Feature Selection and Cancer Classification via Sparse Logistic Regression with the Hybrid L1/2 +2 Regularization
Events
Loading … Spinner

Mendeley | Further Information

{"title"=>"Feature selection and cancer classification via sparse logistic regression with the hybrid L1/2 +2regularization", "type"=>"journal", "authors"=>[{"first_name"=>"Hai Hui", "last_name"=>"Huang", "scopus_author_id"=>"56703723100"}, {"first_name"=>"Xiao Ying", "last_name"=>"Liu", "scopus_author_id"=>"56034083200"}, {"first_name"=>"Yong", "last_name"=>"Liang", "scopus_author_id"=>"55366482500"}], "year"=>2016, "source"=>"PLoS ONE", "identifiers"=>{"scopus"=>"2-s2.0-84968884590", "sgr"=>"84968884590", "doi"=>"10.1371/journal.pone.0149675", "pui"=>"610342590", "pmid"=>"27136190", "issn"=>"19326203"}, "id"=>"9eaee57c-a6a0-357e-8f67-e119cc59b193", "abstract"=>"Cancer classification and feature (gene) selection plays an important role in knowledge discovery in genomic data. Although logistic regression is one of the most popular classification methods, it does not induce feature selection. In this paper, we presented a new hybrid L1/2 +2 regularization (HLR) function, a linear combination of L1/2 and L2 penalties, to select the relevant gene in the logistic regression. The HLR approach inherits some fascinating characteristics from L1/2 (sparsity) and L2 (grouping effect where highly correlated variables are in or out a model together) penalties. We also proposed a novel univariate HLR thresholding approach to update the estimated coefficients and developed the coordinate descent algorithm for the HLR penalized logistic regression model. The empirical results and simulations indicate that the proposed method is highly competitive amongst several state-of-the-art methods.", "link"=>"http://www.mendeley.com/research/feature-selection-cancer-classification-via-sparse-logistic-regression-hybrid-l12-2regularization", "reader_count"=>16, "reader_count_by_academic_status"=>{"Researcher"=>3, "Student > Ph. D. Student"=>7, "Student > Master"=>4, "Student > Bachelor"=>2}, "reader_count_by_user_role"=>{"Researcher"=>3, "Student > Ph. D. Student"=>7, "Student > Master"=>4, "Student > Bachelor"=>2}, "reader_count_by_subject_area"=>{"Engineering"=>1, "Biochemistry, Genetics and Molecular Biology"=>1, "Nursing and Health Professions"=>1, "Social Sciences"=>1, "Computer Science"=>12}, "reader_count_by_subdiscipline"=>{"Engineering"=>{"Engineering"=>1}, "Social Sciences"=>{"Social Sciences"=>1}, "Computer Science"=>{"Computer Science"=>12}, "Nursing and Health Professions"=>{"Nursing and Health Professions"=>1}, "Biochemistry, Genetics and Molecular Biology"=>{"Biochemistry, Genetics and Molecular Biology"=>1}}, "group_count"=>2}

Scopus | Further Information

{"@_fa"=>"true", "link"=>[{"@_fa"=>"true", "@ref"=>"self", "@href"=>"https://api.elsevier.com/content/abstract/scopus_id/84968884590"}, {"@_fa"=>"true", "@ref"=>"author-affiliation", "@href"=>"https://api.elsevier.com/content/abstract/scopus_id/84968884590?field=author,affiliation"}, {"@_fa"=>"true", "@ref"=>"scopus", "@href"=>"https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=84968884590&origin=inward"}, {"@_fa"=>"true", "@ref"=>"scopus-citedby", "@href"=>"https://www.scopus.com/inward/citedby.uri?partnerID=HzOxMe3b&scp=84968884590&origin=inward"}], "prism:url"=>"https://api.elsevier.com/content/abstract/scopus_id/84968884590", "dc:identifier"=>"SCOPUS_ID:84968884590", "eid"=>"2-s2.0-84968884590", "dc:title"=>"Feature selection and cancer classification via sparse logistic regression