The Tarsometatarsus of the Ostrich Struthio camelus: Anatomy, Bone Densities, and Structural Mechanics
Events
Loading … Spinner

Mendeley | Further Information

{"title"=>"The tarsometatarsus of the ostrich struthio camelus: Anatomy, bone densities, and structural mechanics", "type"=>"journal", "authors"=>[{"first_name"=>"Meagan M.", "last_name"=>"Gilbert", "scopus_author_id"=>"57188880227"}, {"first_name"=>"Eric", "last_name"=>"Snively", "scopus_author_id"=>"6506914765"}, {"first_name"=>"John", "last_name"=>"Cotton", "scopus_author_id"=>"7102219000"}], "year"=>2016, "source"=>"PLoS ONE", "identifiers"=>{"pui"=>"609351030", "pmid"=>"27015416", "doi"=>"10.1371/journal.pone.0149708", "issn"=>"19326203", "scopus"=>"2-s2.0-84964043405", "sgr"=>"84964043405", "isbn"=>"1932-6203 (Electronic)\r1932-6203 (Linking)"}, "id"=>"7d8d6307-e39e-3c1e-8d60-42709bd28400", "abstract"=>"BACKGROUND: The ostrich Struthio camelus reaches the highest speeds of any extant biped, and has been an extraordinary subject for studies of soft-tissue anatomy and dynamics of locomotion. An elongate tarsometatarsus in adult ostriches contributes to their speed. The internal osteology of the tarsometatarsus, and its mechanical response to forces of running, are potentially revealing about ostrich foot function. METHODS/PRINCIPAL FINDINGS: Computed tomography (CT) reveals anatomy and bone densities in tarsometatarsi of an adult and a young juvenile ostrich. A finite element (FE) model for the adult was constructed with properties of compact and cancellous bone where these respective tissues predominate in the original specimen. The model was subjected to a quasi-static analysis under the midstance ground reaction and muscular forces of a fast run. Anatomy-Metatarsals are divided proximally and distally and unify around a single internal cavity in most adult tarsometatarsus shafts, but the juvenile retains an internal three-part division of metatarsals throughout the element. The juvenile has a sparsely ossified hypotarsus for insertion of the m. fibularis longus, as part of a proximally separate third metatarsal. Bone is denser in all regions of the adult tarsometatarsus, with cancellous bone concentrated at proximal and distal articulations, and highly dense compact bone throughout the shaft. Biomechanics-FE simulations show stress and strain are much greater at midshaft than at force applications, suggesting that shaft bending is the most important stressor of the tarsometatarsus. Contraction of digital flexors, inducing a posterior force at the TMT distal condyles, likely reduces buildup of tensile stresses in the bone by inducing compression at these locations, and counteracts bending loads. Safety factors are high for von Mises stress, consistent with faster running speeds known for ostriches. CONCLUSIONS/SIGNIFICANCE: High safety factors suggest that bone densities and anatomy of the ostrich tarsometatarsus confer strength for selectively critical activities, such as fleeing and kicking predators. Anatomical results and FE modeling of the ostrich tarsometatarsus are a useful baseline for testing the structure's capabilities and constraints for locomotion, through ontogeny and the full step cycle. With this foundation, future analyses can incorporate behaviorally realistic strain rates and distal joint forces, experimental validation, and proximal elements of the ostrich hind limb.", "link"=>"http://www.mendeley.com/research/tarsometatarsus-ostrich-struthio-camelus-anatomy-bone-densities-structural-mechanics", "reader_count"=>16, "reader_count_by_academic_status"=>{"Researcher"=>2, "Student > Ph. D. Student"=>3, "Student > Master"=>2, "Other"=>1, "Student > Bachelor"=>3, "Lecturer"=>1, "Professor"=>4}, "reader_count_by_user_role"=>{"Researcher"=>2, "Student > Ph. D. Student"=>3, "Student > Master"=>2, "Other"=>1, "Student > Bachelor"=>3, "Lecturer"=>1, "Professor"=>4}, "reader_count_by_subject_area"=>{"Engineering"=>2, "Agricultural and Biological Sciences"=>4, "Sports and Recreations"=>5, "Social Sciences"=>1, "Earth and Planetary Sciences"=>4}, "reader_count_by_subdiscipline"=>{"Engineering"=>{"Engineering"=>2}, "Social Sciences"=>{"Social Sciences"=>1}, "Sports and Recreations"=>{"Sports and Recreations"=>5}, "Earth and Planetary Sciences"=>{"Earth and Planetary Sciences"=>4}, "Agricultural and Biological Sciences"=>{"Agricultural and Biological Sciences"=>4}}, "reader_count_by_country"=>{"Japan"=>1}, "group_count"=>0}

