How Big of an Effect Do Small Dams Have? Using Geomorphological Footprints to Quantify Spatial Impact of Low-Head Dams and Identify Patterns of Across-Dam Variation
Events
Loading … Spinner

Mendeley | Further Information

{"title"=>"How big of an effect do small dams have? Using geomorphological footprints to quantify spatial impact of low-head dams and identify patterns of across-dam variation", "type"=>"journal", "authors"=>[{"first_name"=>"Jane S.", "last_name"=>"Fencl", "scopus_author_id"=>"56496988200"}, {"first_name"=>"Martha E.", "last_name"=>"Mather", "scopus_author_id"=>"7006405043"}, {"first_name"=>"Katie H.", "last_name"=>"Costigan", "scopus_author_id"=>"52263420400"}, {"first_name"=>"Melinda D.", "last_name"=>"Daniels", "scopus_author_id"=>"7201966514"}], "year"=>2015, "source"=>"PLoS ONE", "identifiers"=>{"issn"=>"19326203", "scopus"=>"2-s2.0-84951335263", "sgr"=>"84951335263", "pui"=>"607345029", "isbn"=>"1932-6203", "pmid"=>"26540105", "doi"=>"10.1371/journal.pone.0141210"}, "id"=>"14e968bd-f3e0-348c-b97f-3a08cae5da08", "abstract"=>"<p>Longitudinal connectivity is a fundamental characteristic of rivers that can be disrupted by natural and anthropogenic processes. Dams are significant disruptions to streams. Over 2,000,000 low-head dams (&lt;7.6 m high) fragment United States rivers. Despite potential adverse impacts of these ubiquitous disturbances, the spatial impacts of low-head dams on geomorphology and ecology are largely untested. Progress for research and conservation is impaired by not knowing the magnitude of low-head dam impacts. Based on the geomorphic literature, we refined a methodology that allowed us to quantify the spatial extent of low-head dam impacts (herein dam footprint), assessed variation in dam footprints across low-head dams within a river network, and identified select aspects of the context of this variation. Wetted width, depth, and substrate size distributions upstream and downstream of six low-head dams within the Upper Neosho River, Kansas, United States of America were measured. Total dam footprints averaged 7.9 km (3.0–15.3 km) or 287 wetted widths (136–437 wetted widths). Estimates included both upstream (mean: 6.7 km or 243 wetted widths) and downstream footprints (mean: 1.2 km or 44 wetted widths). Altogether the six low-head dams impacted 47.3 km (about 17%) of the mainstem in the river network. Despite differences in age, size, location, and primary function, the sizes of geomorphic footprints of individual low-head dams in the Upper Neosho river network were relatively similar. The number of upstream dams and distance to upstream dams, but not dam height, affected the spatial extent of dam footprints. In summary, ubiquitous low-head dams individually and cumulatively altered lotic ecosystems. Both characteristics of individual dams and the context of neighboring dams affected low-head dam impacts within the river network. For these reasons, low-head dams require a different, more integrative, approach for research and management than the individualistic approach that has been applied to larger dams.</p>", "link"=>"http://www.mendeley.com/research/big-effect-small-dams-using-geomorphological-footprints-quantify-spatial-impact-lowhead-dams-identif", "reader_count"=>40, "reader_count_by_academic_status"=>{"Professor > Associate Professor"=>1, "Researcher"=>7, "Student > Doctoral Student"=>2, "Student > Ph. D. Student"=>10, "Student > Postgraduate"=>1, "Student > Master"=>8, "Other"=>1, "Student > Bachelor"=>6, "Lecturer"=>2, "Lecturer > Senior Lecturer"=>2}, "reader_count_by_user_role"=>{"Professor > Associate Professor"=>1, "Researcher"=>7, "Student > Doctoral Student"=>2, "Student > Ph. D. Student"=>10, "Student > Postgraduate"=>1, "Student > Master"=>8, "Other"=>1, "Student > Bachelor"=>6, "Lecturer"=>2, "Lecturer > Senior Lecturer"=>2}, "reader_count_by_subject_area"=>{"Engineering"=>2, "Unspecified"=>3, "Environmental Science"=>18, "Agricultural and Biological Sciences"=>8, "Medicine and Dentistry"=>2, "Social Sciences"=>2, "Earth and Planetary Sciences"=>4, "Economics, Econometrics and Finance"=>1}, "reader_count_by_subdiscipline"=>{"Engineering"=>{"Engineering"=>2}, "Medicine and Dentistry"=>{"Medicine and Dentistry"=>2}, "Social Sciences"=>{"Social Sciences"=>2}, "Earth and Planetary Sciences"=>{"Earth and Planetary Sciences"=>4}, "Economics, Econometrics and Finance"=>{"Economics, Econometrics and Finance"=>1}, "Agricultural and Biological Sciences"=>{"Agricultural and Biological Sciences"=>8}, "Unspecified"=>{"Unspecified"=>3}, "Environmental Science"=>{"Environmental Science"=>18}}, "reader_count_by_country"=>{"Canada"=>1, "United States"=>1, "Slovenia"=>1, "France"=>1}, "group_count"=>0}

Scopus | Further Information