with the hybrid L<inf>1/2 +2</inf> regularization", "dc:creator"=>"Huang H.", "prism:publicationName"=>"PLoS ONE", "prism:eIssn"=>"19326203", "prism:volume"=>"11", "prism:issueIdentifier"=>"5", "prism:pageRange"=>nil, "prism:coverDate"=>"2016-05-01", "prism:coverDisplayDate"=>"1 May 2016", "prism:doi"=>"10.1371/journal.pone.0149675", "citedby-count"=>"13", "affiliation"=>[{"@_fa"=>"true", "affilname"=>"Macau University of Science and Technology", "affiliation-city"=>"Taipa", "affiliation-country"=>"Macao"}], "pubmed-id"=>"27136190", "prism:aggregationType"=>"Journal", "subtype"=>"ar", "subtypeDescription"=>"Article", "article-number"=>"e0149675", "source-id"=>"10600153309", "openaccess"=>"1", "openaccessFlag"=>true}

Facebook

  • {"url"=>"http%3A%2F%2Fjournals.plos.org%2Fplosone%2Farticle%3Fid%3D10.1371%252Fjournal.pone.0149675", "share_count"=>0, "like_count"=>0, "comment_count"=>0, "click_count"=>0, "total_count"=>0}

Counter

  • {"month"=>"5", "year"=>"2016", "pdf_views"=>"48", "xml_views"=>"0", "html_views"=>"158"}
  • {"month"=>"6", "year"=>"2016", "pdf_views"=>"32", "xml_views"=>"0", "html_views"=>"71"}
  • {"month"=>"7", "year"=>"2016", "pdf_views"=>"20", "xml_views"=>"0", "html_views"=>"63"}
  • {"month"=>"8", "year"=>"2016", "pdf_views"=>"11", "xml_views"=>"0", "html_views"=>"32"}
  • {"month"=>"9", "year"=>"2016", "pdf_views"=>"14", "xml_views"=>"0", "html_views"=>"46"}
  • {"month"=>"10", "year"=>"2016", "pdf_views"=>"5", "xml_views"=>"0", "html_views"=>"41"}
  • {"month"=>"11", "year"=>"2016", "pdf_views"=>"3", "xml_views"=>"0", "html_views"=>"42"}
  • {"month"=>"12", "year"=>"2016", "pdf_views"=>"9", "xml_views"=>"0", "html_views"=>"31"}
  • {"month"=>"1", "year"=>"2017", "pdf_views"=>"19", "xml_views"=>"0", "html_views"=>"39"}
  • {"month"=>"2", "year"=>"2017", "pdf_views"=>"8", "xml_views"=>"0", "html_views"=>"49"}
  • {"month"=>"3", "year"=>"2017", "pdf_views"=>"20", "xml_views"=>"1", "html_views"=>"56"}
  • {"month"=>"4", "year"=>"2017", "pdf_views"=>"9", "xml_views"=>"0", "html_views"=>"40"}
  • {"month"=>"5", "year"=>"2017", "pdf_views"=>"16", "xml_views"=>"0", "html_views"=>"39"}
  • {"month"=>"6", "year"=>"2017", "pdf_views"=>"16", "xml_views"=>"0", "html_views"=>"48"}
  • {"month"=>"7", "year"=>"2017", "pdf_views"=>"32", "xml_views"=>"1", "html_views"=>"40"}
  • {"month"=>"8", "year"=>"2017", "pdf_views"=>"14", "xml_views"=>"2", "html_views"=>"27"}
  • {"month"=>"9", "year"=>"2017", "pdf_views"=>"20", "xml_views"=>"0", "html_views"=>"67"}
  • {"month"=>"10", "year"=>"2017", "pdf_views"=>"16", "xml_views"=>"1", "html_views"=>"57"}
  • {"month"=>"11", "year"=>"2017", "pdf_views"=>"19", "xml_views"=>"0", "html_views"=>"168"}
  • {"month"=>"12", "year"=>"2017", "pdf_views"=>"14", "xml_views"=>"1", "html_views"=>"275"}
  • {"month"=>"1", "year"=>"2018", "pdf_views"=>"23", "xml_views"=>"0", "html_views"=>"56"}
  • {"month"=>"2", "year"=>"2018", "pdf_views"=>"14", "xml_views"=>"1", "html_views"=>"39"}
  • {"month"=>"3", "year"=>"2018", "pdf_views"=>"16", "xml_views"=>"0", "html_views"=>"34"}
  • {"month"=>"4", "year"=>"2018", "pdf_views"=>"16", "xml_views"=>"1", "html_views"=>"36"}
  • {"month"=>"5", "year"=>"2018", "pdf_views"=>"19", "xml_views"=>"0", "html_views"=>"35"}
  • {"month"=>"6", "year"=>"2018", "pdf_views"=>"18", "xml_views"=>"1", "html_views"=>"28"}
  • {"month"=>"7", "year"=>"2018", "pdf_views"=>"46", "xml_views"=>"2", "html_views"=>"37"}
  • {"month"=>"8", "year"=>"2018", "pdf_views"=>"28", "xml_views"=>"1", "html_views"=>"44"}
  • {"month"=>"9", "year"=>"2018", "pdf_views"=>"37", "xml_views"=>"0", "html_views"=>"29"}
