Effect of Subliminal Lexical Priming on the Subjective Perception of Images: A Machine Learning Approach
Publication Date
February 11, 2016
Journal
PLOS ONE
Authors
Dhanya Menoth Mohan, Parmod Kumar, Faisal Mahmood, Kian Foong Wong, et al
Volume
11
Issue
2
Pages
e0148332
DOI
https://dx.plos.org/10.1371/journal.pone.0148332
Publisher URL
http://journals.plos.org/plosone/article?id=10.1371%2Fjournal.pone.0148332
PubMed
http://www.ncbi.nlm.nih.gov/pubmed/26866807
PubMed Central
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4750911
Europe PMC
http://europepmc.org/abstract/MED/26866807
Scopus
84959431485
Events
Loading … Spinner

Scopus | Further Information

{"@_fa"=>"true", "link"=>[{"@_fa"=>"true", "@ref"=>"self", "@href"=>"https://api.elsevier.com/content/abstract/scopus_id/84959431485"}, {"@_fa"=>"true", "@ref"=>"author-affiliation", "@href"=>"https://api.elsevier.com/content/abstract/scopus_id/84959431485?field=author,affiliation"}, {"@_fa"=>"true", "@ref"=>"scopus", "@href"=>"https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=84959431485&origin=inward"}, {"@_fa"=>"true", "@ref"=>"scopus-citedby", "@href"=>"https://www.scopus.com/inward/citedby.uri?partnerID=HzOxMe3b&scp=84959431485&origin=inward"}], "prism:url"=>"https://api.elsevier.com/content/abstract/scopus_id/84959431485", "dc:identifier"=>"SCOPUS_ID:84959431485", "eid"=>"2-s2.0-84959431485", "dc:title"=>"Effect of subliminal lexical priming on the subjective perception of images: A machine learning approach", "dc:creator"=>"Mohan D.", "prism:publicationName"=>"PLoS ONE", "prism:eIssn"=>"19326203", "prism:volume"=>"11", "prism:issueIdentifier"=>"2", "prism:pageRange"=>nil, "prism:coverDate"=>"2016-02-01", "prism:coverDisplayDate"=>"February 2016", "prism:doi"=>"10.1371/journal.pone.0148332", "citedby-count"=>"3", "affiliation"=>[{"@_fa"=>"true", "affilname"=>"Nanyang Technological University", "affiliation-city"=>"Singapore City", "affiliation-country"=>"Singapore"}], "pubmed-id"=>"26866807", "prism:aggregationType"=>"Journal", "subtype"=>"ar", "subtypeDescription"=>"Article", "article-number"=>"e0148332", "source-id"=>"10600153309", "openaccess"=>"1", "openaccessFlag"=>true}

Facebook

  • {"url"=>"http%3A%2F%2Fjournals.plos.org%2Fplosone%2Farticle%3Fid%3D10.1371%252Fjournal.pone.0148332", "share_count"=>16, "like_count"=>65, "comment_count"=>23, "click_count"=>0, "total_count"=>104}

Counter

  • {"month"=>"2", "year"=>"2016", "pdf_views"=>"7", "xml_views"=>"0", "html_views"=>"765"}
  • {"month"=>"3", "year"=>"2016", "pdf_views"=>"15", "xml_views"=>"0", "html_views"=>"146"}
  • {"month"=>"4", "year"=>"2016", "pdf_views"=>"17", "xml_views"=>"1", "html_views"=>"112"}
  • {"month"=>"5", "year"=>"2016", "pdf_views"=>"14", "xml_views"=>"0", "html_views"=>"65"}
  • {"month"=>"6", "year"=>"2016", "pdf_views"=>"11", "xml_views"=>"0", "html_views"=>"90"}
  • {"month"=>"7", "year"=>"2016", "pdf_views"=>"15", "xml_views"=>"0", "html_views"=>"46"}
  • {"month"=>"8", "year"=>"2016", "pdf_views"=>"10", "xml_views"=>"0", "html_views"=>"48"}
  • {"month"=>"9", "year"=>"2016", "pdf_views"=>"6", "xml_views"=>"0", "html_views"=>"39"}
  • {"month"=>"10", "year"=>"2016", "pdf_views"=>"37", "xml_views"=>"0", "html_views"=>"103"}
  • {"month"=>"11", "year"=>"2016", "pdf_views"=>"6", "xml_views"=>"0", "html_views"=>"57"}
  • {"month"=>"12", "year"=>"2016", "pdf_views"=>"16", "xml_views"=>"0", "html_views"=>"45"}
  • {"month"=>"1", "year"=>"2017", "pdf_views"=>"2", "xml_views"=>"1", "html_views"=>"32"}
  • {"month"=>"2", "year"=>"2017", "pdf_views"=>"9", "xml_views"=>"2", "html_views"=>"45"}
  • {"month"=>"3", "year"=>"2017", "pdf_views"=>"10", "xml_views"=>"1", "html_views"=>"50"}
  • {"month"=>"4", "year"=>"2017", "pdf_views"=>"4", "xml_views"=>"0", "html_views"=>"62"}
  • {"month"=>"5", "year"=>"2017", "pdf_views"=>"61", "xml_views"=>"1", "html_views"=>"28"}
  • {"month"=>"6", "year"=>"2017", "pdf_views"=>"308", "xml_views"=>"0", "html_views"=>"38"}
  • {"month"=>"7", "year"=>"2017", "pdf_views"=>"268", "xml_views"=>"1", "html_views"=>"14"}
  • {"month"=>"8", "year"=>"2017", "pdf_views"=>"285", "xml_views"=>"2", "html_views"=>"25"}
  • {"month"=>"9", "year"=>"2017", "pdf_views"=>"259", "xml_views"=>"0", "html_views"=>"32"}
  • {"month"=>"10", "year"=>"2017", "pdf_views"=>"234", "xml_views"=>"3", "html_views"=>"79"}
  • {"month"=>"11", "year"=>"2017", "pdf_views"=>"202", "xml_views"=>"0", "html_views"=>"123"}
  • {"month"=>"12", "year"=>"2017", "pdf_views"=>"156", "xml_views"=>"1", "html_views"=>"237"}
  • {"month"=>"1", "year"=>"2018", "pdf_views"=>"2", "xml_views"=>"0", "html_views"=>"34"}
  • {"month"=>"2", "year"=>"2018", "pdf_views"=>"14", "xml_views"=>"0", "html_views"=>"18"}
  • {"month"=>"3", "year"=>"2018", "pdf_views"=>"9", "xml_views"=>"1", "html_views"=>"26"}
  • {"month"=>"4", "year"=>"2018", "pdf_views"=>"10", "xml_views"=>"1", "html_views"=>"34"}
  • {"month"=>"5", "year"=>"2018", "pdf_views"=>"0", "xml_views"=>"1", "html_views"=>"15"}
  • {"month"=>"6", "year"=>"2018", "pdf_views"=>"8", "xml_views"=>"1", "html_views"=>"12"}
  • {"month"=>"7", "year"=>"2018", "pdf_views"=>"4", "xml_views"=>"5", "html_views"=>"14"}
  • {"month"=>"8", "year"=>"2018", "pdf_views"=>"7", "xml_views"=>"1", "html_views"=>"21"}
  • {"month"=>"9", "year"=>"2018", "pdf_views"=>"7", "xml_views"=>"0", "html_views"=>"25"}