{"@_fa"=>"true", "link"=>[{"@_fa"=>"true", "@ref"=>"self", "@href"=>"https://api.elsevier.com/content/abstract/scopus_id/84951335263"}, {"@_fa"=>"true", "@ref"=>"author-affiliation", "@href"=>"https://api.elsevier.com/content/abstract/scopus_id/84951335263?field=author,affiliation"}, {"@_fa"=>"true", "@ref"=>"scopus", "@href"=>"https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=84951335263&origin=inward"}, {"@_fa"=>"true", "@ref"=>"scopus-citedby", "@href"=>"https://www.scopus.com/inward/citedby.uri?partnerID=HzOxMe3b&scp=84951335263&origin=inward"}], "prism:url"=>"https://api.elsevier.com/content/abstract/scopus_id/84951335263", "dc:identifier"=>"SCOPUS_ID:84951335263", "eid"=>"2-s2.0-84951335263", "dc:title"=>"How big of an effect do small dams have? Using geomorphological footprints to quantify spatial impact of low-head dams and identify patterns of across-dam variation", "dc:creator"=>"Fencl J.", "prism:publicationName"=>"PLoS ONE", "prism:eIssn"=>"19326203", "prism:volume"=>"10", "prism:issueIdentifier"=>"11", "prism:pageRange"=>nil, "prism:coverDate"=>"2015-11-05", "prism:coverDisplayDate"=>"5 November 2015", "prism:doi"=>"10.1371/journal.pone.0141210", "citedby-count"=>"30", "affiliation"=>[{"@_fa"=>"true", "affilname"=>"University of Washington, Seattle", "affiliation-city"=>"Seattle", "affiliation-country"=>"United States"}, {"@_fa"=>"true", "affilname"=>"Kansas State University", "affiliation-city"=>"Manhattan", "affiliation-country"=>"United States"}], "pubmed-id"=>"26540105", "prism:aggregationType"=>"Journal", "subtype"=>"ar", "subtypeDescription"=>"Article", "article-number"=>"e0141210", "source-id"=>"10600153309", "openaccess"=>"1", "openaccessFlag"=>true}

Facebook

  • {"url"=>"http%3A%2F%2Fjournals.plos.org%2Fplosone%2Farticle%3Fid%3D10.1371%252Fjournal.pone.0141210", "share_count"=>1, "like_count"=>80, "comment_count"=>17, "click_count"=>0, "total_count"=>98}

Counter

  • {"month"=>"11", "year"=>"2015", "pdf_views"=>"44", "xml_views"=>"8", "html_views"=>"359"}
  • {"month"=>"12", "year"=>"2015", "pdf_views"=>"15", "xml_views"=>"0", "html_views"=>"109"}
  • {"month"=>"1", "year"=>"2016", "pdf_views"=>"19", "xml_views"=>"0", "html_views"=>"89"}
  • {"month"=>"2", "year"=>"2016", "pdf_views"=>"6", "xml_views"=>"0", "html_views"=>"112"}
  • {"month"=>"3", "year"=>"2016", "pdf_views"=>"19", "xml_views"=>"0", "html_views"=>"93"}
  • {"month"=>"4", "year"=>"2016", "pdf_views"=>"16", "xml_views"=>"0", "html_views"=>"92"}
  • {"month"=>"5", "year"=>"2016", "pdf_views"=>"17", "xml_views"=>"0", "html_views"=>"45"}
  • {"month"=>"6", "year"=>"2016", "pdf_views"=>"18", "xml_views"=>"0", "html_views"=>"75"}
  • {"month"=>"7", "year"=>"2016", "pdf_views"=>"14", "xml_views"=>"0", "html_views"=>"50"}
  • {"month"=>"8", "year"=>"2016", "pdf_views"=>"20", "xml_views"=>"0", "html_views"=>"64"}
  • {"month"=>"9", "year"=>"2016", "pdf_views"=>"12", "xml_views"=>"0", "html_views"=>"91"}
  • {"month"=>"10", "year"=>"2016", "pdf_views"=>"14", "xml_views"=>"0", "html_views"=>"79"}
  • {"month"=>"11", "year"=>"2016", "pdf_views"=>"5", "xml_views"=>"0", "html_views"=>"71"}
  • {"month"=>"12", "year"=>"2016", "pdf_views"=>"12", "xml_views"=>"1", "html_views"=>"65"}
  • {"month"=>"1", "year"=>"2017", "pdf_views"=>"29", "xml_views"=>"1", "html_views"=>"107"}
  • {"month"=>"2", "year"=>"2017", "pdf_views"=>"19", "xml_views"=>"0", "html_views"=>"147"}
  • {"month"=>"3", "year"=>"2017", "pdf_views"=>"41", "xml_views"=>"0", "html_views"=>"202"}
  • {"month"=>"4", "year"=>"2017", "pdf_views"=>"17", "xml_views"=>"0", "html_views"=>"118"}
  • {"month"=>"5", "year"=>"2017", "pdf_views"=>"15", "xml_views"=>"0", "html_views"=>"126"}
  • {"month"=>"6", "year"=>"2017", "pdf_views"=>"10", "xml_views"=>"0", "html_views"=>"79"}
  • {"month"=>"7", "year"=>"2017", "pdf_views"=>"19", "xml_views"=>"2", "html_views"=>"49"}
  • {"month"=>"8", "year"=>"2017", "pdf_views"=>"9", "xml_views"=>"1", "html_views"=>"58"}
  • {"month"=>"9", "year"=>"2017", "pdf_views"=>"12", "xml_views"=>"2", "html_views"=>"118"}
  • {"month"=>"10", "year"=>"2017", "pdf_views"=>"21", "xml_views"=>"1", "html_views"=>"108"}
  • {"month"=>"11", "year"=>"2017", "pdf_views"=>"19", "xml_views"=>"0", "html_views"=>"111"}
  • {"month"=>"12", "year"=>"2017", "pdf_views"=>"11", "xml_views"=>"1", "html_views"=>"61"}
  • {"month"=>"1", "year"=>"2018", "pdf_views"=>"16", "xml_views"=>"0", "html_views"=>"69"}
  • {"month"=>"2", "year"=>"2018", "pdf_views"=>"18", "xml_views"=>"0", "html_views"=>"61"}
  • {"month"=>"3", "year"=>"2018", "pdf_views"=>"29", "xml_views"=>"0", "html_views"=>"52"}
  • {"month"=>"4", "year"=>"2018", "pdf_views"=>"15", "xml_views"=>"0", "html_views"=>"56"}
  • {"month"=>"5", "year"=>"2018", "pdf_views"=>"14", "xml_views"=>"0", "html_views"=>"38"}
  • {"month"=>"6", "year"=>"2018", "pdf_views"=>"14", "xml_views"=>"2", "html_views"=>"37"}
  • {"month"=>"7", "year"=>"2018", "pdf_views"=>"20", "xml_views"=>"3", "html_views"=>"44"}
  • {"month"=>"8", "year"=>"2018", "pdf_views"=>"7", "xml_views"=>"1", "html_views"=>"66"}
  • {"month"=>"9", "year"=>"2018", "pdf_views"=>"14", "xml_views"=>"1", "html_views"=>"64"}
  • {"month"=>"10", "year"=>"2018", "pdf_views"=>"11", "xml_views"=>"1", "html_views"=>"97"}
  • {"month"=>"11", "year"=>"2018", "pdf_views"=>"23", "xml_views"=>"0", "html_views"=>"68"}