  • {"month"=>"10", "year"=>"2018", "pdf_views"=>"27", "xml_views"=>"1", "html_views"=>"36"}
  • {"month"=>"11", "year"=>"2018", "pdf_views"=>"18", "xml_views"=>"0", "html_views"=>"20"}
  • {"month"=>"12", "year"=>"2018", "pdf_views"=>"24", "xml_views"=>"0", "html_views"=>"23"}
  • {"month"=>"1", "year"=>"2019", "pdf_views"=>"21", "xml_views"=>"0", "html_views"=>"18"}
  • {"month"=>"2", "year"=>"2019", "pdf_views"=>"18", "xml_views"=>"0", "html_views"=>"17"}
  • {"month"=>"3", "year"=>"2019", "pdf_views"=>"36", "xml_views"=>"1", "html_views"=>"29"}
  • {"month"=>"4", "year"=>"2019", "pdf_views"=>"19", "xml_views"=>"1", "html_views"=>"47"}
  • {"month"=>"5", "year"=>"2019", "pdf_views"=>"20", "xml_views"=>"0", "html_views"=>"19"}

Figshare

  • {"files"=>["https://ndownloader.figshare.com/files/5042227"], "description"=>"<p>In bold–the best performance.</p>", "links"=>[], "tags"=>["L 2", "knowledge discovery", "grouping effect", "L 2 penalties", "Sparse Logistic Regression", "regression model", "feature Selection", "HLR approach", "novel univariate HLR thresholding approach", "descent algorithm", "classification methods", "Cancer Classification", "feature selection", "genomic data", "gene"], "article_id"=>3211876, "categories"=>["Genetics", "Molecular Biology", "Biotechnology", "Evolutionary Biology", "Biological Sciences not elsewhere classified", "Developmental Biology", "Cancer", "Infectious Diseases"], "users"=>["Hai-Hui Huang", "Xiao-Ying Liu", "Yong Liang"], "doi"=>"https://dx.doi.org/10.1371/journal.pone.0149675.t006", "stats"=>{"downloads"=>0, "page_views"=>0, "likes"=>0}, "figshare_url"=>"https://figshare.com/articles/The_result_of_the_literature_/3211876", "title"=>"The result of the literature.", "pos_in_sequence"=>10, "defined_type"=>3, "published_date"=>"2016-05-02 08:18:37"}
  • {"files"=>["https://ndownloader.figshare.com/files/5042161"], "description"=>"<p>In bold–the best performance amongst all the methods.</p>", "links"=>[], "tags"=>["L 2", "knowledge discovery", "grouping effect", "L 2 penalties", "Sparse Logistic Regression", "regression model", "feature Selection", "HLR approach", "novel univariate HLR thresholding approach", "descent algorithm", "classification methods", "Cancer Classification", "feature selection", "genomic data", "gene"], "article_id"=>3211813, "categories"=>["Genetics", "Molecular Biology", "Biotechnology", "Evolutionary Biology", "Biological Sciences not elsewhere classified", "Developmental Biology", "Cancer", "Infectious Diseases"], "users"=>["Hai-Hui Huang", "Xiao-Ying Liu", "Yong Liang"], "doi"=>"https://dx.doi.org/10.1371/journal.pone.0149675.t001", "stats"=>{"downloads"=>0, "page_views"=>0, "likes"=>0}, "figshare_url"=>"https://figshare.com/articles/Mean_results_of_the_simulation_/3211813", "title"=>"Mean results of the simulation.", "pos_in_sequence"=>5, "defined_type"=>3, "published_date"=>"2016-05-02 08:18:37"}
  • {"files"=>["https://ndownloader.figshare.com/files/5042200"], "description"=>"<p>In bold–the best performance.</p>", "links"=>[], "tags"=>["L 2", "knowledge discovery", "grouping effect", "L 2 penalties", "Sparse Logistic Regression", "regression model", "feature Selection", "HLR approach", "novel univariate HLR thresholding approach", "descent algorithm", "classification methods", "Cancer Classification", "feature selection", "genomic data", "gene"], "article_id"=>3211849, "categories"=>["Genetics", "Molecular Biology", "Biotechnology", "Evolutionary Biology", "Biological Sciences not elsewhere classified", "Developmental Biology", "Cancer", "Infectious Diseases"], "users"=>["Hai-Hui Huang", "Xiao-Ying Liu", "Yong Liang"], "doi"=>"https://dx.doi.org/10.1371/journal.pone.0149675.t003", "stats"=>{"downloads"=>0, "page_views"=>0, "likes"=>0}, "figshare_url"=>"https://figshare.com/articles/Mean_results_of_empirical_datasets_/3211849", "title"=>"Mean results of empirical datasets.", "pos_in_sequence"=>7, "defined_type"=>3, "published_date"=>"2016-05-02 08:18:37"}