Scopus | Further Information

{"@_fa"=>"true", "link"=>[{"@_fa"=>"true", "@ref"=>"self", "@href"=>"https://api.elsevier.com/content/abstract/scopus_id/84964043405"}, {"@_fa"=>"true", "@ref"=>"author-affiliation", "@href"=>"https://api.elsevier.com/content/abstract/scopus_id/84964043405?field=author,affiliation"}, {"@_fa"=>"true", "@ref"=>"scopus", "@href"=>"https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=84964043405&origin=inward"}, {"@_fa"=>"true", "@ref"=>"scopus-citedby", "@href"=>"https://www.scopus.com/inward/citedby.uri?partnerID=HzOxMe3b&scp=84964043405&origin=inward"}], "prism:url"=>"https://api.elsevier.com/content/abstract/scopus_id/84964043405", "dc:identifier"=>"SCOPUS_ID:84964043405", "eid"=>"2-s2.0-84964043405", "dc:title"=>"The tarsometatarsus of the ostrich struthio camelus: Anatomy, bone densities, and structural mechanics", "dc:creator"=>"Gilbert M.", "prism:publicationName"=>"PLoS ONE", "prism:eIssn"=>"19326203", "prism:volume"=>"11", "prism:issueIdentifier"=>"3", "prism:pageRange"=>nil, "prism:coverDate"=>"2016-03-01", "prism:coverDisplayDate"=>"March 2016", "prism:doi"=>"10.1371/journal.pone.0149708", "citedby-count"=>"7", "affiliation"=>[{"@_fa"=>"true", "affilname"=>"University of Saskatchewan", "affiliation-city"=>"Saskatoon", "affiliation-country"=>"Canada"}], "pubmed-id"=>"27015416", "prism:aggregationType"=>"Journal", "subtype"=>"ar", "subtypeDescription"=>"Article", "article-number"=>"e0149708", "source-id"=>"10600153309", "openaccess"=>"1", "openaccessFlag"=>true}

Facebook

  • {"url"=>"http%3A%2F%2Fjournals.plos.org%2Fplosone%2Farticle%3Fid%3D10.1371%252Fjournal.pone.0149708", "share_count"=>0, "like_count"=>0, "comment_count"=>0, "click_count"=>0, "total_count"=>0}

Twitter

Counter

  • {"month"=>"3", "year"=>"2016", "pdf_views"=>"49", "xml_views"=>"2", "html_views"=>"163"}
  • {"month"=>"4", "year"=>"2016", "pdf_views"=>"116", "xml_views"=>"1", "html_views"=>"458"}
  • {"month"=>"5", "year"=>"2016", "pdf_views"=>"15", "xml_views"=>"0", "html_views"=>"44"}
  • {"month"=>"6", "year"=>"2016", "pdf_views"=>"42", "xml_views"=>"0", "html_views"=>"57"}
  • {"month"=>"7", "year"=>"2016", "pdf_views"=>"17", "xml_views"=>"0", "html_views"=>"38"}
  • {"month"=>"8", "year"=>"2016", "pdf_views"=>"20", "xml_views"=>"0", "html_views"=>"46"}
  • {"month"=>"9", "year"=>"2016", "pdf_views"=>"51", "xml_views"=>"0", "html_views"=>"271"}
  • {"month"=>"10", "year"=>"2016", "pdf_views"=>"29", "xml_views"=>"0", "html_views"=>"57"}
  • {"month"=>"11", "year"=>"2016", "pdf_views"=>"3", "xml_views"=>"0", "html_views"=>"43"}
  • {"month"=>"12", "year"=>"2016", "pdf_views"=>"21", "xml_views"=>"0", "html_views"=>"44"}
  • {"month"=>"1", "year"=>"2017", "pdf_views"=>"29", "xml_views"=>"0", "html_views"=>"67"}
  • {"month"=>"2", "year"=>"2017", "pdf_views"=>"127", "xml_views"=>"1", "html_views"=>"102"}
  • {"month"=>"3", "year"=>"2017", "pdf_views"=>"32", "xml_views"=>"0", "html_views"=>"129"}
  • {"month"=>"4", "year"=>"2017", "pdf_views"=>"29", "xml_views"=>"2", "html_views"=>"87"}
  • {"month"=>"5", "year"=>"2017", "pdf_views"=>"20", "xml_views"=>"2", "html_views"=>"63"}
  • {"month"=>"6", "year"=>"2017", "pdf_views"=>"3", "xml_views"=>"0", "html_views"=>"41"}
  • {"month"=>"7", "year"=>"2017", "pdf_views"=>"36", "xml_views"=>"1", "html_views"=>"71"}
  • {"month"=>"8", "year"=>"2017", "pdf_views"=>"15", "xml_views"=>"2", "html_views"=>"66"}
  • {"month"=>"9", "year"=>"2017", "pdf_views"=>"11", "xml_views"=>"1", "html_views"=>"51"}
  • {"month"=>"10", "year"=>"2017", "pdf_views"=>"22", "xml_views"=>"0", "html_views"=>"90"}
  • {"month"=>"11", "year"=>"2017", "pdf_views"=>"14", "xml_views"=>"0", "html_views"=>"193"}
  • {"month"=>"12", "year"=>"2017", "pdf_views"=>"7", "xml_views"=>"1", "html_views"=>"194"}
  • {"month"=>"1", "year"=>"2018", "pdf_views"=>"17", "xml_views"=>"0", "html_views"=>"62"}
  • {"month"=>"2", "year"=>"2018", "pdf_views"=>"8", "xml_views"=>"0", "html_views"=>"71"}
  • {"month"=>"3", "year"=>"2018", "pdf_views"=>"24", "xml_views"=>"1", "html_views"=>"57"}
  • {"month"=>"4", "year"=>"2018", "pdf_views"=>"26", "xml_views"=>"0", "html_views"=>"55"}
  • {"month"=>"5", "year"=>"2018", "pdf_views"=>"22", "xml_views"=>"0", "html_views"=>"55"}