  • {"month"=>"10", "year"=>"2018", "pdf_views"=>"39", "xml_views"=>"4", "html_views"=>"36"}
  • {"month"=>"11", "year"=>"2018", "pdf_views"=>"6", "xml_views"=>"0", "html_views"=>"11"}
  • {"month"=>"12", "year"=>"2018", "pdf_views"=>"2", "xml_views"=>"0", "html_views"=>"22"}
  • {"month"=>"1", "year"=>"2019", "pdf_views"=>"8", "xml_views"=>"0", "html_views"=>"18"}
  • {"month"=>"2", "year"=>"2019", "pdf_views"=>"3", "xml_views"=>"0", "html_views"=>"17"}
  • {"month"=>"3", "year"=>"2019", "pdf_views"=>"15", "xml_views"=>"1", "html_views"=>"28"}
  • {"month"=>"4", "year"=>"2019", "pdf_views"=>"11", "xml_views"=>"0", "html_views"=>"45"}
  • {"month"=>"5", "year"=>"2019", "pdf_views"=>"7", "xml_views"=>"0", "html_views"=>"16"}
  • {"month"=>"6", "year"=>"2019", "pdf_views"=>"5", "xml_views"=>"0", "html_views"=>"7"}
  • {"month"=>"7", "year"=>"2019", "pdf_views"=>"14", "xml_views"=>"0", "html_views"=>"20"}
  • {"month"=>"8", "year"=>"2019", "pdf_views"=>"7", "xml_views"=>"0", "html_views"=>"19"}
  • {"month"=>"9", "year"=>"2019", "pdf_views"=>"7", "xml_views"=>"0", "html_views"=>"30"}
  • {"month"=>"10", "year"=>"2019", "pdf_views"=>"12", "xml_views"=>"1", "html_views"=>"37"}
  • {"month"=>"11", "year"=>"2019", "pdf_views"=>"7", "xml_views"=>"0", "html_views"=>"21"}
  • {"month"=>"12", "year"=>"2019", "pdf_views"=>"13", "xml_views"=>"5", "html_views"=>"24"}
  • {"month"=>"1", "year"=>"2020", "pdf_views"=>"9", "xml_views"=>"1", "html_views"=>"28"}
  • {"month"=>"2", "year"=>"2020", "pdf_views"=>"6", "xml_views"=>"2", "html_views"=>"25"}
  • {"month"=>"3", "year"=>"2020", "pdf_views"=>"8", "xml_views"=>"0", "html_views"=>"19"}
  • {"month"=>"4", "year"=>"2020", "pdf_views"=>"2", "xml_views"=>"0", "html_views"=>"12"}
  • {"month"=>"5", "year"=>"2020", "pdf_views"=>"25", "xml_views"=>"1", "html_views"=>"14"}
  • {"month"=>"6", "year"=>"2020", "pdf_views"=>"4", "xml_views"=>"1", "html_views"=>"17"}
  • {"month"=>"7", "year"=>"2020", "pdf_views"=>"7", "xml_views"=>"1", "html_views"=>"25"}
  • {"month"=>"8", "year"=>"2020", "pdf_views"=>"7", "xml_views"=>"1", "html_views"=>"30"}
  • {"month"=>"9", "year"=>"2020", "pdf_views"=>"17", "xml_views"=>"0", "html_views"=>"18"}
  • {"month"=>"10", "year"=>"2020", "pdf_views"=>"12", "xml_views"=>"1", "html_views"=>"18"}
  • {"month"=>"11", "year"=>"2020", "pdf_views"=>"10", "xml_views"=>"0", "html_views"=>"22"}

Figshare

  • {"files"=>["https://ndownloader.figshare.com/files/4845841"], "description"=>"<p>Performance of the subject-dependent classifiers for single-trial ERP data.</p>", "links"=>[], "tags"=>["SVM", "measures ANOVAs", "EEG", "Statistical tests", "ERPs encode information", "Subjective Perception", "support vector machines", "type", "classification rates", "brain activity", "Machine Learning Approach", "likability ratings", "Subliminal Lexical Priming", "stimuli images", "likeness judgment", "AdaBoost classifiers"], "article_id"=>3116098, "categories"=>["Space Science", "Sociology", "Biological Sciences not elsewhere classified", "Science Policy"], "users"=>["Dhanya Menoth Mohan", "Parmod Kumar", "Faisal Mahmood", "Kian Foong Wong", "Abhishek Agrawal", "Mohamed Elgendi", "Rohit Shukla", "Natania Ang", "April Ching", "Justin Dauwels", "Alice H. D. Chan"], "doi"=>"https://dx.doi.org/10.1371/journal.pone.0148332.t010", "stats"=>{"downloads"=>0, "page_views"=>0, "likes"=>0}, "figshare_url"=>"https://figshare.com/articles/Performance_of_the_subject_dependent_classifiers_for_single_trial_ERP_data_/3116098", "title"=>"Performance of the subject-dependent classifiers for single-trial ERP data.", "pos_in_sequence"=>15, "defined_type"=>3, "published_date"=>"2016-02-11 08:47:48"}
  • {"files"=>["https://ndownloader.figshare.com/files/4845847"], "description"=>"<p>Binary SVM and AdaBoost classifier performance for average-ERP data using identical input features.</p>", "links"=>[], "tags"=>["SVM", "measures ANOVAs", "EEG", "Statistical tests", "ERPs encode information", "Subjective Perception", "support vector machines", "type", "classification rates", "brain activity", "Machine Learning Approach", "likability ratings", "Subliminal Lexical Priming", "stimuli images", "likeness judgment", "AdaBoost classifiers"], "article_id"=>3116101, "categories"=>["Space Science", "Sociology", "Biological Sciences not elsewhere classified", "Science Policy"], "users"=>["Dhanya Menoth Mohan", "Parmod Kumar", "Faisal Mahmood", "Kian Foong Wong", "Abhishek Agrawal", "Mohamed Elgendi", "Rohit Shukla", "Natania Ang", "April Ching", "Justin Dauwels", "Alice H. D. Chan"], "doi"=>"https://dx.doi.org/10.1371/journal.pone.0148332.t011", "stats"=>{"downloads"=>0, "page_views"=>0, "likes"=>0}, "figshare_url"=>"https://figshare.com/articles/Binary_SVM_and_AdaBoost_classifier_performance_for_average_ERP_data_using_identical_input_features_/3116101", "title"=>"Binary SVM and AdaBoost classifier performance for average-ERP data using identical input features.", "pos_in_sequence"=>16, "defined_type"=>3, "published_date"=>"2016-02-11 08:47:48"}