  • {"files"=>["https://ndownloader.figshare.com/files/5042122"], "description"=>"<p>The regularization parameters are <i>λ</i> = 1 and <i>α</i> = 0.2 for the HLR method.</p>", "links"=>[], "tags"=>["L 2", "knowledge discovery", "grouping effect", "L 2 penalties", "Sparse Logistic Regression", "regression model", "feature Selection", "HLR approach", "novel univariate HLR thresholding approach", "descent algorithm", "classification methods", "Cancer Classification", "feature selection", "genomic data", "gene"], "article_id"=>3211786, "categories"=>["Genetics", "Molecular Biology", "Biotechnology", "Evolutionary Biology", "Biological Sciences not elsewhere classified", "Developmental Biology", "Cancer", "Infectious Diseases"], "users"=>["Hai-Hui Huang", "Xiao-Ying Liu", "Yong Liang"], "doi"=>"https://dx.doi.org/10.1371/journal.pone.0149675.g002", "stats"=>{"downloads"=>0, "page_views"=>0, "likes"=>0}, "figshare_url"=>"https://figshare.com/articles/Contour_plots_two-dimensional_for_the_regularization_methods_/3211786", "title"=>"Contour plots (two-dimensional) for the regularization methods.", "pos_in_sequence"=>3, "defined_type"=>1, "published_date"=>"2016-05-02 08:18:37"}
  • {"files"=>["https://ndownloader.figshare.com/files/5042092"], "description"=>"<p><b>Exact solutions of (a) Lasso, (b) L<sub>1/2</sub>, (c) Elastic net, and (d) HLR in an orthogonal design.</b> The regularization parameters are <i>λ</i> = 0.1 and <i>α</i> = 0.8 for Elastic net and HLR. <i>(β-OLS is the ordinary least-squares (OLS) estimator)</i>.</p>", "links"=>[], "tags"=>["L 2", "knowledge discovery", "grouping effect", "L 2 penalties", "Sparse Logistic Regression", "regression model", "feature Selection", "HLR approach", "novel univariate HLR thresholding approach", "descent algorithm", "classification methods", "Cancer Classification", "feature selection", "genomic data", "gene"], "article_id"=>3211762, "categories"=>["Genetics", "Molecular Biology", "Biotechnology", "Evolutionary Biology", "Biological Sciences not elsewhere classified", "Developmental Biology", "Cancer", "Infectious Diseases"], "users"=>["Hai-Hui Huang", "Xiao-Ying Liu", "Yong Liang"], "doi"=>"https://dx.doi.org/10.1371/journal.pone.0149675.g001", "stats"=>{"downloads"=>0, "page_views"=>0, "likes"=>0}, "figshare_url"=>"https://figshare.com/articles/Feature_Selection_and_Cancer_Classification_via_Sparse_Logistic_Regression_with_the_Hybrid_L_sub_1_2_2_sub_Regularization_-_Fig_1/3211762", "title"=>"Feature Selection and Cancer Classification via Sparse Logistic Regression with the Hybrid L<sub>1/2 +2</sub> Regularization - Fig 1", "pos_in_sequence"=>2, "defined_type"=>1, "published_date"=>"2016-05-02 08:18:37"}