  • {"month"=>"6", "year"=>"2018", "pdf_views"=>"9", "xml_views"=>"3", "html_views"=>"33"}
  • {"month"=>"7", "year"=>"2018", "pdf_views"=>"5", "xml_views"=>"3", "html_views"=>"32"}
  • {"month"=>"8", "year"=>"2018", "pdf_views"=>"7", "xml_views"=>"1", "html_views"=>"41"}
  • {"month"=>"9", "year"=>"2018", "pdf_views"=>"11", "xml_views"=>"0", "html_views"=>"48"}
  • {"month"=>"10", "year"=>"2018", "pdf_views"=>"8", "xml_views"=>"1", "html_views"=>"39"}
  • {"month"=>"11", "year"=>"2018", "pdf_views"=>"4", "xml_views"=>"0", "html_views"=>"49"}
  • {"month"=>"12", "year"=>"2018", "pdf_views"=>"6", "xml_views"=>"0", "html_views"=>"22"}
  • {"month"=>"1", "year"=>"2019", "pdf_views"=>"6", "xml_views"=>"0", "html_views"=>"22"}
  • {"month"=>"2", "year"=>"2019", "pdf_views"=>"9", "xml_views"=>"0", "html_views"=>"32"}
  • {"month"=>"3", "year"=>"2019", "pdf_views"=>"11", "xml_views"=>"0", "html_views"=>"32"}
  • {"month"=>"4", "year"=>"2019", "pdf_views"=>"22", "xml_views"=>"1", "html_views"=>"27"}
  • {"month"=>"5", "year"=>"2019", "pdf_views"=>"12", "xml_views"=>"0", "html_views"=>"25"}
  • {"month"=>"6", "year"=>"2019", "pdf_views"=>"9", "xml_views"=>"1", "html_views"=>"24"}
  • {"month"=>"7", "year"=>"2019", "pdf_views"=>"15", "xml_views"=>"0", "html_views"=>"27"}
  • {"month"=>"8", "year"=>"2019", "pdf_views"=>"14", "xml_views"=>"0", "html_views"=>"19"}
  • {"month"=>"9", "year"=>"2019", "pdf_views"=>"7", "xml_views"=>"0", "html_views"=>"21"}
  • {"month"=>"10", "year"=>"2019", "pdf_views"=>"20", "xml_views"=>"0", "html_views"=>"23"}
  • {"month"=>"11", "year"=>"2019", "pdf_views"=>"15", "xml_views"=>"0", "html_views"=>"31"}
  • {"month"=>"12", "year"=>"2019", "pdf_views"=>"9", "xml_views"=>"1", "html_views"=>"27"}
  • {"month"=>"1", "year"=>"2020", "pdf_views"=>"22", "xml_views"=>"0", "html_views"=>"37"}
  • {"month"=>"2", "year"=>"2020", "pdf_views"=>"21", "xml_views"=>"2", "html_views"=>"28"}
  • {"month"=>"3", "year"=>"2020", "pdf_views"=>"12", "xml_views"=>"0", "html_views"=>"25"}
  • {"month"=>"4", "year"=>"2020", "pdf_views"=>"72", "xml_views"=>"0", "html_views"=>"34"}
  • {"month"=>"5", "year"=>"2020", "pdf_views"=>"48", "xml_views"=>"1", "html_views"=>"54"}
  • {"month"=>"6", "year"=>"2020", "pdf_views"=>"40", "xml_views"=>"1", "html_views"=>"16"}
  • {"month"=>"7", "year"=>"2020", "pdf_views"=>"9", "xml_views"=>"0", "html_views"=>"15"}
  • {"month"=>"8", "year"=>"2020", "pdf_views"=>"17", "xml_views"=>"0", "html_views"=>"28"}
  • {"month"=>"9", "year"=>"2020", "pdf_views"=>"27", "xml_views"=>"0", "html_views"=>"17"}
  • {"month"=>"10", "year"=>"2020", "pdf_views"=>"7", "xml_views"=>"0", "html_views"=>"15"}

Figshare

  • {"files"=>["https://ndownloader.figshare.com/files/4880575"], "description"=>"<p>Angles are depicted in <a href=\"http://www.plosone.org/article/info:doi/10.1371/journal.pone.0149708#pone.0149708.g015\" target=\"_blank\">Fig 15</a>, and defined in <a href=\"http://www.plosone.org/article/info:doi/10.1371/journal.pone.0149708#pone.0149708.t005\" target=\"_blank\">Table 5</a>.</p>", "links"=>[], "tags"=>["speed", "midstance ground reaction", "cancellous bone", "von Mises stress", "Ostrich Struthio camelus", "bone densities", "adult tarsometatarsus shafts", "TMT", "FE", "Structural Mechanics BackgroundThe", "CT"], "article_id"=>3138817, "categories"=>["Biophysics", "Cell Biology", "Physiology", "Biotechnology", "Evolutionary Biology", "Geology", "Environmental Sciences not elsewhere classified", "Ecology", "Developmental Biology"], "users"=>["Meagan M. Gilbert", "Eric Snively", "John Cotton"], "doi"=>"https://dx.doi.org/10.1371/journal.pone.0149708.t006", "stats"=>{"downloads"=>0, "page_views"=>0, "likes"=>0}, "figshare_url"=>"https://figshare.com/articles/Quantities_and_results_for_calculating_tension_i_F_i_sub_i_m_i_sub_in_the_M_fibularis_longus_and_M_gastrocnemius_by_directional_cosines_50_for_components_in_the_ground_reference_frame_coordinate_system_ground_c_s_and_rotation_matrices_51_in_the_metatarsus/3138817", "title"=>"Quantities and results for calculating tension <i>F</i><sub><i>m</i></sub> in the M. fibularis longus and M. gastrocnemius, by directional cosines [50] for components in the ground reference frame/coordinate system (ground c.s.), and rotation matrices [51] in the metatarsus’s reference frame/coordinate system in Strand7 (Strand7 MT c.s.).", "pos_in_sequence"=>27, "defined_type"=>3, "published_date"=>"2016-03-25 06:42:00"}