  • {"month"=>"12", "year"=>"2018", "pdf_views"=>"17", "xml_views"=>"2", "html_views"=>"54"}
  • {"month"=>"1", "year"=>"2019", "pdf_views"=>"17", "xml_views"=>"0", "html_views"=>"24"}
  • {"month"=>"2", "year"=>"2019", "pdf_views"=>"7", "xml_views"=>"0", "html_views"=>"26"}
  • {"month"=>"3", "year"=>"2019", "pdf_views"=>"13", "xml_views"=>"0", "html_views"=>"32"}
  • {"month"=>"4", "year"=>"2019", "pdf_views"=>"13", "xml_views"=>"3", "html_views"=>"29"}
  • {"month"=>"5", "year"=>"2019", "pdf_views"=>"18", "xml_views"=>"1", "html_views"=>"31"}
  • {"month"=>"6", "year"=>"2019", "pdf_views"=>"7", "xml_views"=>"0", "html_views"=>"13"}
  • {"month"=>"7", "year"=>"2019", "pdf_views"=>"17", "xml_views"=>"3", "html_views"=>"33"}
  • {"month"=>"8", "year"=>"2019", "pdf_views"=>"12", "xml_views"=>"0", "html_views"=>"20"}
  • {"month"=>"9", "year"=>"2019", "pdf_views"=>"21", "xml_views"=>"0", "html_views"=>"52"}
  • {"month"=>"10", "year"=>"2019", "pdf_views"=>"18", "xml_views"=>"0", "html_views"=>"27"}
  • {"month"=>"11", "year"=>"2019", "pdf_views"=>"13", "xml_views"=>"0", "html_views"=>"40"}
  • {"month"=>"12", "year"=>"2019", "pdf_views"=>"23", "xml_views"=>"0", "html_views"=>"21"}
  • {"month"=>"1", "year"=>"2020", "pdf_views"=>"17", "xml_views"=>"0", "html_views"=>"39"}

Figshare

  • {"files"=>["https://ndownloader.figshare.com/files/2408942"], "description"=>"<p>Upper panels display substrate size composition changes with increasing distance from dams for (A) Riverwalk, (B) Correll, (C) Ruggles, (D) Emporia, (E) Cottonwood Falls, (F) Soden, and undammed sites (G) Undammed-1 and (H) Undammed-2. Consecutive riffles below the dam are displayed until median substrate size (D<sub>50</sub>) returned to 22.5 mm for Neosho River or 32 mm for Cottonwood River. For comparison, lower panels display substrate size compositions for riffles at reference sites located away from dams where distributions remained similar. Note: reference sites with riffles were not available for four of the six dams. <i>P-values</i> in the figures are based on Kolmogorov-Smirnov test of the distribution curves comparing the two riffles indicated in parentheses. See panel I for the legend—1° riffle indicates the first riffle downstream of a dam, 2° riffle indicates the second riffle downstream of a dam, 3° riffle indicates the third riffle downstream of a dam.</p>", "links"=>[], "tags"=>["Upper Neosho River", "243 wetted widths", "dam footprints", "substrate size distributions", "Upper Neosho river network", "Total dam footprints", "fragment United States rivers", "river network", "44 wetted widths"], "article_id"=>1595117, "categories"=>["Uncategorised"], "users"=>["Jane S. Fencl", "Martha E. Mather", "Katie H. Costigan", "Melinda D. Daniels"], "doi"=>"https://dx.doi.org/10.1371/journal.pone.0141210.g007", "stats"=>{"downloads"=>5, "page_views"=>5, "likes"=>0}, "figshare_url"=>"https://figshare.com/articles/_Cumulative_Distribution_Curves_/1595117", "title"=>"Cumulative Distribution Curves.", "pos_in_sequence"=>0, "defined_type"=>1, "published_date"=>"2015-11-05 03:21:33"}
  • {"files"=>["https://ndownloader.figshare.com/files/2408941"], "description"=>"<p>Longitudinal profiles of substrate size for the six dams in the study reach showing upstream undammed sites as available (left) and downstream (right) samples (black trapezoid). Each point represents a riffle’s location in relation to its distance from the dam. The end of the dam footprint is indicated by an arrow, where applicable, and was considered to be where riffles reached a baseline determined by the undammed sites, or the minimum value for (D<sub>50</sub>) on its river (Upper Neosho or Lower Cottonwood). (A) Riverwalk, (B) Correll, (C) Ruggles, (D) Emporia, (E) Cottonwood Falls, and (F) Soden. The longitudinal profile for the two reference sites, Undammed-1 and Undammed-2 are plotted in the upstream panel for their corresponding dam sites, Riverwalk and Correll, respectively.</p>", "links"=>[], "tags"=>["Upper Neosho River", "243 wetted widths", "dam footprints", "substrate size distributions", "Upper Neosho river network", "Total dam footprints", "fragment United States rivers", "river network", "44 wetted widths"], "article_id"=>1595116, "categories"=>["Uncategorised"], "users"=>["Jane S. Fencl", "Martha E. Mather", "Katie H. Costigan", "Melinda D. Daniels"], "doi"=>"https://dx.doi.org/10.1371/journal.pone.0141210.g006", "stats"=>{"downloads"=>1, "page_views"=>0, "likes"=>0}, "figshare_url"=>"https://figshare.com/articles/_Substrate_size_/1595116", "title"=>"Substrate size.", "pos_in_sequence"=>0, "defined_type"=>1, "published_date"=>"2015-11-05 03:21:33"}