  • {"files"=>["https://ndownloader.figshare.com/files/5042212"], "description"=>"<p>The most frequently selected 10 genes found by the five sparse logistic regression methods from the lung cancer dataset.</p>", "links"=>[], "tags"=>["L 2", "knowledge discovery", "grouping effect", "L 2 penalties", "Sparse Logistic Regression", "regression model", "feature Selection", "HLR approach", "novel univariate HLR thresholding approach", "descent algorithm", "classification methods", "Cancer Classification", "feature selection", "genomic data", "gene"], "article_id"=>3211861, "categories"=>["Genetics", "Molecular Biology", "Biotechnology", "Evolutionary Biology", "Biological Sciences not elsewhere classified", "Developmental Biology", "Cancer", "Infectious Diseases"], "users"=>["Hai-Hui Huang", "Xiao-Ying Liu", "Yong Liang"], "doi"=>"https://dx.doi.org/10.1371/journal.pone.0149675.t004", "stats"=>{"downloads"=>0, "page_views"=>0, "likes"=>0}, "figshare_url"=>"https://figshare.com/articles/The_most_frequently_selected_10_genes_found_by_the_five_sparse_logistic_regression_methods_from_the_lung_cancer_dataset_/3211861", "title"=>"The most frequently selected 10 genes found by the five sparse logistic regression methods from the lung cancer dataset.", "pos_in_sequence"=>8, "defined_type"=>3, "published_date"=>"2016-05-02 08:18:37"}
  • {"files"=>["https://ndownloader.figshare.com/files/5042182"], "description"=>"<p>Real datasets used in this paper.</p>", "links"=>[], "tags"=>["L 2", "knowledge discovery", "grouping effect", "L 2 penalties", "Sparse Logistic Regression", "regression model", "feature Selection", "HLR approach", "novel univariate HLR thresholding approach", "descent algorithm", "classification methods", "Cancer Classification", "feature selection", "genomic data", "gene"], "article_id"=>3211831, "categories"=>["Genetics", "Molecular Biology", "Biotechnology", "Evolutionary Biology", "Biological Sciences not elsewhere classified", "Developmental Biology", "Cancer", "Infectious Diseases"], "users"=>["Hai-Hui Huang", "Xiao-Ying Liu", "Yong Liang"], "doi"=>"https://dx.doi.org/10.1371/journal.pone.0149675.t002", "stats"=>{"downloads"=>0, "page_views"=>0, "likes"=>0}, "figshare_url"=>"https://figshare.com/articles/Real_datasets_used_in_this_paper_/3211831", "title"=>"Real datasets used in this paper.", "pos_in_sequence"=>6, "defined_type"=>3, "published_date"=>"2016-05-02 08:18:37"}
  • {"files"=>["https://ndownloader.figshare.com/files/5042140"], "description"=>"<p>The performance of the AUC from ROC analyzes of each method on prostate, lymphoma and lung cancer datasets.</p>", "links"=>[], "tags"=>["L 2", "knowledge discovery", "grouping effect", "L 2 penalties", "Sparse Logistic Regression", "regression model", "feature Selection", "HLR approach", "novel univariate HLR thresholding approach", "descent algorithm", "classification methods", "Cancer Classification", "feature selection", "genomic data", "gene"], "article_id"=>3211801, "categories"=>["Genetics", "Molecular Biology", "Biotechnology", "Evolutionary Biology", "Biological Sciences not elsewhere classified", "Developmental Biology", "Cancer", "Infectious Diseases"], "users"=>["Hai-Hui Huang", "Xiao-Ying Liu", "Yong Liang"], "doi"=>"https://dx.doi.org/10.1371/journal.pone.0149675.g003", "stats"=>{"downloads"=>0, "page_views"=>0, "likes"=>0}, "figshare_url"=>"https://figshare.com/articles/The_performance_of_the_AUC_from_ROC_analyzes_of_each_method_on_prostate_lymphoma_and_lung_cancer_datasets_/3211801", "title"=>"The performance of the AUC from ROC analyzes of each method on prostate, lymphoma and lung cancer datasets.", "pos_in_sequence"=>4, "defined_type"=>1, "published_date"=>"2016-05-02 08:18:37"}