  • {"files"=>["https://ndownloader.figshare.com/files/4870981"], "description"=>"<p>The scale (lower right) is a histogram of the proportion of elements experiencing different magnitudes of stress, divided into 100 levels between +/-50 MPa. Note that most elements have low <i>σ</i><sub><i>ZZ</i></sub> magnitudes, close to 0 MPa. A (anterior), B (posterior), C (medial), and D (lateral) views reveal anteromedial compression and posterolateral tension. E and F illustrate artifactually high stresses proximally, and realistically low stresses distally at the ground reaction force. G. Hot (red-violet) colors indicate tension, and cool (blue) colors indicate tension. Note moderate, distally diminishing tensile stresses on the hypotarsus from extensor forces (B, C, D), and low tensile stresses at attachment of M. fibularis brevis (MFB) and Ligamentum collaterale laterale (LCL).</p>", "links"=>[], "tags"=>["speed", "midstance ground reaction", "cancellous bone", "von Mises stress", "Ostrich Struthio camelus", "bone densities", "adult tarsometatarsus shafts", "TMT", "FE", "Structural Mechanics BackgroundThe", "CT"], "article_id"=>3131140, "categories"=>["Biophysics", "Cell Biology", "Physiology", "Biotechnology", "Evolutionary Biology", "Geology", "Environmental Sciences not elsewhere classified", "Ecology", "Developmental Biology"], "users"=>["Meagan M. Gilbert", "Eric Snively", "John Cotton"], "doi"=>"https://dx.doi.org/10.1371/journal.pone.0149708.g010", "stats"=>{"downloads"=>0, "page_views"=>0, "likes"=>0}, "figshare_url"=>"https://figshare.com/articles/_i_i_sub_i_ZZ_i_sub_stresses_in_the_ostrich_tarsometatarsus_reflect_bending_along_its_proximodistal_axis_Z_axis_of_the_user_specified_coordinate_system_/3131140", "title"=>"<i>σ</i><sub><i>ZZ</i></sub> stresses in the ostrich tarsometatarsus reflect bending along its proximodistal axis (Z-axis of the user-specified coordinate system).", "pos_in_sequence"=>11, "defined_type"=>1, "published_date"=>"2016-03-25 05:46:44"}
  • {"files"=>["https://ndownloader.figshare.com/files/4871128"], "description"=>"<p><i>F</i><sub><i>GRF</i></sub> is applied to the distal end of the tarsometatarsus. A. Lateral view (left side, reversed) of ostrich femur, tibiotarsus+fibula, and tarsometatarsus (from top to bottom). B. Close-up of the tarsometatarsus, depicting resultant <i>F</i><sub><i>GRF</i></sub> and angle χ (81.327°) for computing its x-axis component <i>F</i><sub><i>x</i></sub> (left equation). C. Anterior view of ostrich leg. D. Close-up of the tarsometatarsus in anterior view, showing the resultant <i>F</i><sub><i>GRF</i></sub> and angles ψ (82.102°) and ω (5.006°) used for calculating y and z components, respectively (center and right equations). In these views the bones appear slightly shorter than their true lengths, because they are angled from the vertical.</p>", "links"=>[], "tags"=>["speed", "midstance ground reaction", "cancellous bone", "von Mises stress", "Ostrich Struthio camelus", "bone densities", "adult tarsometatarsus shafts", "TMT", "FE", "Structural Mechanics BackgroundThe", "CT"], "article_id"=>3131269, "categories"=>["Biophysics", "Cell Biology", "Physiology", "Biotechnology", "Evolutionary Biology", "Geology", "Environmental Sciences not elsewhere classified", "Ecology", "Developmental Biology"], "users"=>["Meagan M. Gilbert", "Eric Snively", "John Cotton"], "doi"=>"https://dx.doi.org/10.1371/journal.pone.0149708.g016", "stats"=>{"downloads"=>0, "page_views"=>0, "likes"=>0}, "figshare_url"=>"https://figshare.com/articles/Limb_posture_local_coordinate_system_forces_and_components_of_the_ground_reaction_force_i_F_i_sub_i_GRF_i_sub_are_incorporated_into_finite_element_FE_simulations_/3131269", "title"=>"Limb posture, local coordinate system, forces, and components of the ground reaction force (<i>F</i><sub><i>GRF</i></sub>) are incorporated into finite element (FE) simulations.", "pos_in_sequence"=>17, "defined_type"=>1, "published_date"=>"2016-03-25 05:46:44"}
