"=>"0", "year"=>"2019", "month"=>"5"}
  • {"unique-ip"=>"14", "full-text"=>"14", "pdf"=>"4", "scanned-summary"=>"0", "scanned-page-browse"=>"0", "figure"=>"0", "supp-data"=>"0", "cited-by"=>"0", "year"=>"2019", "month"=>"8"}
  • {"unique-ip"=>"22", "full-text"=>"21", "pdf"=>"9", "scanned-summary"=>"0", "scanned-page-browse"=>"0", "figure"=>"0", "supp-data"=>"0", "cited-by"=>"0", "year"=>"2019", "month"=>"9"}
  • {"unique-ip"=>"28", "full-text"=>"26", "pdf"=>"5", "scanned-summary"=>"0", "scanned-page-browse"=>"0", "figure"=>"0", "supp-data"=>"0", "cited-by"=>"0", "year"=>"2019", "month"=>"10"}

Relative Metric

{"start_date"=>"2015-01-01T00:00:00Z", "end_date"=>"2015-12-31T00:00:00Z", "subject_areas"=>[]}
Loading … Spinner
There are currently no alerts