  • {"files"=>["https://ndownloader.figshare.com/files/5042038", "https://ndownloader.figshare.com/files/5042050", "https://ndownloader.figshare.com/files/5042062"], "description"=>"<div><p>Cancer classification and feature (gene) selection plays an important role in knowledge discovery in genomic data. Although logistic regression is one of the most popular classification methods, it does not induce feature selection. In this paper, we presented a new hybrid L<sub>1/2 +2</sub> regularization (HLR) function, a linear combination of L<sub>1/2</sub> and L<sub>2</sub> penalties, to select the relevant gene in the logistic regression. The HLR approach inherits some fascinating characteristics from L<sub>1/2</sub> (sparsity) and L<sub>2</sub> (grouping effect where highly correlated variables are in or out a model together) penalties. We also proposed a novel univariate HLR thresholding approach to update the estimated coefficients and developed the coordinate descent algorithm for the HLR penalized logistic regression model. The empirical results and simulations indicate that the proposed method is highly competitive amongst several state-of-the-art methods.</p></div>", "links"=>[], "tags"=>["L 2", "knowledge discovery", "grouping effect", "L 2 penalties", "Sparse Logistic Regression", "regression model", "feature Selection", "HLR approach", "novel univariate HLR thresholding approach", "descent algorithm", "classification methods", "Cancer Classification", "feature selection", "genomic data", "gene"], "article_id"=>3211738, "categories"=>["Genetics", "Molecular Biology", "Biotechnology", "Evolutionary Biology", "Biological Sciences not elsewhere classified", "Developmental Biology", "Cancer", "Infectious Diseases"], "users"=>["Hai-Hui Huang", "Xiao-Ying Liu", "Yong Liang"], "doi"=>["https://dx.doi.org/10.1371/journal.pone.0149675.s001", "https://dx.doi.org/10.1371/journal.pone.0149675.s002", "https://dx.doi.org/10.1371/journal.pone.0149675.s003"], "stats"=>{"downloads"=>0, "page_views"=>0, "likes"=>0}, "figshare_url"=>"https://figshare.com/articles/Feature_Selection_and_Cancer_Classification_via_Sparse_Logistic_Regression_with_the_Hybrid_L_sub_1_2_2_sub_Regularization/3211738", "title"=>"Feature Selection and Cancer Classification via Sparse Logistic Regression with the Hybrid L<sub>1/2 +2</sub> Regularization", "pos_in_sequence"=>1, "defined_type"=>4, "published_date"=>"2016-05-02 08:18:37"}
  • {"files"=>["https://ndownloader.figshare.com/files/5042221"], "description"=>"<p>In bold–the best performance.</p>", "links"=>[], "tags"=>["L 2", "knowledge discovery", "grouping effect", "L 2 penalties", "Sparse Logistic Regression", "regression model", "feature Selection", "HLR approach", "novel univariate HLR thresholding approach", "descent algorithm", "classification methods", "Cancer Classification", "feature selection", "genomic data", "gene"], "article_id"=>3211870, "categories"=>["Genetics", "Molecular Biology", "Biotechnology", "Evolutionary Biology", "Biological Sciences not elsewhere classified", "Developmental Biology", "Cancer", "Infectious Diseases"], "users"=>["Hai-Hui Huang", "Xiao-Ying Liu", "Yong Liang"], "doi"=>"https://dx.doi.org/10.1371/journal.pone.0149675.t005", "stats"=>{"downloads"=>0, "page_views"=>0, "likes"=>0}, "figshare_url"=>"https://figshare.com/articles/The_validation_results_of_the_classifiers_based_on_the_top_rank_selected_genes_from_lung_cancer_dataset_/3211870", "title"=>"The validation results of the classifiers based on the top rank selected genes from lung cancer dataset.", "pos_in_sequence"=>9, "defined_type"=>3, "published_date"=>"2016-05-02 08:18:37"}

PMC Usage Stats | Further Information

  • {"unique-ip"=>"8", "full-text"=>"7", "pdf"=>"3", "abstract"=>"0", "scanned-summary"=>"0", "scanned-page-browse"=>"0", "figure"=>"0", "supp-data"=>"0", "cited-by"=>"0", "year"=>"2016", "month"=>"5"}