  • {"files"=>["https://ndownloader.figshare.com/files/4845856"], "description"=>"<p>Performance of the multiclass classifiers for average ERP data using identical input features.</p>", "links"=>[], "tags"=>["SVM", "measures ANOVAs", "EEG", "Statistical tests", "ERPs encode information", "Subjective Perception", "support vector machines", "type", "classification rates", "brain activity", "Machine Learning Approach", "likability ratings", "Subliminal Lexical Priming", "stimuli images", "likeness judgment", "AdaBoost classifiers"], "article_id"=>3116104, "categories"=>["Space Science", "Sociology", "Biological Sciences not elsewhere classified", "Science Policy"], "users"=>["Dhanya Menoth Mohan", "Parmod Kumar", "Faisal Mahmood", "Kian Foong Wong", "Abhishek Agrawal", "Mohamed Elgendi", "Rohit Shukla", "Natania Ang", "April Ching", "Justin Dauwels", "Alice H. D. Chan"], "doi"=>"https://dx.doi.org/10.1371/journal.pone.0148332.t012", "stats"=>{"downloads"=>0, "page_views"=>0, "likes"=>0}, "figshare_url"=>"https://figshare.com/articles/Performance_of_the_multiclass_classifiers_for_average_ERP_data_using_identical_input_features_/3116104", "title"=>"Performance of the multiclass classifiers for average ERP data using identical input features.", "pos_in_sequence"=>17, "defined_type"=>3, "published_date"=>"2016-02-11 08:47:48"}
  • {"files"=>["https://ndownloader.figshare.com/files/4845862"], "description"=>"<p>Single-trial subject dependent and subject independent SVM classifier performance on identical input features.</p>", "links"=>[], "tags"=>["SVM", "measures ANOVAs", "EEG", "Statistical tests", "ERPs encode information", "Subjective Perception", "support vector machines", "type", "classification rates", "brain activity", "Machine Learning Approach", "likability ratings", "Subliminal Lexical Priming", "stimuli images", "likeness judgment", "AdaBoost classifiers"], "article_id"=>3116107, "categories"=>["Space Science", "Sociology", "Biological Sciences not elsewhere classified", "Science Policy"], "users"=>["Dhanya Menoth Mohan", "Parmod Kumar", "Faisal Mahmood", "Kian Foong Wong", "Abhishek Agrawal", "Mohamed Elgendi", "Rohit Shukla", "Natania Ang", "April Ching", "Justin Dauwels", "Alice H. D. Chan"], "doi"=>"https://dx.doi.org/10.1371/journal.pone.0148332.t013", "stats"=>{"downloads"=>0, "page_views"=>0, "likes"=>0}, "figshare_url"=>"https://figshare.com/articles/Single_trial_subject_dependent_and_subject_independent_SVM_classifier_performance_on_identical_input_features_/3116107", "title"=>"Single-trial subject dependent and subject independent SVM classifier performance on identical input features.", "pos_in_sequence"=>18, "defined_type"=>3, "published_date"=>"2016-02-11 08:47:48"}
  • {"files"=>["https://ndownloader.figshare.com/files/4845868"], "description"=>"<p>Single-trial subject dependent and subject independent AdaBoost classifier performance on identical input features.</p>", "links"=>[], "tags"=>["SVM", "measures ANOVAs", "EEG", "Statistical tests", "ERPs encode information", "Subjective Perception", "support vector machines", "type", "classification rates", "brain activity", "Machine Learning Approach", "likability ratings", "Subliminal Lexical Priming", "stimuli images", "likeness judgment", "AdaBoost classifiers"], "article_id"=>3116110, "categories"=>["Space Science", "Sociology", "Biological Sciences not elsewhere classified", "Science Policy"], "users"=>["Dhanya Menoth Mohan", "Parmod Kumar", "Faisal Mahmood", "Kian Foong Wong", "Abhishek Agrawal", "Mohamed Elgendi", "Rohit Shukla", "Natania Ang", "April Ching", "Justin Dauwels", "Alice H. D. Chan"], "doi"=>"https://dx.doi.org/10.1371/journal.pone.0148332.t014", "stats"=>{"downloads"=>0, "page_views"=>0, "likes"=>0}, "figshare_url"=>"https://figshare.com/articles/Single_trial_subject_dependent_and_subject_independent_AdaBoost_classifier_performance_on_identical_input_features_/3116110", "title"=>"Single-trial subject dependent and subject independent AdaBoost classifier performance on identical input features.", "pos_in_sequence"=>19, "defined_type"=>3, "published_date"=>"2016-02-11 08:47:48"}
  • {"files"=>["https://ndownloader.figshare.com/files/4845703"], "description"=>"<p>The p-values obtained from paired-samples t-test performed over the average response scores corresponding to positive-negative (Pos-Neg), positive-neutral (Pos-Neu), and negative-neutral (Neg-Neu) pairs.</p>", "links"=>[], "tags"=>["SVM", "measures ANOVAs", "EEG", "Statistical tests", "ERPs encode information", "Subjective Perception", "support vector machines", "type", "classification rates", "brain activity", "Machine Learning Approach", "likability ratings", "Subliminal Lexical Priming", "stimuli images", "likeness judgment", "AdaBoost classifiers"], "article_id"=>3116047, "categories"=>["Space Science", "Sociology", "Biological Sciences not elsewhere classified", "Science Policy"], "users"=>["Dhanya Menoth Mohan", "Parmod Kumar", "Faisal Mahmood", "Kian Foong Wong", "Abhishek Agrawal", "Mohamed Elgendi", "Rohit Shukla", "Natania Ang", "April Ching", "Justin Dauwels", "Alice H. D. Chan"], "doi"=>"https://dx.doi.org/10.1371/journal.pone.0148332.t001", "stats"=>{"downloads"=>0, "page_views"=>1, "likes"=>0}, "figshare_url"=>"https://figshare.com/articles/The_p_values_obtained_from_paired_samples_t_test_performed_over_the_average_response_scores_corresponding_to_positive_negative_Pos_Neg_positive_neutral_Pos_Neu_and_negative_neutral_Neg_Neu_pairs_/3116047", "title"=>"The p-values obtained from paired-samples t-test performed over the average response scores corresponding to positive-negative (Pos-Neg), positive-neutral (Pos-Neu), and negative-neutral (Neg-Neu) pairs.", "pos_in_sequence"=>6, "defined_type"=>3, "published_date"=>"2016-02-11 08:47:48"}