  • {"files"=>["https://ndownloader.figshare.com/files/4870810"], "description"=>"<p>Note the M. fibularis brevis, which is reduced to a tendon in <i>Struthio</i>. At full flexion, the MFB crosses the origin of the ligamentum collaterale laterale. Abbreviations: LCL = Ligamentum collaterale laterale, MFB = M. fibularis brevis, MGT = M. gastrocnemius tendon.</p>", "links"=>[], "tags"=>["speed", "midstance ground reaction", "cancellous bone", "von Mises stress", "Ostrich Struthio camelus", "bone densities", "adult tarsometatarsus shafts", "TMT", "FE", "Structural Mechanics BackgroundThe", "CT"], "article_id"=>3131017, "categories"=>["Biophysics", "Cell Biology", "Physiology", "Biotechnology", "Evolutionary Biology", "Geology", "Environmental Sciences not elsewhere classified", "Ecology", "Developmental Biology"], "users"=>["Meagan M. Gilbert", "Eric Snively", "John Cotton"], "doi"=>"https://dx.doi.org/10.1371/journal.pone.0149708.g005", "stats"=>{"downloads"=>0, "page_views"=>0, "likes"=>0}, "figshare_url"=>"https://figshare.com/articles/Proximal_left_tarsometatarsus_from_a_juvenile_ostrich_/3131017", "title"=>"Proximal left tarsometatarsus from a juvenile ostrich.", "pos_in_sequence"=>6, "defined_type"=>1, "published_date"=>"2016-03-25 05:46:44"}
  • {"files"=>["https://ndownloader.figshare.com/files/4871140"], "description"=>"<p>Moments about the center of rotation (proximal dot) must equal 0. The ground reaction moment <i>R</i><sub><i>GRF</i></sub> x <i>F</i><sub><i>GRF</i></sub> is therefore equal and opposite to a balancing extensor moment <i>R</i><sub><i>mz</i></sub> x <i>F</i><sub><i>mz</i></sub>. When the vertical muscle force <i>F</i><sub><i>mz</i></sub> is calculated, the resultant <i>F</i><sub><i>m</i></sub> and its x and y components can be determined by the law of cosines [<a href=\"http://www.plosone.org/article/info:doi/10.1371/journal.pone.0149708#pone.0149708.ref050\" target=\"_blank\">50</a>] (Figs <a href=\"http://www.plosone.org/article/info:doi/10.1371/journal.pone.0149708#pone.0149708.g015\" target=\"_blank\">15</a> and <a href=\"http://www.plosone.org/article/info:doi/10.1371/journal.pone.0149708#pone.0149708.g016\" target=\"_blank\">16</a>; <a href=\"http://www.plosone.org/article/info:doi/10.1371/journal.pone.0149708#pone.0149708.t005\" target=\"_blank\">Table 5</a>).</p>", "links"=>[], "tags"=>["speed", "midstance ground reaction", "cancellous bone", "von Mises stress", "Ostrich Struthio camelus", "bone densities", "adult tarsometatarsus shafts", "TMT", "FE", "Structural Mechanics BackgroundThe", "CT"], "article_id"=>3131278, "categories"=>["Biophysics", "Cell Biology", "Physiology", "Biotechnology", "Evolutionary Biology", "Geology", "Environmental Sciences not elsewhere classified", "Ecology", "Developmental Biology"], "users"=>["Meagan M. Gilbert", "Eric Snively", "John Cotton"], "doi"=>"https://dx.doi.org/10.1371/journal.pone.0149708.g017", "stats"=>{"downloads"=>0, "page_views"=>0, "likes"=>0}, "figshare_url"=>"https://figshare.com/articles/Quantities_necessary_for_determining_the_extensor_force_i_F_i_sub_i_m_i_sub_of_M_gastrocnemius_include_forces_i_F_i_moment_arms_i_R_i_and_angles_Fig_16_relative_to_the_tarsometatarsus_coordinate_axes_/3131278", "title"=>"Quantities necessary for determining the extensor force, <i>F</i><sub><i>m</i></sub> of M. gastrocnemius, include forces <i>F</i>, moment arms <i>R</i>, and angles (Fig 16) relative to the tarsometatarsus coordinate axes.", "pos_in_sequence"=>18, "defined_type"=>1, "published_date"=>"2016-03-25 05:46:44"}
  • {"files"=>["https://ndownloader.figshare.com/files/4880518"], "description"=>"<p><i>E</i> = Young’s modulus (stress/strain), <i>G</i> = shear modulus, <i>ᴠ</i> = Poisson’s ratio, <i>σ</i><sub><i>yield</i></sub> and <i>σ</i><sub><i>ult</i></sub> = yield and ultimate stresses, <i>ε</i><sub><i>ult</i></sub> and <i>ε</i><sub><i>ult</i></sub> = yield and ultimate strains, <i>ε</i><sub><i>ult</i></sub>* = strain up to which cancellous bone retains some load-carrying ability. Moduli are in GigaPascals (GPa), and <i>σ</i><sub><i>yield</i></sub> and <i>σ</i><sub><i>ult</i></sub> in MegaPascals (MPa). Yield and ultimate stresses are reported along the z (long) axis because experimental test samples are typically oriented along this axis, in uniaxial tension or compression tests, and in bending tests which cause compression and tension along different sides of the long axis. The rationale behind this materials testing practice is that most in-vivo loads of limb elements are assumed to be primarily oriented longitudinally. Sources: R = Reed and Brown (2001), M = Martin et al. (1998), K = Keaveny et al. (2004), L = Linde et al. (1992).