  • {"unique-ip"=>"10", "full-text"=>"8", "pdf"=>"4", "abstract"=>"0", "scanned-summary"=>"0", "scanned-page-browse"=>"0", "figure"=>"4", "supp-data"=>"0", "cited-by"=>"0", "year"=>"2016", "month"=>"6"}
  • {"unique-ip"=>"16", "full-text"=>"17", "pdf"=>"4", "abstract"=>"0", "scanned-summary"=>"0", "scanned-page-browse"=>"0", "figure"=>"0", "supp-data"=>"0", "cited-by"=>"0", "year"=>"2016", "month"=>"7"}
  • {"unique-ip"=>"11", "full-text"=>"11", "pdf"=>"0", "abstract"=>"0", "scanned-summary"=>"0", "scanned-page-browse"=>"0", "figure"=>"0", "supp-data"=>"0", "cited-by"=>"0", "year"=>"2016", "month"=>"8"}
  • {"unique-ip"=>"8", "full-text"=>"8", "pdf"=>"1", "abstract"=>"0", "scanned-summary"=>"0", "scanned-page-browse"=>"0", "figure"=>"0", "supp-data"=>"0", "cited-by"=>"0", "year"=>"2016", "month"=>"9"}
  • {"unique-ip"=>"11", "full-text"=>"9", "pdf"=>"2", "abstract"=>"0", "scanned-summary"=>"0", "scanned-page-browse"=>"0", "figure"=>"0", "supp-data"=>"0", "cited-by"=>"0", "year"=>"2016", "month"=>"10"}
  • {"unique-ip"=>"12", "full-text"=>"10", "pdf"=>"3", "abstract"=>"0", "scanned-summary"=>"0", "scanned-page-browse"=>"0", "figure"=>"1", "supp-data"=>"1", "cited-by"=>"0", "year"=>"2016", "month"=>"11"}
  • {"unique-ip"=>"4", "full-text"=>"4", "pdf"=>"0", "abstract"=>"0", "scanned-summary"=>"0", "scanned-page-browse"=>"0", "figure"=>"0", "supp-data"=>"0", "cited-by"=>"0", "year"=>"2016", "month"=>"12"}
  • {"unique-ip"=>"14", "full-text"=>"7", "pdf"=>"3", "abstract"=>"0", "scanned-summary"=>"0", "scanned-page-browse"=>"0", "figure"=>"0", "supp-data"=>"0", "cited-by"=>"0", "year"=>"2017", "month"=>"1"}
  • {"unique-ip"=>"5", "full-text"=>"4", "pdf"=>"5", "abstract"=>"0", "scanned-summary"=>"0", "scanned-page-browse"=>"0", "figure"=>"0", "supp-data"=>"0", "cited-by"=>"0", "year"=>"2017", "month"=>"2"}
  • {"unique-ip"=>"7", "full-text"=>"8", "pdf"=>"1", "abstract"=>"0", "scanned-summary"=>"0", "scanned-page-browse"=>"0", "figure"=>"0", "supp-data"=>"0", "cited-by"=>"0", "year"=>"2017", "month"=>"3"}
  • {"unique-ip"=>"10", "full-text"=>"12", "pdf"=>"4", "abstract"=>"0", "scanned-summary"=>"0", "scanned-page-browse"=>"0", "figure"=>"0", "supp-data"=>"0", "cited-by"=>"0", "year"=>"2017", "month"=>"4"}
  • {"unique-ip"=>"16", "full-text"=>"18", "pdf"=>"2", "abstract"=>"0", "scanned-summary"=>"0", "scanned-page-browse"=>"0", "figure"=>"0", "supp-data"=>"2", "cited-by"=>"0", "year"=>"2017", "month"=>"5"}
  • {"unique-ip"=>"9", "full-text"=>"9", "pdf"=>"2", "abstract"=>"0", "scanned-summary"=>"0", "scanned-page-browse"=>"0", "figure"=>"0", "supp-data"=>"0", "cited-by"=>"0", "year"=>"2017", "month"=>"6"}
  • {"unique-ip"=>"5", "full-text"=>"6", "pdf"=>"1", "abstract"=>"0", "scanned-summary"=>"0", "scanned-page-browse"=>"0", "figure"=>"0", "supp-data"=>"0", "cited-by"=>"0", "year"=>"2017", "month"=>"7"}
  • {"unique-ip"=>"4", "full-text"=>"4", "pdf"=>"0", "abstract"=>"0", "scanned-summary"=>"0", "scanned-page-browse"=>"0", "figure"=>"0", "supp-data"=>"0", "cited-by"=>"0", "year"=>"2017", "month"=>"8"}
  • {"unique-ip"=>"7", "full-text"=>"5", "pdf"=>"2", "abstract"=>"0", "scanned-summary"=>"0", "scanned-page-browse"=>"0", "figure"=>"0", "supp-data"=>"0", "cited-by"=>"0", "year"=>"2017", "month"=>"9"}
  • {"unique-ip"=>"15", "full-text"=>"8", "pdf"=>"1", "abstract"=>"0", "scanned-summary"=>"0", "scanned-page-browse"=>"0", "figure"=>"0", "supp-data"=>"1", "cited-by"=>"0", "year"=>"2017", "month"=>"10"}