  • {"files"=>["https://ndownloader.figshare.com/files/2408938"], "description"=>"<p>Comparison of (A) mean substrate size picked by four individuals at three randomly chosen points along a transect with ten replicates for each point and (B) average D<sub>50</sub> of three Wolman pebble counts of one riffle. NS indicates no significant difference between individuals. Statistics are the result of a Kruskal-Wallis test of sampler effect using (A) a Bonferroni corrected α = 0.016 (0.05 divided by 3 (for each location)) (B) α = 0.05.</p>", "links"=>[], "tags"=>["Upper Neosho River", "243 wetted widths", "dam footprints", "substrate size distributions", "Upper Neosho river network", "Total dam footprints", "fragment United States rivers", "river network", "44 wetted widths"], "article_id"=>1595113, "categories"=>["Uncategorised"], "users"=>["Jane S. Fencl", "Martha E. Mather", "Katie H. Costigan", "Melinda D. Daniels"], "doi"=>"https://dx.doi.org/10.1371/journal.pone.0141210.g003", "stats"=>{"downloads"=>1, "page_views"=>0, "likes"=>0}, "figshare_url"=>"https://figshare.com/articles/_Evaluation_of_Substrate_Selection_among_Individuals_/1595113", "title"=>"Evaluation of Substrate Selection among Individuals.", "pos_in_sequence"=>0, "defined_type"=>1, "published_date"=>"2015-11-05 03:21:33"}
  • {"files"=>["https://ndownloader.figshare.com/files/2408936"], "description"=>"<p>Predictions of geomorphic effects caused by low-head dams on (A) wetted width and depth, (B) channel widening, and (C) substrate size from the Web of Science literature on low-head dams. On all prediction plots, the X axis is the distance from the dam, the black trapezoid represents dam position, the area left of the dashed line represents habitat upstream of the dam and the area right of the dashed line represents habitat downstream of the dam. The impoundment is represented by grey shading.</p>", "links"=>[], "tags"=>["Upper Neosho River", "243 wetted widths", "dam footprints", "substrate size distributions", "Upper Neosho river network", "Total dam footprints", "fragment United States rivers", "river network", "44 wetted widths"], "article_id"=>1595111, "categories"=>["Uncategorised"], "users"=>["Jane S. Fencl", "Martha E. Mather", "Katie H. Costigan", "Melinda D. Daniels"], "doi"=>"https://dx.doi.org/10.1371/journal.pone.0141210.g001", "stats"=>{"downloads"=>0, "page_views"=>0, "likes"=>0}, "figshare_url"=>"https://figshare.com/articles/_Predictions_about_Dam_Impact_/1595111", "title"=>"Predictions about Dam Impact.", "pos_in_sequence"=>0, "defined_type"=>1, "published_date"=>"2015-11-05 03:21:33"}
  • {"files"=>["https://ndownloader.figshare.com/files/2408937"], "description"=>"<p>Map of our study area in the Upper Neosho river network (A) located in Kansas. Also shown are (B) six dam sites and two undammed reference sites along the Upper Neosho River and Lower Cottonwood Rivers. Major U.S. Army Corps of Engineers (USACE) reservoirs in the study river network are labeled for reference.</p>", "links"=>[], "tags"=>["Upper Neosho River", "243 wetted widths", "dam footprints", "substrate size distributions", "Upper Neosho river network", "Total dam footprints", "fragment United States rivers", "river network", "44 wetted widths"], "article_id"=>1595112, "categories"=>["Uncategorised"], "users"=>["Jane S. Fencl", "Martha E. Mather", "Katie H. Costigan", "Melinda D. Daniels"], "doi"=>"https://dx.doi.org/10.1371/journal.pone.0141210.g002", "stats"=>{"downloads"=>1, "page_views"=>0, "likes"=>0}, "figshare_url"=>"https://figshare.com/articles/_Map_of_the_Upper_Neosho_River_network_/1595112", "title"=>"Map of the Upper Neosho River network.", "pos_in_sequence"=>0, "defined_type"=>1, "published_date"=>"2015-11-05 03:21:33"}
  • {"files"=>["https://ndownloader.figshare.com/files/2408946"], "description"=>"<p>* footprint is estimated based on available data</p><p>Downstream footprints were determined by measuring the distribution of median substrate size (D<sub>50</sub>) from riffles downstream of dam (see Figs <a href=\"http://www.plosone.org/article/info:doi/10.1371/journal.pone.0141210#pone.0141210.g006\" target=\"_blank\">6</a> and <a href=\"http://www.plosone.org/article/info:doi/10.1371/journal.pone.0141210#pone.0141210.g008\" target=\"_blank\">8</a>). Extent of channel widening, and upstream footprints were determined using aerial photography. Footprints are expressed in terms of multiples of mean wetted width, with kilometers in parentheses. The mean wetted width used in calculations was 0.022 km for the Neosho River and 0.035 km for the Cottonwood River.</p>", "links"=>[], "tags"=>["Upper Neosho River", "243 wetted widths", "dam footprints", "substrate size distributions", "Upper Neosho river network", "Total dam footprints", "fragment United States rivers", "river network", "44 wetted widths"], "article_id"=>1595121, "categories"=>["Uncategorised"], "users"=>["Jane S. Fencl", "Martha E. Mather", "Katie H. Costigan", "Melinda D. Daniels"], "doi"=>"https://dx.doi.org/10.1371/journal.pone.0141210.t002", "stats"=>{"downloads"=>1, "page_views"=>6, "likes"=>0}, "figshare_url"=>"https://figshare.com/articles/_Channel_widening_downstream_upstream_and_total_footprint_for_each_dam_/1595121", "title"=>"Channel widening, downstream, upstream, and total footprint for each dam.", "pos_in_sequence"=>0, "defined_type"=>3, "published_date"=>"2015-11-05 03:21:33"}