</p>", "links"=>[], "tags"=>["speed", "midstance ground reaction", "cancellous bone", "von Mises stress", "Ostrich Struthio camelus", "bone densities", "adult tarsometatarsus shafts", "TMT", "FE", "Structural Mechanics BackgroundThe", "CT"], "article_id"=>3138766, "categories"=>["Biophysics", "Cell Biology", "Physiology", "Biotechnology", "Evolutionary Biology", "Geology", "Environmental Sciences not elsewhere classified", "Ecology", "Developmental Biology"], "users"=>["Meagan M. Gilbert", "Eric Snively", "John Cotton"], "doi"=>"https://dx.doi.org/10.1371/journal.pone.0149708.t001", "stats"=>{"downloads"=>0, "page_views"=>0, "likes"=>0}, "figshare_url"=>"https://figshare.com/articles/Material_properties_assigned_to_FE_model_of_the_ostrich_tarsometatarsus_and_yield_and_ultimate_values_for_comparison_with_FEA_results_/3138766", "title"=>"Material properties assigned to FE model of the ostrich tarsometatarsus, and yield and ultimate values for comparison with FEA results.", "pos_in_sequence"=>22, "defined_type"=>3, "published_date"=>"2016-03-25 06:42:00"}
  • {"files"=>["https://ndownloader.figshare.com/files/4880602"], "description"=>"<p>Summary of applied forces for all finite element analyses, including components for the ground reaction force <i>F</i><sub><i>GRF</i></sub> and at muscle attachments.</p>", "links"=>[], "tags"=>["speed", "midstance ground reaction", "cancellous bone", "von Mises stress", "Ostrich Struthio camelus", "bone densities", "adult tarsometatarsus shafts", "TMT", "FE", "Structural Mechanics BackgroundThe", "CT"], "article_id"=>3138835, "categories"=>["Biophysics", "Cell Biology", "Physiology", "Biotechnology", "Evolutionary Biology", "Geology", "Environmental Sciences not elsewhere classified", "Ecology", "Developmental Biology"], "users"=>["Meagan M. Gilbert", "Eric Snively", "John Cotton"], "doi"=>"https://dx.doi.org/10.1371/journal.pone.0149708.t007", "stats"=>{"downloads"=>0, "page_views"=>0, "likes"=>0}, "figshare_url"=>"https://figshare.com/articles/Summary_of_applied_forces_for_all_finite_element_analyses_including_components_for_the_ground_reaction_force_i_F_i_sub_i_GRF_i_sub_and_at_muscle_attachments_/3138835", "title"=>"Summary of applied forces for all finite element analyses, including components for the ground reaction force <i>F</i><sub><i>GRF</i></sub> and at muscle attachments.", "pos_in_sequence"=>28, "defined_type"=>3, "published_date"=>"2016-03-25 06:42:00"}
  • {"files"=>["https://ndownloader.figshare.com/files/4870915"], "description"=>"<p>Densities on the external surface of a juvenile ostrich left tarsometatarsus reconstructed to show detailed anterior morphology (A), and anterior (B), posterior (C), medial (D), and lateral (E) complete views. Note the underdeveloped hypotarsus and undefined intercodylar fossa, and that MT III is discrete and visible anteriorly (A) for half the length of the tarsometatarsus. Densities are uniformly low (B-E), particularly at the with cancellous bone and calcified cartilage at the proximal and distal ends. Abbreviations: H = hypotarsus, MGT = M. gastrocnemius tendon. MT II = metatarsal II, MT III = metatarsal III, MT IV = metatarsal IV. The density color scales show (A) the midpoint and depicted range of the 16-bit total range micro-CT scanner, and (B-E) of Hounsfield units (HU) in a medical-grade scanner. The micro-CT scanner resolves finer gradations of density, and output of the lower-resolution medical scanner requires a restricted color scale to show the depicted morphology.</p>", "links"=>[], "tags"=>["speed", "midstance ground reaction", "cancellous bone", "von Mises stress", "Ostrich Struthio camelus", "bone densities", "adult tarsometatarsus shafts", "TMT", "FE", "Structural Mechanics BackgroundThe", "CT"], "article_id"=>3131086, "categories"=>["Biophysics", "Cell Biology", "Physiology", "Biotechnology", "Evolutionary Biology", "Geology", "Environmental Sciences not elsewhere classified", "Ecology", "Developmental Biology"], "users"=>["Meagan M. Gilbert", "Eric Snively", "John Cotton"], "doi"=>"https://dx.doi.org/10.1371/journal.pone.0149708.g008", "stats"=>{"downloads"=>0, "page_views"=>0, "likes"=>0}, "figshare_url"=>"https://figshare.com/articles/The_Tarsometatarsus_of_the_Ostrich_i_Struthio_camelus_i_Anatomy_Bone_Densities_and_Structural_Mechanics_Fig_8/3131086", "title"=>"The Tarsometatarsus of the Ostrich <i>Struthio camelus</i>: Anatomy, Bone Densities, and Structural Mechanics - Fig 8", "pos_in_sequence"=>9, "defined_type"=>1, "published_date"=>"2016-03-25 05:46:44"}