  • {"files"=>["https://ndownloader.figshare.com/files/4845721"], "description"=>"<p>The one-way repeated measures ANOVA test results for the windowed average ERPs with 25 ms analysis window that yield lowest p-values.</p>", "links"=>[], "tags"=>["SVM", "measures ANOVAs", "EEG", "Statistical tests", "ERPs encode information", "Subjective Perception", "support vector machines", "type", "classification rates", "brain activity", "Machine Learning Approach", "likability ratings", "Subliminal Lexical Priming", "stimuli images", "likeness judgment", "AdaBoost classifiers"], "article_id"=>3116053, "categories"=>["Space Science", "Sociology", "Biological Sciences not elsewhere classified", "Science Policy"], "users"=>["Dhanya Menoth Mohan", "Parmod Kumar", "Faisal Mahmood", "Kian Foong Wong", "Abhishek Agrawal", "Mohamed Elgendi", "Rohit Shukla", "Natania Ang", "April Ching", "Justin Dauwels", "Alice H. D. Chan"], "doi"=>"https://dx.doi.org/10.1371/journal.pone.0148332.t002", "stats"=>{"downloads"=>0, "page_views"=>0, "likes"=>0}, "figshare_url"=>"https://figshare.com/articles/The_one_way_repeated_measures_ANOVA_test_results_for_the_windowed_average_ERPs_with_25_ms_analysis_window_that_yield_lowest_p_values_/3116053", "title"=>"The one-way repeated measures ANOVA test results for the windowed average ERPs with 25 ms analysis window that yield lowest p-values.", "pos_in_sequence"=>7, "defined_type"=>3, "published_date"=>"2016-02-11 08:47:48"}
  • {"files"=>["https://ndownloader.figshare.com/files/4845754"], "description"=>"<p>The one-way repeated measures ANOVA test results for the windowed average ERPs with 25 ms analysis window that yield lowest p-values.</p>", "links"=>[], "tags"=>["SVM", "measures ANOVAs", "EEG", "Statistical tests", "ERPs encode information", "Subjective Perception", "support vector machines", "type", "classification rates", "brain activity", "Machine Learning Approach", "likability ratings", "Subliminal Lexical Priming", "stimuli images", "likeness judgment", "AdaBoost classifiers"], "article_id"=>3116056, "categories"=>["Space Science", "Sociology", "Biological Sciences not elsewhere classified", "Science Policy"], "users"=>["Dhanya Menoth Mohan", "Parmod Kumar", "Faisal Mahmood", "Kian Foong Wong", "Abhishek Agrawal", "Mohamed Elgendi", "Rohit Shukla", "Natania Ang", "April Ching", "Justin Dauwels", "Alice H. D. Chan"], "doi"=>"https://dx.doi.org/10.1371/journal.pone.0148332.t003", "stats"=>{"downloads"=>0, "page_views"=>0, "likes"=>0}, "figshare_url"=>"https://figshare.com/articles/The_one_way_repeated_measures_ANOVA_test_results_for_the_windowed_average_ERPs_with_25_ms_analysis_window_that_yield_lowest_p_values_/3116056", "title"=>"The one-way repeated measures ANOVA test results for the windowed average ERPs with 25 ms analysis window that yield lowest p-values.", "pos_in_sequence"=>8, "defined_type"=>3, "published_date"=>"2016-02-11 08:47:48"}
  • {"files"=>["https://ndownloader.figshare.com/files/4845787"], "description"=>"<p>Confusion matrix for a multiclass classifier.</p>", "links"=>[], "tags"=>["SVM", "measures ANOVAs", "EEG", "Statistical tests", "ERPs encode information", "Subjective Perception", "support vector machines", "type", "classification rates", "brain activity", "Machine Learning Approach", "likability ratings", "Subliminal Lexical Priming", "stimuli images", "likeness judgment", "AdaBoost classifiers"], "article_id"=>3116062, "categories"=>["Space Science", "Sociology", "Biological Sciences not elsewhere classified", "Science Policy"], "users"=>["Dhanya Menoth Mohan", "Parmod Kumar", "Faisal Mahmood", "Kian Foong Wong", "Abhishek Agrawal", "Mohamed Elgendi", "Rohit Shukla", "Natania Ang", "April Ching", "Justin Dauwels", "Alice H. D. Chan"], "doi"=>"https://dx.doi.org/10.1371/journal.pone.0148332.t004", "stats"=>{"downloads"=>0, "page_views"=>0, "likes"=>0}, "figshare_url"=>"https://figshare.com/articles/Confusion_matrix_for_a_multiclass_classifier_/3116062", "title"=>"Confusion matrix for a multiclass classifier.", "pos_in_sequence"=>9, "defined_type"=>3, "published_date"=>"2016-02-11 08:47:48"}
  • {"files"=>["https://ndownloader.figshare.com/files/4845805"], "description"=>"<p>Confusion matrix for a positive-negative binary classifier.</p>", "links"=>[], "tags"=>["SVM", "measures ANOVAs", "EEG", "Statistical tests", "ERPs encode information", "Subjective Perception", "support vector machines", "type", "classification rates", "brain activity", "Machine Learning Approach", "likability ratings", "Subliminal Lexical Priming", "stimuli images", "likeness judgment", "AdaBoost classifiers"], "article_id"=>3116074, "categories"=>["Space Science", "Sociology", "Biological Sciences not elsewhere classified", "Science Policy"], "users"=>["Dhanya Menoth Mohan", "Parmod Kumar", "Faisal Mahmood", "Kian Foong Wong", "Abhishek Agrawal", "Mohamed Elgendi", "Rohit Shukla", "Natania Ang", "April Ching", "Justin Dauwels", "Alice H. D. Chan"], "doi"=>"https://dx.doi.org/10.1371/journal.pone.0148332.t005", "stats"=>{"downloads"=>0, "page_views"=>0, "likes"=>0}, "figshare_url"=>"https://figshare.com/articles/Confusion_matrix_for_a_positive_negative_binary_classifier_/3116074", "title"=>"Confusion matrix for a positive-negative binary classifier.", "pos_in_sequence"=>10, "defined_type"=>3, "published_date"=>"2016-02-11 08:47:48"}