  • {"files"=>["https://ndownloader.figshare.com/files/2408944"], "description"=>"<p>Univariate regressions for environmental correlates of (A) downstream, (B) upstream, and (C) total dam footprints expressed in terms of multiples of wetted widths. The relationship shown corresponds to the top model amongst competing univariate regressions testing dam height, distance to nearest upstream dam, number of upstream dams, and height of nearest upstream dam. The corresponding equation and correlation (adjusted R-sq) between the dam footprint and the corresponding explanatory variable are indicated in each panel.</p>", "links"=>[], "tags"=>["Upper Neosho River", "243 wetted widths", "dam footprints", "substrate size distributions", "Upper Neosho river network", "Total dam footprints", "fragment United States rivers", "river network", "44 wetted widths"], "article_id"=>1595119, "categories"=>["Uncategorised"], "users"=>["Jane S. Fencl", "Martha E. Mather", "Katie H. Costigan", "Melinda D. Daniels"], "doi"=>"https://dx.doi.org/10.1371/journal.pone.0141210.g009", "stats"=>{"downloads"=>5, "page_views"=>2, "likes"=>0}, "figshare_url"=>"https://figshare.com/articles/_Regression_for_Environmental_Correlates_of_Dam_Footprints_/1595119", "title"=>"Regression for Environmental Correlates of Dam Footprints.", "pos_in_sequence"=>0, "defined_type"=>1, "published_date"=>"2015-11-05 03:21:33"}
  • {"files"=>["https://ndownloader.figshare.com/files/2408945"], "description"=>"<p>Drainage area is cumulative, including parts of the catchment upstream of Council Grove and Marion reservoirs (<a href=\"http://www.plosone.org/article/info:doi/10.1371/journal.pone.0141210#pone.0141210.g002\" target=\"_blank\">Fig 2</a>).</p>", "links"=>[], "tags"=>["Upper Neosho River", "243 wetted widths", "dam footprints", "substrate size distributions", "Upper Neosho river network", "Total dam footprints", "fragment United States rivers", "river network", "44 wetted widths"], "article_id"=>1595120, "categories"=>["Uncategorised"], "users"=>["Jane S. Fencl", "Martha E. Mather", "Katie H. Costigan", "Melinda D. Daniels"], "doi"=>"https://dx.doi.org/10.1371/journal.pone.0141210.t001", "stats"=>{"downloads"=>1, "page_views"=>0, "likes"=>0}, "figshare_url"=>"https://figshare.com/articles/_Date_of_construction_primary_purpose_and_drainage_area_for_dams_on_the_Upper_Neosho_and_Lower_Cottonwood_rivers_/1595120", "title"=>"Date of construction, primary purpose, and drainage area for dams on the Upper Neosho and Lower Cottonwood rivers.", "pos_in_sequence"=>0, "defined_type"=>3, "published_date"=>"2015-11-05 03:21:33"}
  • {"files"=>["https://ndownloader.figshare.com/files/2408943"], "description"=>"<p>Downstream (black bars) and upstream (gray bars) footprints of six dam sites and the average downstream and upstream footprints in the Neosho River network. The dashed lines are averages.</p>", "links"=>[], "tags"=>["Upper Neosho River", "243 wetted widths", "dam footprints", "substrate size distributions", "Upper Neosho river network", "Total dam footprints", "fragment United States rivers", "river network", "44 wetted widths"], "article_id"=>1595118, "categories"=>["Uncategorised"], "users"=>["Jane S. Fencl", "Martha E. Mather", "Katie H. Costigan", "Melinda D. Daniels"], "doi"=>"https://dx.doi.org/10.1371/journal.pone.0141210.g008", "stats"=>{"downloads"=>4, "page_views"=>3, "likes"=>0}, "figshare_url"=>"https://figshare.com/articles/_Low_head_Dam_Footprints_/1595118", "title"=>"Low-head Dam Footprints.", "pos_in_sequence"=>0, "defined_type"=>1, "published_date"=>"2015-11-05 03:21:33"}
  • {"files"=>["https://ndownloader.figshare.com/files/2408940"], "description"=>"<p>Longitudinal profiles of depth for the six dams in the study reach showing upstream (left) and downstream (right) samples for our six study dams (black trapezoid). (A) Riverwalk, (B) Correll, (C) Ruggles, (D) Emporia, (E) Cottonwood Falls, and (F) Soden. Y axis arrows indicate mean depth. Small arrows in panel indicate footprint based on substrate size profiles (see section on <a href=\"http://www.plosone.org/article/info:doi/10.1371/journal.pone.0141210#sec010\" target=\"_blank\">substrate size</a> for details). <i>P-values</i> from Wilcoxon rank sum test for mean differences between upstream and downstream transects are shown. Asterisk indicates significance with Bonferroni corrected α = 0.01 (0.05 divided by five dams).</p>", "links"=>[], "tags"=>["Upper Neosho River", "243 wetted widths", "dam footprints", "substrate size distributions", "Upper Neosho river network", "Total dam footprints", "fragment United States rivers", "river network", "44 wetted widths"], "article_id"=>1595115, "categories"=>["Uncategorised"], "users"=>["Jane S. Fencl", "Martha E. Mather", "Katie H. Costigan", "Melinda D. Daniels"], "doi"=>"https://dx.doi.org/10.1371/journal.pone.0141210.g005", "stats"=>{"downloads"=>2, "page_views"=>0, "likes"=>0}, "figshare_url"=>"https://figshare.com/articles/_Depth_/1595115", "title"=>"Depth.", "pos_in_sequence"=>0, "defined_type"=>1, "published_date"=>"2015-11-05 03:21:33"}