  • {"files"=>["https://ndownloader.figshare.com/files/4871014"], "description"=>"<p>A (anterior), B (posterior), C (medial), and D (lateral) views reveal the highest stresses in the shaft concentrated anteromedially. A white arrow (A) indicates the proximal transition between cancellous and compact material properties. Muscle induced stresses are evident on the hypotarsus (small H), continuing onto the Crista plantares medialis (CPM); however, these are low compared to stress in the main tarsometatarsus shaft. E. and F. show clipped stresses (white as with clipped highlights in photography; greater than the maximum in the color scale) at the proximal constraints, and low stresses distally. G. The <i>σ</i><sub>von Mises</sub> color scale from 0–50 MPa runs from low (blue) to high (red and pink). As in <a href=\"http://www.plosone.org/article/info:doi/10.1371/journal.pone.0149708#pone.0149708.g010\" target=\"_blank\">Fig 10</a>, the scale also depicts a histogram of the proportion of elements experiencing different stress magnitudes. The majority of elements have low <i>σ</i><sub>von Mises</sub> magnitudes between 0 and 20 MPa.</p>", "links"=>[], "tags"=>["speed", "midstance ground reaction", "cancellous bone", "von Mises stress", "Ostrich Struthio camelus", "bone densities", "adult tarsometatarsus shafts", "TMT", "FE", "Structural Mechanics BackgroundThe", "CT"], "article_id"=>3131158, "categories"=>["Biophysics", "Cell Biology", "Physiology", "Biotechnology", "Evolutionary Biology", "Geology", "Environmental Sciences not elsewhere classified", "Ecology", "Developmental Biology"], "users"=>["Meagan M. Gilbert", "Eric Snively", "John Cotton"], "doi"=>"https://dx.doi.org/10.1371/journal.pone.0149708.g011", "stats"=>{"downloads"=>0, "page_views"=>0, "likes"=>0}, "figshare_url"=>"https://figshare.com/articles/_i_i_sub_von_Mises_sub_stresses_in_the_ostrich_tarsometatarsus_represents_the_maximum_strain_energy_distorting_a_given_element_and_indicates_proximity_to_breaking_/3131158", "title"=>"<i>σ</i><sub>von Mises</sub> stresses in the ostrich tarsometatarsus represents the maximum strain energy distorting a given element, and indicates proximity to breaking.", "pos_in_sequence"=>12, "defined_type"=>1, "published_date"=>"2016-03-25 05:46:44"}
  • {"files"=>["https://ndownloader.figshare.com/files/4880527"], "description"=>"<p>Forces for ankle extensors are calculated as necessary to counteract the ground reaction moment, and in one analysis digital flexor and extensor forces are applied to stabilize the TMT-phalangeal joints. Effects of muscles acting on proximal limb elements emerge from FEA as joint reaction forces at the proximal surface of the TMT.</p>", "links"=>[], "tags"=>["speed", "midstance ground reaction", "cancellous bone", "von Mises stress", "Ostrich Struthio camelus", "bone densities", "adult tarsometatarsus shafts", "TMT", "FE", "Structural Mechanics BackgroundThe", "CT"], "article_id"=>3138775, "categories"=>["Biophysics", "Cell Biology", "Physiology", "Biotechnology", "Evolutionary Biology", "Geology", "Environmental Sciences not elsewhere classified", "Ecology", "Developmental Biology"], "users"=>["Meagan M. Gilbert", "Eric Snively", "John Cotton"], "doi"=>"https://dx.doi.org/10.1371/journal.pone.0149708.t002", "stats"=>{"downloads"=>0, "page_views"=>0, "likes"=>0}, "figshare_url"=>"https://figshare.com/articles/Muscle_forces_applied_to_the_ostrich_tarsometatarsus_TMT_and_subsumed_into_finite_element_reaction_forces_at_the_mesotarsal_joint_/3138775", "title"=>"Muscle forces applied to the ostrich tarsometatarsus (TMT), and subsumed into finite element reaction forces at the mesotarsal joint.", "pos_in_sequence"=>23, "defined_type"=>3, "published_date"=>"2016-03-25 06:42:00"}