  • {"files"=>["https://ndownloader.figshare.com/files/4845817"], "description"=>"<p>Binary SVM classifier performance for average-ERP data.</p>", "links"=>[], "tags"=>["SVM", "measures ANOVAs", "EEG", "Statistical tests", "ERPs encode information", "Subjective Perception", "support vector machines", "type", "classification rates", "brain activity", "Machine Learning Approach", "likability ratings", "Subliminal Lexical Priming", "stimuli images", "likeness judgment", "AdaBoost classifiers"], "article_id"=>3116083, "categories"=>["Space Science", "Sociology", "Biological Sciences not elsewhere classified", "Science Policy"], "users"=>["Dhanya Menoth Mohan", "Parmod Kumar", "Faisal Mahmood", "Kian Foong Wong", "Abhishek Agrawal", "Mohamed Elgendi", "Rohit Shukla", "Natania Ang", "April Ching", "Justin Dauwels", "Alice H. D. Chan"], "doi"=>"https://dx.doi.org/10.1371/journal.pone.0148332.t006", "stats"=>{"downloads"=>0, "page_views"=>0, "likes"=>0}, "figshare_url"=>"https://figshare.com/articles/Binary_SVM_classifier_performance_for_average_ERP_data_/3116083", "title"=>"Binary SVM classifier performance for average-ERP data.", "pos_in_sequence"=>11, "defined_type"=>3, "published_date"=>"2016-02-11 08:47:48"}
  • {"files"=>["https://ndownloader.figshare.com/files/4845655"], "description"=>"<p>Three types of ‘prime-word—image’ pairs.</p>", "links"=>[], "tags"=>["SVM", "measures ANOVAs", "EEG", "Statistical tests", "ERPs encode information", "Subjective Perception", "support vector machines", "type", "classification rates", "brain activity", "Machine Learning Approach", "likability ratings", "Subliminal Lexical Priming", "stimuli images", "likeness judgment", "AdaBoost classifiers"], "article_id"=>1644916, "categories"=>["Space Science", "Sociology", "Biological Sciences not elsewhere classified", "Science Policy"], "users"=>["Dhanya Menoth Mohan", "Parmod Kumar", "Faisal Mahmood", "Kian Foong Wong", "Abhishek Agrawal", "Mohamed Elgendi", "Rohit Shukla", "Natania Ang", "April Ching", "Justin Dauwels", "Alice H. D. Chan"], "doi"=>["https://dx.doi.org/10.1371/journal.pone.0148332.g001"], "stats"=>{"downloads"=>0, "page_views"=>0, "likes"=>0}, "figshare_url"=>"https://figshare.com/articles/_Three_types_of_8216_prime_word_8212_image_8217_pairs_/1644916", "title"=>"Three types of ‘prime-word—image’ pairs.", "pos_in_sequence"=>0, "defined_type"=>4, "published_date"=>"2016-02-11 12:51:18"}
  • {"files"=>["https://ndownloader.figshare.com/files/4845667"], "description"=>"<p>Experimental sequence for a single-trial consisting of a blank screen, fixation mark, prime stimulus, mask, main stimulus, and response box.</p>", "links"=>[], "tags"=>["SVM", "measures ANOVAs", "EEG", "Statistical tests", "ERPs encode information", "Subjective Perception", "support vector machines", "type", "classification rates", "brain activity", "Machine Learning Approach", "likability ratings", "Subliminal Lexical Priming", "stimuli images", "likeness judgment", "AdaBoost classifiers"], "article_id"=>1644917, "categories"=>["Space Science", "Sociology", "Biological Sciences not elsewhere classified", "Science Policy"], "users"=>["Dhanya Menoth Mohan", "Parmod Kumar", "Faisal Mahmood", "Kian Foong Wong", "Abhishek Agrawal", "Mohamed Elgendi", "Rohit Shukla", "Natania Ang", "April Ching", "Justin Dauwels", "Alice H. D. Chan"], "doi"=>["https://dx.doi.org/10.1371/journal.pone.0148332.g002"], "stats"=>{"downloads"=>0, "page_views"=>0, "likes"=>0}, "figshare_url"=>"https://figshare.com/articles/_Experimental_sequence_for_a_single_trial_consisting_of_a_blank_screen_fixation_mark_prime_stimulus_mask_main_stimulus_and_response_box_/1644917", "title"=>"Experimental sequence for a single-trial consisting of a blank screen, fixation mark, prime stimulus, mask, main stimulus, and response box.", "pos_in_sequence"=>0, "defined_type"=>4, "published_date"=>"2016-02-11 12:51:18"}
  • {"files"=>["https://ndownloader.figshare.com/files/4845676"], "description"=>"<p>Grand ERP average for positive (in red), negative (in green), and neutral (in blue) prime affect types.</p>", "links"=>[], "tags"=>["SVM", "measures ANOVAs", "EEG", "Statistical tests", "ERPs encode information", "Subjective Perception", "support vector machines", "type", "classification rates", "brain activity", "Machine Learning Approach", "likability ratings", "Subliminal Lexical Priming", "stimuli images", "likeness judgment", "AdaBoost classifiers"], "article_id"=>1644918, "categories"=>["Space Science", "Sociology", "Biological Sciences not elsewhere classified", "Science Policy"], "users"=>["Dhanya Menoth Mohan", "Parmod Kumar", "Faisal Mahmood", "Kian Foong Wong", "Abhishek Agrawal", "Mohamed Elgendi", "Rohit Shukla", "Natania Ang", "April Ching", "Justin Dauwels", "Alice H. D. Chan"], "doi"=>["https://dx.doi.org/10.1371/journal.pone.0148332.g003"], "stats"=>{"downloads"=>1, "page_views"=>0, "likes"=>0}, "figshare_url"=>"https://figshare.com/articles/_Grand_ERP_average_for_positive_in_red_negative_in_green_and_neutral_in_blue_prime_affect_types_/1644918", "title"=>"Grand ERP average for positive (in red), negative (in green), and neutral (in blue) prime affect types.", "pos_in_sequence"=>0, "defined_type"=>4, "published_date"=>"2016-02-11 12:51:18"}