  • {"files"=>["https://ndownloader.figshare.com/files/2408939"], "description"=>"<p>Longitudinal profiles of wetted width for the six dams in the study reach showing upstream (left) and downstream (right) samples for our six study dams (black trapezoid); (A) Riverwalk, (B) Correll, (C) Ruggles, (D) Emporia, (E) Cottonwood Falls, and (F) Soden. Y axis arrows indicate mean wetted width. Small arrows in panel indicate footprint based on substrate size profiles see section on <a href=\"http://www.plosone.org/article/info:doi/10.1371/journal.pone.0141210#sec010\" target=\"_blank\">substrate size</a> for details. <i>P-values</i> from Wilcoxon rank sum test for mean differences between upstream and downstream transects are shown. Asterisk indicates significance with Bonferroni corrected α = 0.01 (0.05 divided by five dams).</p>", "links"=>[], "tags"=>["Upper Neosho River", "243 wetted widths", "dam footprints", "substrate size distributions", "Upper Neosho river network", "Total dam footprints", "fragment United States rivers", "river network", "44 wetted widths"], "article_id"=>1595114, "categories"=>["Uncategorised"], "users"=>["Jane S. Fencl", "Martha E. Mather", "Katie H. Costigan", "Melinda D. Daniels"], "doi"=>"https://dx.doi.org/10.1371/journal.pone.0141210.g004", "stats"=>{"downloads"=>0, "page_views"=>0, "likes"=>0}, "figshare_url"=>"https://figshare.com/articles/_Wetted_Width_/1595114", "title"=>"Wetted Width.", "pos_in_sequence"=>0, "defined_type"=>1, "published_date"=>"2015-11-05 03:21:33"}
  • {"files"=>["https://ndownloader.figshare.com/files/2408948"], "description"=>"<div><p>Longitudinal connectivity is a fundamental characteristic of rivers that can be disrupted by natural and anthropogenic processes. Dams are significant disruptions to streams. Over 2,000,000 low-head dams (<7.6 m high) fragment United States rivers. Despite potential adverse impacts of these ubiquitous disturbances, the spatial impacts of low-head dams on geomorphology and ecology are largely untested. Progress for research and conservation is impaired by not knowing the magnitude of low-head dam impacts. Based on the geomorphic literature, we refined a methodology that allowed us to quantify the spatial extent of low-head dam impacts (herein dam footprint), assessed variation in dam footprints across low-head dams within a river network, and identified select aspects of the context of this variation. Wetted width, depth, and substrate size distributions upstream and downstream of six low-head dams within the Upper Neosho River, Kansas, United States of America were measured. Total dam footprints averaged 7.9 km (3.0–15.3 km) or 287 wetted widths (136–437 wetted widths). Estimates included both upstream (mean: 6.7 km or 243 wetted widths) and downstream footprints (mean: 1.2 km or 44 wetted widths). Altogether the six low-head dams impacted 47.3 km (about 17%) of the mainstem in the river network. Despite differences in age, size, location, and primary function, the sizes of geomorphic footprints of individual low-head dams in the Upper Neosho river network were relatively similar. The number of upstream dams and distance to upstream dams, but not dam height, affected the spatial extent of dam footprints. In summary, ubiquitous low-head dams individually and cumulatively altered lotic ecosystems. Both characteristics of individual dams and the context of neighboring dams affected low-head dam impacts within the river network. For these reasons, low-head dams require a different, more integrative, approach for research and management than the individualistic approach that has been applied to larger dams.</p></div>", "links"=>[], "tags"=>["Upper Neosho River", "243 wetted widths", "dam footprints", "substrate size distributions", "Upper Neosho river network", "Total dam footprints", "fragment United States rivers", "river network", "44 wetted widths"], "article_id"=>1595123, "categories"=>["Uncategorised"], "users"=>["Jane S. Fencl", "Martha E. Mather", "Katie H. Costigan", "Melinda D. Daniels"], "doi"=>"https://dx.doi.org/10.1371/journal.pone.0141210", "stats"=>{"downloads"=>1, "page_views"=>2, "likes"=>0}, "figshare_url"=>"https://figshare.com/articles/_How_Big_of_an_Effect_Do_Small_Dams_Have_Using_Geomorphological_Footprints_to_Quantify_Spatial_Impact_of_Low_Head_Dams_and_Identify_Patterns_of_Across_Dam_Variation_/1595123", "title"=>"How Big of an Effect Do Small Dams Have? Using Geomorphological Footprints to Quantify Spatial Impact of Low-Head Dams and Identify Patterns of Across-Dam Variation", "pos_in_sequence"=>0, "defined_type"=>3, "published_date"=>"2015-11-05 03:21:33"}