  • {"unique-ip"=>"15", "full-text"=>"12", "pdf"=>"7", "abstract"=>"0", "scanned-summary"=>"0", "scanned-page-browse"=>"0", "figure"=>"1", "supp-data"=>"1", "cited-by"=>"0", "year"=>"2017", "month"=>"11"}
  • {"unique-ip"=>"1", "full-text"=>"1", "pdf"=>"0", "abstract"=>"0", "scanned-summary"=>"0", "scanned-page-browse"=>"0", "figure"=>"0", "supp-data"=>"0", "cited-by"=>"0", "year"=>"2017", "month"=>"12"}
  • {"unique-ip"=>"14", "full-text"=>"16", "pdf"=>"3", "abstract"=>"0", "scanned-summary"=>"0", "scanned-page-browse"=>"0", "figure"=>"0", "supp-data"=>"1", "cited-by"=>"0", "year"=>"2018", "month"=>"1"}
  • {"unique-ip"=>"1", "full-text"=>"1", "pdf"=>"0", "abstract"=>"0", "scanned-summary"=>"0", "scanned-page-browse"=>"0", "figure"=>"0", "supp-data"=>"0", "cited-by"=>"0", "year"=>"2018", "month"=>"2"}
  • {"unique-ip"=>"25", "full-text"=>"25", "pdf"=>"10", "abstract"=>"0", "scanned-summary"=>"0", "scanned-page-browse"=>"0", "figure"=>"0", "supp-data"=>"1", "cited-by"=>"0", "year"=>"2018", "month"=>"3"}
  • {"unique-ip"=>"20", "full-text"=>"22", "pdf"=>"3", "scanned-summary"=>"0", "scanned-page-browse"=>"0", "figure"=>"0", "supp-data"=>"0", "cited-by"=>"0", "year"=>"2019", "month"=>"1"}
  • {"unique-ip"=>"17", "full-text"=>"17", "pdf"=>"1", "scanned-summary"=>"0", "scanned-page-browse"=>"0", "figure"=>"0", "supp-data"=>"0", "cited-by"=>"0", "year"=>"2018", "month"=>"9"}
  • {"unique-ip"=>"19", "full-text"=>"17", "pdf"=>"5", "scanned-summary"=>"0", "scanned-page-browse"=>"0", "figure"=>"0", "supp-data"=>"0", "cited-by"=>"0", "year"=>"2018", "month"=>"4"}
  • {"unique-ip"=>"29", "full-text"=>"32", "pdf"=>"9", "scanned-summary"=>"0", "scanned-page-browse"=>"0", "figure"=>"1", "supp-data"=>"0", "cited-by"=>"0", "year"=>"2018", "month"=>"5"}
  • {"unique-ip"=>"15", "full-text"=>"14", "pdf"=>"2", "scanned-summary"=>"0", "scanned-page-browse"=>"0", "figure"=>"0", "supp-data"=>"2", "cited-by"=>"0", "year"=>"2018", "month"=>"6"}
  • {"unique-ip"=>"30", "full-text"=>"38", "pdf"=>"3", "scanned-summary"=>"0", "scanned-page-browse"=>"0", "figure"=>"4", "supp-data"=>"3", "cited-by"=>"0", "year"=>"2018", "month"=>"7"}
  • {"unique-ip"=>"34", "full-text"=>"36", "pdf"=>"5", "scanned-summary"=>"0", "scanned-page-browse"=>"0", "figure"=>"0", "supp-data"=>"3", "cited-by"=>"0", "year"=>"2018", "month"=>"8"}
  • {"unique-ip"=>"16", "full-text"=>"14", "pdf"=>"6", "scanned-summary"=>"0", "scanned-page-browse"=>"0", "figure"=>"0", "supp-data"=>"0", "cited-by"=>"0", "year"=>"2018", "month"=>"10"}
  • {"unique-ip"=>"20", "full-text"=>"22", "pdf"=>"0", "scanned-summary"=>"0", "scanned-page-browse"=>"0", "figure"=>"0", "supp-data"=>"2", "cited-by"=>"0", "year"=>"2018", "month"=>"11"}
  • {"unique-ip"=>"22", "full-text"=>"19", "pdf"=>"5", "scanned-summary"=>"0", "scanned-page-browse"=>"0", "figure"=>"0", "supp-data"=>"5", "cited-by"=>"0", "year"=>"2018", "month"=>"12"}
  • {"unique-ip"=>"19", "full-text"=>"22", "pdf"=>"0", "scanned-summary"=>"0", "scanned-page-browse"=>"0", "figure"=>"0", "supp-data"=>"0", "cited-by"=>"0", "year"=>"2019", "month"=>"2"}
  • {"unique-ip"=>"24", "full-text"=>"27", "pdf"=>"2", "scanned-summary"=>"0", "scanned-page-browse"=>"0", "figure"=>"0", "supp-data"=>"8", "cited-by"=>"0", "year"=>"2019", "month"=>"3"}
  • {"unique-ip"=>"23", "full-text"=>"27", "pdf"=>"2", "scanned-summary"=>"0", "scanned-page-browse"=>"0", "figure"=>"0", "supp-data"=>"1", "cited-by"=>"0", "year"=>"2019", "month"=>"4"}

Relative Metric

{"start_date"=>"2016-01-01T00:00:00Z", "end_date"=>"2016-12-31T00:00:00Z", "subject_areas"=>[]}
Loading … Spinner
There are currently no alerts