  • {"files"=>["https://ndownloader.figshare.com/files/4845685"], "description"=>"<p>Multiclass SVM and AdaBoost performance on randomly permuted data.</p>", "links"=>[], "tags"=>["SVM", "measures ANOVAs", "EEG", "Statistical tests", "ERPs encode information", "Subjective Perception", "support vector machines", "type", "classification rates", "brain activity", "Machine Learning Approach", "likability ratings", "Subliminal Lexical Priming", "stimuli images", "likeness judgment", "AdaBoost classifiers"], "article_id"=>1644919, "categories"=>["Space Science", "Sociology", "Biological Sciences not elsewhere classified", "Science Policy"], "users"=>["Dhanya Menoth Mohan", "Parmod Kumar", "Faisal Mahmood", "Kian Foong Wong", "Abhishek Agrawal", "Mohamed Elgendi", "Rohit Shukla", "Natania Ang", "April Ching", "Justin Dauwels", "Alice H. D. Chan"], "doi"=>["https://dx.doi.org/10.1371/journal.pone.0148332.g004"], "stats"=>{"downloads"=>0, "page_views"=>0, "likes"=>0}, "figshare_url"=>"https://figshare.com/articles/_Multiclass_SVM_and_AdaBoost_performance_on_randomly_permuted_data_/1644919", "title"=>"Multiclass SVM and AdaBoost performance on randomly permuted data.", "pos_in_sequence"=>0, "defined_type"=>4, "published_date"=>"2016-02-11 12:51:18"}
  • {"files"=>["https://ndownloader.figshare.com/files/4845691"], "description"=>"<p>Single-trial ERP classification results (SVM (left) and AdaBoost (right)) of individual subjects (subject#1 to subject#40).</p>", "links"=>[], "tags"=>["SVM", "measures ANOVAs", "EEG", "Statistical tests", "ERPs encode information", "Subjective Perception", "support vector machines", "type", "classification rates", "brain activity", "Machine Learning Approach", "likability ratings", "Subliminal Lexical Priming", "stimuli images", "likeness judgment", "AdaBoost classifiers"], "article_id"=>1644920, "categories"=>["Space Science", "Sociology", "Biological Sciences not elsewhere classified", "Science Policy"], "users"=>["Dhanya Menoth Mohan", "Parmod Kumar", "Faisal Mahmood", "Kian Foong Wong", "Abhishek Agrawal", "Mohamed Elgendi", "Rohit Shukla", "Natania Ang", "April Ching", "Justin Dauwels", "Alice H. D. Chan"], "doi"=>["https://dx.doi.org/10.1371/journal.pone.0148332.g005"], "stats"=>{"downloads"=>4, "page_views"=>0, "likes"=>0}, "figshare_url"=>"https://figshare.com/articles/_Single_trial_ERP_classification_results_SVM_left_and_AdaBoost_right_of_individual_subjects_subject_1_to_subject_40_/1644920", "title"=>"Single-trial ERP classification results (SVM (left) and AdaBoost (right)) of individual subjects (subject#1 to subject#40).", "pos_in_sequence"=>0, "defined_type"=>4, "published_date"=>"2016-02-11 12:51:18"}
  • {"files"=>["https://ndownloader.figshare.com/files/4845826"], "description"=>"<p>Binary AdaBoost classifier performance for average-ERP data.</p>", "links"=>[], "tags"=>["SVM", "measures ANOVAs", "EEG", "Statistical tests", "ERPs encode information", "Subjective Perception", "support vector machines", "type", "classification rates", "brain activity", "Machine Learning Approach", "likability ratings", "Subliminal Lexical Priming", "stimuli images", "likeness judgment", "AdaBoost classifiers"], "article_id"=>3116086, "categories"=>["Space Science", "Sociology", "Biological Sciences not elsewhere classified", "Science Policy"], "users"=>["Dhanya Menoth Mohan", "Parmod Kumar", "Faisal Mahmood", "Kian Foong Wong", "Abhishek Agrawal", "Mohamed Elgendi", "Rohit Shukla", "Natania Ang", "April Ching", "Justin Dauwels", "Alice H. D. Chan"], "doi"=>"https://dx.doi.org/10.1371/journal.pone.0148332.t007", "stats"=>{"downloads"=>0, "page_views"=>0, "likes"=>0}, "figshare_url"=>"https://figshare.com/articles/Binary_AdaBoost_classifier_performance_for_average_ERP_data_/3116086", "title"=>"Binary AdaBoost classifier performance for average-ERP data.", "pos_in_sequence"=>12, "defined_type"=>3, "published_date"=>"2016-02-11 08:47:48"}
  • {"files"=>["https://ndownloader.figshare.com/files/4845829"], "description"=>"<p>Performance of the multiclass classifiers for average ERP data.</p>", "links"=>[], "tags"=>["SVM", "measures ANOVAs", "EEG", "Statistical tests", "ERPs encode information", "Subjective Perception", "support vector machines", "type", "classification rates", "brain activity", "Machine Learning Approach", "likability ratings", "Subliminal Lexical Priming", "stimuli images", "likeness judgment", "AdaBoost classifiers"], "article_id"=>3116092, "categories"=>["Space Science", "Sociology", "Biological Sciences not elsewhere classified", "Science Policy"], "users"=>["Dhanya Menoth Mohan", "Parmod Kumar", "Faisal Mahmood", "Kian Foong Wong", "Abhishek Agrawal", "Mohamed Elgendi", "Rohit Shukla", "Natania Ang", "April Ching", "Justin Dauwels", "Alice H. D. Chan"], "doi"=>"https://dx.doi.org/10.1371/journal.pone.0148332.t008", "stats"=>{"downloads"=>0, "page_views"=>0, "likes"=>0}, "figshare_url"=>"https://figshare.com/articles/Performance_of_the_multiclass_classifiers_for_average_ERP_data_/3116092", "title"=>"Performance of the multiclass classifiers for average ERP data.", "pos_in_sequence"=>13, "defined_type"=>3, "published_date"=>"2016-02-11 08:47:48"}