  • {"files"=>["https://ndownloader.figshare.com/files/2408947"], "description"=>"<p>Input variables for univariate regressions were standardized to multiples of mean width, except for drainage area, for the Upper Neosho and Lower Cottonwood rivers, respectively.</p>", "links"=>[], "tags"=>["Upper Neosho River", "243 wetted widths", "dam footprints", "substrate size distributions", "Upper Neosho river network", "Total dam footprints", "fragment United States rivers", "river network", "44 wetted widths"], "article_id"=>1595122, "categories"=>["Uncategorised"], "users"=>["Jane S. Fencl", "Martha E. Mather", "Katie H. Costigan", "Melinda D. Daniels"], "doi"=>"https://dx.doi.org/10.1371/journal.pone.0141210.t003", "stats"=>{"downloads"=>1, "page_views"=>6, "likes"=>0}, "figshare_url"=>"https://figshare.com/articles/_Dam_size_and_river_network_context_relative_to_other_dams_in_the_river_network_number_of_upstream_dams_distance_to_nearest_upstream_dam_height_of_1_st_upstream_dam_and_drainage_area_/1595122", "title"=>"Dam size and river network context relative to other dams in the river network (number of upstream dams, distance to nearest upstream dam, height of 1<sup>st</sup> upstream dam, and drainage area).", "pos_in_sequence"=>0, "defined_type"=>3, "published_date"=>"2015-11-05 03:21:33"}

PMC Usage Stats | Further Information

  • {"unique-ip"=>"8", "full-text"=>"8", "pdf"=>"3", "abstract"=>"0", "scanned-summary"=>"0", "scanned-page-browse"=>"0", "figure"=>"0", "supp-data"=>"0", "cited-by"=>"0", "year"=>"2016", "month"=>"1"}
  • {"unique-ip"=>"10", "full-text"=>"16", "pdf"=>"3", "abstract"=>"0", "scanned-summary"=>"0", "scanned-page-browse"=>"0", "figure"=>"0", "supp-data"=>"0", "cited-by"=>"0", "year"=>"2016", "month"=>"2"}
  • {"unique-ip"=>"9", "full-text"=>"5", "pdf"=>"5", "abstract"=>"0", "scanned-summary"=>"0", "scanned-page-browse"=>"0", "figure"=>"0", "supp-data"=>"0", "cited-by"=>"0", "year"=>"2015", "month"=>"11"}
  • {"unique-ip"=>"8", "full-text"=>"10", "pdf"=>"13", "abstract"=>"0", "scanned-summary"=>"0", "scanned-page-browse"=>"0", "figure"=>"0", "supp-data"=>"0", "cited-by"=>"0", "year"=>"2015", "month"=>"12"}
  • {"unique-ip"=>"9", "full-text"=>"12", "pdf"=>"2", "abstract"=>"0", "scanned-summary"=>"0", "scanned-page-browse"=>"0", "figure"=>"10", "supp-data"=>"0", "cited-by"=>"0", "year"=>"2016", "month"=>"3"}
  • {"unique-ip"=>"14", "full-text"=>"12", "pdf"=>"5", "abstract"=>"0", "scanned-summary"=>"0", "scanned-page-browse"=>"0", "figure"=>"3", "supp-data"=>"0", "cited-by"=>"0", "year"=>"2016", "month"=>"4"}
  • {"unique-ip"=>"11", "full-text"=>"13", "pdf"=>"2", "abstract"=>"0", "scanned-summary"=>"0", "scanned-page-browse"=>"0", "figure"=>"0", "supp-data"=>"0", "cited-by"=>"0", "year"=>"2016", "month"=>"5"}
  • {"unique-ip"=>"30", "full-text"=>"29", "pdf"=>"5", "abstract"=>"0", "scanned-summary"=>"0", "scanned-page-browse"=>"0", "figure"=>"5", "supp-data"=>"0", "cited-by"=>"0", "year"=>"2016", "month"=>"6"}
  • {"unique-ip"=>"14", "full-text"=>"17", "pdf"=>"2", "abstract"=>"0", "scanned-summary"=>"0", "scanned-page-browse"=>"0", "figure"=>"1", "supp-data"=>"0", "cited-by"=>"0", "year"=>"2016", "month"=>"7"}
  • {"unique-ip"=>"14", "full-text"=>"14", "pdf"=>"2", "abstract"=>"0", "scanned-summary"=>"0", "scanned-page-browse"=>"0", "figure"=>"0", "supp-data"=>"0", "cited-by"=>"0", "year"=>"2016", "month"=>"8"}
  • {"unique-ip"=>"31", "full-text"=>"35", "pdf"=>"0", "abstract"=>"0", "scanned-summary"=>"0", "scanned-page-browse"=>"0", "figure"=>"9", "supp-data"=>"0", "cited-by"=>"0", "year"=>"2016", "month"=>"9"}
  • {"unique-ip"=>"9", "full-text"=>"10", "pdf"=>"0", "abstract"=>"0", "scanned-summary"=>"0", "scanned-page-browse"=>"0", "figure"=>"0", "supp-data"=>"0", "cited-by"=>"0", "year"=>"2016", "month"=>"10"}
  • {"unique-ip"=>"9", "full-text"=>"10", "pdf"=>"0", "abstract"=>"0", "scanned-summary"=>"0", "scanned-page-browse"=>"0", "figure"=>"0", "supp-data"=>"0", "cited-by"=>"0", "year"=>"2016", "month"=>"11"}
  • {"unique-ip"=>"26", "full-text"=>"27", "pdf"=>"2", "abstract"=>"0", "scanned-summary"=>"0", "scanned-page-browse"=>"0", "figure"=>"1", "supp-data"=>"0", "cited-by"=>"0", "year"=>"2016", "month"=>"12"}
  • {"unique-ip"=>"35", "full-text"=>"38", "pdf"=>"3", "abstract"=>"0", "scanned-summary"=>"0", "scanned-page-browse"=>"0", "figure"=>"2", "supp-data"=>"0", "cited-by"=>"0", "year"=>"2017", "month"=>"1"}
  • {"unique-ip"=>"38", "full-text"=>"40", "pdf"=>"3", "abstract"=>"0", "scanned-summary"=>"0", "scanned-page-browse"=>"0", "figure"=>"4", "supp-data"=>"0", "cited-by"=>"0", "year"=>"2017", "month"=>"2"}
  • {"unique-ip"=>"54", "full-text"=>"56", "pdf"=>"3", "abstract"=>"0", "scanned-summary"=>"0", "scanned-page-browse"=>"0", "figure"=>"7", "supp-data"=>"0", "cited-by"=>"0", "year"=>"2017", "month"=>"3"}
  • {"unique-ip"=>"48", "full-text"=>"49", "pdf"=>"5", "abstract"=>"0", "scanned-summary"=>"0", "scanned-page-browse"=>"0", "figure"=>"2", "supp-data"=>"0", "cited-by"=>"0", "year"=>"2017", "month"=>"4"}
  • {"unique-ip"=>"35", "full-text"=>"36", "pdf"=>"4", "abstract"=>"0", "scanned-summary"=>"0", "scanned-page-browse"=>"0", "figure"=>"0", "supp-data"=>"0", "cited-by"=>"0", "year"=>"2017", "month"=>"5"}
  • {"unique-ip"=>"14", "full-text"=>"13", "pdf"=>"1", "abstract"=>"0", "scanned-summary"=>"0", "scanned-page-browse"=>"0", "figure"=>"4", "supp-data"=>"0", "cited-by"=>"0", "year"=>"2017", "month"=>"6"}