  • {"files"=>["https://ndownloader.figshare.com/files/4845838"], "description"=>"<p>Performance of subject-independent classifiers for single-trial ERP data.</p>", "links"=>[], "tags"=>["SVM", "measures ANOVAs", "EEG", "Statistical tests", "ERPs encode information", "Subjective Perception", "support vector machines", "type", "classification rates", "brain activity", "Machine Learning Approach", "likability ratings", "Subliminal Lexical Priming", "stimuli images", "likeness judgment", "AdaBoost classifiers"], "article_id"=>3116095, "categories"=>["Space Science", "Sociology", "Biological Sciences not elsewhere classified", "Science Policy"], "users"=>["Dhanya Menoth Mohan", "Parmod Kumar", "Faisal Mahmood", "Kian Foong Wong", "Abhishek Agrawal", "Mohamed Elgendi", "Rohit Shukla", "Natania Ang", "April Ching", "Justin Dauwels", "Alice H. D. Chan"], "doi"=>"https://dx.doi.org/10.1371/journal.pone.0148332.t009", "stats"=>{"downloads"=>0, "page_views"=>0, "likes"=>0}, "figshare_url"=>"https://figshare.com/articles/Performance_of_subject_independent_classifiers_for_single_trial_ERP_data_/3116095", "title"=>"Performance of subject-independent classifiers for single-trial ERP data.", "pos_in_sequence"=>14, "defined_type"=>3, "published_date"=>"2016-02-11 08:47:48"}

PMC Usage Stats | Further Information

  • {"unique-ip"=>"17", "full-text"=>"20", "pdf"=>"5", "abstract"=>"0", "scanned-summary"=>"0", "scanned-page-browse"=>"0", "figure"=>"9", "supp-data"=>"0", "cited-by"=>"0", "year"=>"2016", "month"=>"3"}
  • {"unique-ip"=>"10", "full-text"=>"9", "pdf"=>"2", "abstract"=>"0", "scanned-summary"=>"0", "scanned-page-browse"=>"0", "figure"=>"1", "supp-data"=>"0", "cited-by"=>"0", "year"=>"2016", "month"=>"4"}
  • {"unique-ip"=>"9", "full-text"=>"7", "pdf"=>"4", "abstract"=>"0", "scanned-summary"=>"0", "scanned-page-browse"=>"0", "figure"=>"3", "supp-data"=>"0", "cited-by"=>"0", "year"=>"2016", "month"=>"5"}
  • {"unique-ip"=>"15", "full-text"=>"21", "pdf"=>"5", "abstract"=>"0", "scanned-summary"=>"0", "scanned-page-browse"=>"0", "figure"=>"3", "supp-data"=>"0", "cited-by"=>"0", "year"=>"2016", "month"=>"6"}
  • {"unique-ip"=>"7", "full-text"=>"4", "pdf"=>"1", "abstract"=>"0", "scanned-summary"=>"0", "scanned-page-browse"=>"0", "figure"=>"1", "supp-data"=>"0", "cited-by"=>"0", "year"=>"2016", "month"=>"7"}
  • {"unique-ip"=>"9", "full-text"=>"9", "pdf"=>"2", "abstract"=>"0", "scanned-summary"=>"0", "scanned-page-browse"=>"0", "figure"=>"0", "supp-data"=>"0", "cited-by"=>"0", "year"=>"2016", "month"=>"8"}
  • {"unique-ip"=>"7", "full-text"=>"8", "pdf"=>"3", "abstract"=>"0", "scanned-summary"=>"0", "scanned-page-browse"=>"0", "figure"=>"0", "supp-data"=>"0", "cited-by"=>"0", "year"=>"2016", "month"=>"9"}
  • {"unique-ip"=>"26", "full-text"=>"31", "pdf"=>"13", "abstract"=>"0", "scanned-summary"=>"0", "scanned-page-browse"=>"0", "figure"=>"3", "supp-data"=>"0", "cited-by"=>"0", "year"=>"2016", "month"=>"10"}
  • {"unique-ip"=>"15", "full-text"=>"14", "pdf"=>"3", "abstract"=>"0", "scanned-summary"=>"0", "scanned-page-browse"=>"0", "figure"=>"4", "supp-data"=>"0", "cited-by"=>"0", "year"=>"2016", "month"=>"11"}
  • {"unique-ip"=>"11", "full-text"=>"9", "pdf"=>"6", "abstract"=>"0", "scanned-summary"=>"0", "scanned-page-browse"=>"0", "figure"=>"1", "supp-data"=>"0", "cited-by"=>"0", "year"=>"2016", "month"=>"12"}
  • {"unique-ip"=>"24", "full-text"=>"9", "pdf"=>"3", "abstract"=>"0", "scanned-summary"=>"0", "scanned-page-browse"=>"0", "figure"=>"3", "supp-data"=>"0", "cited-by"=>"0", "year"=>"2017", "month"=>"1"}
  • {"unique-ip"=>"7", "full-text"=>"12", "pdf"=>"0", "abstract"=>"0", "scanned-summary"=>"0", "scanned-page-browse"=>"0", "figure"=>"0", "supp-data"=>"0", "cited-by"=>"0", "year"=>"2017", "month"=>"2"}
  • {"unique-ip"=>"13", "full-text"=>"11", "pdf"=>"4", "abstract"=>"0", "scanned-summary"=>"0", "scanned-page-browse"=>"0", "figure"=>"2", "supp-data"=>"0", "cited-by"=>"0", "year"=>"2017", "month"=>"3"}
  • {"unique-ip"=>"13", "full-text"=>"13", "pdf"=>"4", "abstract"=>"0", "scanned-summary"=>"0", "scanned-page-browse"=>"0", "figure"=>"1", "supp-data"=>"0", "cited-by"=>"0", "year"=>"2017", "month"=>"4"}
  • {"unique-ip"=>"6", "full-text"=>"5", "pdf"=>"2", "abstract"=>"0", "scanned-summary"=>"0", "scanned-page-browse"=>"0", "figure"=>"0", "supp-data"=>"0", "cited-by"=>"0", "year"=>"2017", "month"=>"5"}
  • {"unique-ip"=>"6", "full-text"=>"4", "pdf"=>"1", "abstract"=>"0", "scanned-summary"=>"0", "scanned-page-browse"=>"0", "figure"=>"3", "supp-data"=>"0", "cited-by"=>"0", "year"=>"2017", "month"=>"6"}
  • {"unique-ip"=>"8", "full-text"=>"7", "pdf"=>"3", "abstract"=>"0", "scanned-summary"=>"0", "scanned-page-browse"=>"0", "figure"=>"0", "supp-data"=>"0", "cited-by"=>"0", "year"=>"2017", "month"=>"7"}
  • {"unique-ip"=>"2", "full-text"=>"2", "pdf"=>"0", "abstract"=>"0", "scanned-summary"=>"0", "scanned-page-browse"=>"0", "figure"=>"3", "supp-data"=>"0", "cited-by"=>"0", "year"=>"2017", "month"=>"8"}
  • {"unique-ip"=>"3", "full-text"=>"2", "pdf"=>"2", "abstract"=>"0", "scanned-summary"=>"0", "scanned-page-browse"=>"0", "figure"=>"0", "supp-data"=>"0", "cited-by"=>"0", "year"=>"2017", "month"=>"9"}
  • {"unique-ip"=>"32", "full-text"=>"22", "pdf"=>"9", "abstract"=>"0", "scanned-summary"=>"0", "scanned-page-browse"=>"0", "figure"=>"6", "supp-data"=>"0", "cited-by"=>"0", "year"=>"2017", "month"=>"10"}
  • {"unique-ip"=>"11", "full-text"=>"9", "pdf"=>"4", "abstract"=>"0", "scanned-summary"=>"0", "scanned-page-browse"=>"0", "figure"=>"1", "supp-data"=>"0", "cited-by"=>"0", "year"=>"2017", "month"=>"11"}
  • {"unique-ip"=>"7", "full-text"=>"8", "pdf"=>"0", "abstract"=>"0", "scanned-summary"=>"0", "scanned-page-browse"=>"0", "figure"=>"0", "supp-data"=>"0", "cited-by"=>"0", "year"=>"2017", "month"=>"12"}