  • {"unique-ip"=>"16", "full-text"=>"18", "pdf"=>"1", "abstract"=>"0", "scanned-summary"=>"0", "scanned-page-browse"=>"0", "figure"=>"1", "supp-data"=>"0", "cited-by"=>"0", "year"=>"2017", "month"=>"7"}
  • {"unique-ip"=>"28", "full-text"=>"29", "pdf"=>"1", "abstract"=>"0", "scanned-summary"=>"0", "scanned-page-browse"=>"0", "figure"=>"17", "supp-data"=>"1", "cited-by"=>"0", "year"=>"2017", "month"=>"8"}
  • {"unique-ip"=>"42", "full-text"=>"44", "pdf"=>"3", "abstract"=>"0", "scanned-summary"=>"0", "scanned-page-browse"=>"0", "figure"=>"3", "supp-data"=>"0", "cited-by"=>"0", "year"=>"2017", "month"=>"9"}
  • {"unique-ip"=>"46", "full-text"=>"51", "pdf"=>"4", "abstract"=>"0", "scanned-summary"=>"0", "scanned-page-browse"=>"0", "figure"=>"6", "supp-data"=>"0", "cited-by"=>"0", "year"=>"2017", "month"=>"10"}
  • {"unique-ip"=>"73", "full-text"=>"71", "pdf"=>"3", "abstract"=>"0", "scanned-summary"=>"0", "scanned-page-browse"=>"0", "figure"=>"6", "supp-data"=>"3", "cited-by"=>"0", "year"=>"2017", "month"=>"11"}
  • {"unique-ip"=>"32", "full-text"=>"34", "pdf"=>"4", "abstract"=>"0", "scanned-summary"=>"0", "scanned-page-browse"=>"0", "figure"=>"1", "supp-data"=>"0", "cited-by"=>"0", "year"=>"2017", "month"=>"12"}
  • {"unique-ip"=>"49", "full-text"=>"51", "pdf"=>"6", "abstract"=>"0", "scanned-summary"=>"0", "scanned-page-browse"=>"0", "figure"=>"0", "supp-data"=>"0", "cited-by"=>"0", "year"=>"2018", "month"=>"1"}
  • {"unique-ip"=>"60", "full-text"=>"66", "pdf"=>"8", "abstract"=>"0", "scanned-summary"=>"0", "scanned-page-browse"=>"0", "figure"=>"1", "supp-data"=>"0", "cited-by"=>"1", "year"=>"2018", "month"=>"3"}
  • {"unique-ip"=>"24", "full-text"=>"30", "pdf"=>"3", "scanned-summary"=>"0", "scanned-page-browse"=>"0", "figure"=>"0", "supp-data"=>"0", "cited-by"=>"0", "year"=>"2019", "month"=>"1"}
  • {"unique-ip"=>"32", "full-text"=>"34", "pdf"=>"2", "scanned-summary"=>"0", "scanned-page-browse"=>"0", "figure"=>"0", "supp-data"=>"0", "cited-by"=>"0", "year"=>"2018", "month"=>"12"}
  • {"unique-ip"=>"52", "full-text"=>"43", "pdf"=>"2", "scanned-summary"=>"0", "scanned-page-browse"=>"0", "figure"=>"11", "supp-data"=>"0", "cited-by"=>"0", "year"=>"2018", "month"=>"4"}
  • {"unique-ip"=>"30", "full-text"=>"34", "pdf"=>"0", "scanned-summary"=>"0", "scanned-page-browse"=>"0", "figure"=>"0", "supp-data"=>"0", "cited-by"=>"0", "year"=>"2018", "month"=>"5"}
  • {"unique-ip"=>"29", "full-text"=>"29", "pdf"=>"3", "scanned-summary"=>"0", "scanned-page-browse"=>"0", "figure"=>"0", "supp-data"=>"0", "cited-by"=>"0", "year"=>"2018", "month"=>"6"}
  • {"unique-ip"=>"30", "full-text"=>"31", "pdf"=>"2", "scanned-summary"=>"0", "scanned-page-browse"=>"0", "figure"=>"0", "supp-data"=>"3", "cited-by"=>"0", "year"=>"2018", "month"=>"7"}
  • {"unique-ip"=>"27", "full-text"=>"27", "pdf"=>"2", "scanned-summary"=>"0", "scanned-page-browse"=>"0", "figure"=>"1", "supp-data"=>"0", "cited-by"=>"0", "year"=>"2018", "month"=>"8"}
  • {"unique-ip"=>"49", "full-text"=>"55", "pdf"=>"1", "scanned-summary"=>"0", "scanned-page-browse"=>"0", "figure"=>"3", "supp-data"=>"1", "cited-by"=>"0", "year"=>"2018", "month"=>"10"}
  • {"unique-ip"=>"31", "full-text"=>"34", "pdf"=>"5", "scanned-summary"=>"0", "scanned-page-browse"=>"0", "figure"=>"0", "supp-data"=>"0", "cited-by"=>"0", "year"=>"2018", "month"=>"9"}
  • {"unique-ip"=>"65", "full-text"=>"64", "pdf"=>"8", "scanned-summary"=>"0", "scanned-page-browse"=>"0", "figure"=>"4", "supp-data"=>"1", "cited-by"=>"0", "year"=>"2018", "month"=>"11"}
  • {"unique-ip"=>"43", "full-text"=>"44", "pdf"=>"5", "scanned-summary"=>"0", "scanned-page-browse"=>"0", "figure"=>"0", "supp-data"=>"0", "cited-by"=>"1", "year"=>"2019", "month"=>"2"}
  • {"unique-ip"=>"44", "full-text"=>"47", "pdf"=>"6", "scanned-summary"=>"0", "scanned-page-browse"=>"0", "figure"=>"0", "supp-data"=>"1", "cited-by"=>"0", "year"=>"2019", "month"=>"3"}
  • {"unique-ip"=>"65", "full-text"=>"72", "pdf"=>"1", "scanned-summary"=>"0", "scanned-page-browse"=>"0", "figure"=>"0", "supp-data"=>"0", "cited-by"=>"0", "year"=>"2019", "month"=>"4"}
  • {"unique-ip"=>"60", "full-text"=>"69", "pdf"=>"5", "scanned-summary"=>"0", "scanned-page-browse"=>"0", "figure"=>"0", "supp-data"=>"0", "cited-by"=>"0", "year"=>"2019", "month"=>"5"}
  • {"unique-ip"=>"43", "full-text"=>"50", "pdf"=>"2", "scanned-summary"=>"0", "scanned-page-browse"=>"0", "figure"=>"1", "supp-data"=>"1", "cited-by"=>"0", "year"=>"2019", "month"=>"8"}
  • {"unique-ip"=>"53", "full-text"=>"59", "pdf"=>"0", "scanned-summary"=>"0", "scanned-page-browse"=>"0", "figure"=>"0", "supp-data"=>"0", "cited-by"=>"0", "year"=>"2019", "month"=>"9"}
  • {"unique-ip"=>"83", "full-text"=>"88", "pdf"=>"5", "scanned-summary"=>"0", "scanned-page-browse"=>"0", "figure"=>"0", "supp-data"=>"0", "cited-by"=>"0", "year"=>"2019", "month"=>"10"}
  • {"unique-ip"=>"35", "full-text"=>"36", "pdf"=>"3", "scanned-summary"=>"0", "scanned-page-browse"=>"0", "figure"=>"0", "supp-data"=>"0", "cited-by"=>"0", "year"=>"2019", "month"=>"12"}

Relative Metric

{"start_date"=>"2015-01-01T00:00:00Z", "end_date"=>"2015-12-31T00:00:00Z", "subject_areas"=>[]}
Loading … Spinner
There are currently no alerts