  • {"unique-ip"=>"5", "full-text"=>"5", "pdf"=>"1", "abstract"=>"0", "scanned-summary"=>"0", "scanned-page-browse"=>"0", "figure"=>"0", "supp-data"=>"0", "cited-by"=>"0", "year"=>"2018", "month"=>"1"}
  • {"unique-ip"=>"12", "full-text"=>"14", "pdf"=>"3", "abstract"=>"0", "scanned-summary"=>"0", "scanned-page-browse"=>"0", "figure"=>"0", "supp-data"=>"0", "cited-by"=>"0", "year"=>"2018", "month"=>"3"}
  • {"unique-ip"=>"11", "full-text"=>"15", "pdf"=>"4", "scanned-summary"=>"0", "scanned-page-browse"=>"0", "figure"=>"0", "supp-data"=>"0", "cited-by"=>"0", "year"=>"2019", "month"=>"1"}
  • {"unique-ip"=>"14", "full-text"=>"17", "pdf"=>"4", "scanned-summary"=>"0", "scanned-page-browse"=>"0", "figure"=>"0", "supp-data"=>"0", "cited-by"=>"0", "year"=>"2018", "month"=>"11"}
  • {"unique-ip"=>"11", "full-text"=>"8", "pdf"=>"1", "scanned-summary"=>"0", "scanned-page-browse"=>"0", "figure"=>"7", "supp-data"=>"0", "cited-by"=>"0", "year"=>"2018", "month"=>"12"}
  • {"unique-ip"=>"7", "full-text"=>"12", "pdf"=>"0", "scanned-summary"=>"0", "scanned-page-browse"=>"0", "figure"=>"0", "supp-data"=>"0", "cited-by"=>"0", "year"=>"2018", "month"=>"4"}
  • {"unique-ip"=>"6", "full-text"=>"5", "pdf"=>"1", "scanned-summary"=>"0", "scanned-page-browse"=>"0", "figure"=>"0", "supp-data"=>"0", "cited-by"=>"0", "year"=>"2018", "month"=>"5"}
  • {"unique-ip"=>"1", "full-text"=>"1", "pdf"=>"0", "scanned-summary"=>"0", "scanned-page-browse"=>"0", "figure"=>"0", "supp-data"=>"0", "cited-by"=>"0", "year"=>"2018", "month"=>"6"}
  • {"unique-ip"=>"23", "full-text"=>"26", "pdf"=>"9", "scanned-summary"=>"0", "scanned-page-browse"=>"0", "figure"=>"1", "supp-data"=>"0", "cited-by"=>"1", "year"=>"2018", "month"=>"10"}
  • {"unique-ip"=>"6", "full-text"=>"8", "pdf"=>"0", "scanned-summary"=>"0", "scanned-page-browse"=>"0", "figure"=>"0", "supp-data"=>"0", "cited-by"=>"0", "year"=>"2018", "month"=>"7"}
  • {"unique-ip"=>"8", "full-text"=>"9", "pdf"=>"1", "scanned-summary"=>"0", "scanned-page-browse"=>"0", "figure"=>"0", "supp-data"=>"0", "cited-by"=>"0", "year"=>"2018", "month"=>"8"}
  • {"unique-ip"=>"13", "full-text"=>"17", "pdf"=>"1", "scanned-summary"=>"0", "scanned-page-browse"=>"0", "figure"=>"0", "supp-data"=>"0", "cited-by"=>"0", "year"=>"2018", "month"=>"9"}
  • {"unique-ip"=>"6", "full-text"=>"6", "pdf"=>"0", "scanned-summary"=>"0", "scanned-page-browse"=>"0", "figure"=>"0", "supp-data"=>"0", "cited-by"=>"0", "year"=>"2019", "month"=>"2"}
  • {"unique-ip"=>"6", "full-text"=>"4", "pdf"=>"2", "scanned-summary"=>"0", "scanned-page-browse"=>"0", "figure"=>"7", "supp-data"=>"0", "cited-by"=>"0", "year"=>"2019", "month"=>"3"}
  • {"unique-ip"=>"6", "full-text"=>"3", "pdf"=>"2", "scanned-summary"=>"0", "scanned-page-browse"=>"0", "figure"=>"1", "supp-data"=>"0", "cited-by"=>"0", "year"=>"2019", "month"=>"4"}
  • {"unique-ip"=>"9", "full-text"=>"12", "pdf"=>"2", "scanned-summary"=>"0", "scanned-page-browse"=>"0", "figure"=>"0", "supp-data"=>"0", "cited-by"=>"1", "year"=>"2019", "month"=>"5"}
  • {"unique-ip"=>"7", "full-text"=>"5", "pdf"=>"3", "scanned-summary"=>"0", "scanned-page-browse"=>"0", "figure"=>"0", "supp-data"=>"0", "cited-by"=>"0", "year"=>"2019", "month"=>"8"}
  • {"unique-ip"=>"8", "full-text"=>"7", "pdf"=>"2", "scanned-summary"=>"0", "scanned-page-browse"=>"0", "figure"=>"0", "supp-data"=>"0", "cited-by"=>"0", "year"=>"2019", "month"=>"9"}
  • {"unique-ip"=>"13", "full-text"=>"14", "pdf"=>"5", "scanned-summary"=>"0", "scanned-page-browse"=>"0", "figure"=>"0", "supp-data"=>"0", "cited-by"=>"0", "year"=>"2019", "month"=>"10"}
  • {"unique-ip"=>"9", "full-text"=>"10", "pdf"=>"1", "scanned-summary"=>"0", "scanned-page-browse"=>"0", "figure"=>"0", "supp-data"=>"0", "cited-by"=>"0", "year"=>"2019", "month"=>"12"}
  • {"unique-ip"=>"7", "full-text"=>"7", "pdf"=>"3", "scanned-summary"=>"0", "scanned-page-browse"=>"0", "figure"=>"0", "supp-data"=>"0", "cited-by"=>"0", "year"=>"2020", "month"=>"2"}
  • {"unique-ip"=>"13", "full-text"=>"12", "pdf"=>"3", "scanned-summary"=>"0", "scanned-page-browse"=>"0", "figure"=>"0", "supp-data"=>"0", "cited-by"=>"0", "year"=>"2020", "month"=>"3"}
  • {"unique-ip"=>"9", "full-text"=>"12", "pdf"=>"4", "scanned-summary"=>"0", "scanned-page-browse"=>"0", "figure"=>"0", "supp-data"=>"0", "cited-by"=>"0", "year"=>"2020", "month"=>"4"}
  • {"unique-ip"=>"11", "full-text"=>"7", "pdf"=>"8", "scanned-summary"=>"0", "scanned-page-browse"=>"0", "figure"=>"0", "supp-data"=>"0", "cited-by"=>"0", "year"=>"2020", "month"=>"5"}
  • {"unique-ip"=>"14", "full-text"=>"14", "pdf"=>"3", "scanned-summary"=>"0", "scanned-page-browse"=>"0", "figure"=>"0", "supp-data"=>"0", "cited-by"=>"0", "year"=>"2020", "month"=>"6"}
  • {"unique-ip"=>"5", "full-text"=>"5", "pdf"=>"0", "scanned-summary"=>"0", "scanned-page-browse"=>"0", "figure"=>"0", "supp-data"=>"0", "cited-by"=>"0", "year"=>"2020", "month"=>"8"}
  • {"unique-ip"=>"7", "full-text"=>"2", "pdf"=>"5", "scanned-summary"=>"0", "scanned-page-browse"=>"0", "figure"=>"0", "supp-data"=>"0", "cited-by"=>"0", "year"=>"2020", "month"=>"9"}
  • {"unique-ip"=>"7", "full-text"=>"6", "pdf"=>"6", "scanned-summary"=>"0", "scanned-page-browse"=>"0", "figure"=>"0", "supp-data"=>"0", "cited-by"=>"0", "year"=>"2020", "month"=>"10"}

Relative Metric

{"start_date"=>"2016-01-01T00:00:00Z", "end_date"=>"2016-12-31T00:00:00Z", "subject_areas"=>[]}
Loading … Spinner
There are currently no alerts