  • {"files"=>["https://ndownloader.figshare.com/files/4871152"], "description"=>"<p>Problem statement diagrams of the tarsometatarsus in lateral (A) and anterior (B) views, for determining component and resultant values of extensor force by M. gastrocnemius (<i>F</i><sub><i>m</i></sub>). Angles are defined with other variables in <a href=\"http://www.plosone.org/article/info:doi/10.1371/journal.pone.0149708#pone.0149708.t004\" target=\"_blank\">Table 4</a>, and listed in <a href=\"http://www.plosone.org/article/info:doi/10.1371/journal.pone.0149708#pone.0149708.t005\" target=\"_blank\">Table 5</a>. Components of <i>F</i><sub><i>m</i></sub> in the global and anatomical coordinate systems are listed in <a href=\"http://www.plosone.org/article/info:doi/10.1371/journal.pone.0149708#pone.0149708.t006\" target=\"_blank\">Table 6</a>. FEA can determine many quantities listed as “Known”, including <i>F</i><sub><i>lig</i></sub> at the ligamentous constraints, and tibiotarus and tarsometatarsus joint reaction forces <i>F</i><sub><i>ttRF</i></sub> and <i>F</i><sub><i>tmtRF</i></sub> at the constrained proximal surface of the metatarsus. Moment arms r will vary with angles through the motion, producing moments when coupled with their forces; the FE simulations incorporate these quantities at one position. Gravitational force <i>F</i><sub><i>g</i></sub> and its moments on the tarsometatarsus cm (incorporating mass<sub>tmt</sub> and mass moment of inertia <i>I</i><sub><i>tmt</i></sub>) contribute trivially, compared to effects of muscular, ground, joint forces.</p>", "links"=>[], "tags"=>["speed", "midstance ground reaction", "cancellous bone", "von Mises stress", "Ostrich Struthio camelus", "bone densities", "adult tarsometatarsus shafts", "TMT", "FE", "Structural Mechanics BackgroundThe", "CT"], "article_id"=>3131290, "categories"=>["Biophysics", "Cell Biology", "Physiology", "Biotechnology", "Evolutionary Biology", "Geology", "Environmental Sciences not elsewhere classified", "Ecology", "Developmental Biology"], "users"=>["Meagan M. Gilbert", "Eric Snively", "John Cotton"], "doi"=>"https://dx.doi.org/10.1371/journal.pone.0149708.g018", "stats"=>{"downloads"=>0, "page_views"=>0, "likes"=>0}, "figshare_url"=>"https://figshare.com/articles/The_Tarsometatarsus_of_the_Ostrich_i_Struthio_camelus_i_Anatomy_Bone_Densities_and_Structural_Mechanics_Fig_18/3131290", "title"=>"The Tarsometatarsus of the Ostrich <i>Struthio camelus</i>: Anatomy, Bone Densities, and Structural Mechanics - Fig 18", "pos_in_sequence"=>19, "defined_type"=>1, "published_date"=>"2016-03-25 05:46:44"}
  • {"files"=>["https://ndownloader.figshare.com/files/4871092"], "description"=>"<p>Especially high stress at the constraints (*) suggests too great a force magnitude, causing a very large moment about the constraints.</p>", "links"=>[], "tags"=>["speed", "midstance ground reaction", "cancellous bone", "von Mises stress", "Ostrich Struthio camelus", "bone densities", "adult tarsometatarsus shafts", "TMT", "FE", "Structural Mechanics BackgroundThe", "CT"], "article_id"=>3131227, "categories"=>["Biophysics", "Cell Biology", "Physiology", "Biotechnology", "Evolutionary Biology", "Geology", "Environmental Sciences not elsewhere classified", "Ecology", "Developmental Biology"], "users"=>["Meagan M. Gilbert", "Eric Snively", "John Cotton"], "doi"=>"https://dx.doi.org/10.1371/journal.pone.0149708.g014", "stats"=>{"downloads"=>0, "page_views"=>0, "likes"=>0}, "figshare_url"=>"https://figshare.com/articles/An_exploratory_large_force_of_800_N_is_applied_posteriorly_to_the_articular_condyles_of_the_i_Struthio_i_tarsometatarsus_causing_tension_anteromedially_and_compression_laterally_/3131227", "title"=>"An exploratory large force of 800 N is applied posteriorly to the articular condyles of the <i>Struthio</i> tarsometatarsus, causing tension anteromedially and compression laterally.", "pos_in_sequence"=>15, "defined_type"=>1, "published_date"=>"2016-03-25 05:46:44"}
  • {"files"=>["https://ndownloader.figshare.com/files/4870756"], "description"=>"<p>Reconstructed left tarsometatarsus in anterior (A), posterior (B), medial (C), and (D) lateral views, depicting soft tissue attachments. The proximal M. gastrocnemius attachment appeared to be present in the juvenile, but has not been reported in adults. Turquoise coloration indicates ligaments connecting to stabilize the intertarsal joint. Abbreviations: LCM = ligamentum collaterale mediale, LCML = ligamentum collaterale mediale longum, MFB = M. fibularis brevis</p>", "links"=>[], "tags"=>["speed", "midstance ground reaction", "cancellous bone", "von Mises stress", "Ostrich Struthio camelus", "bone densities", "adult tarsometatarsus shafts", "TMT", "FE", "Structural Mechanics BackgroundThe", "CT"], "article_id"=>3130972, "categories"=>["Biophysics", "Cell Biology", "Physiology", "Biotechnology", "Evolutionary Biology", "Geology", "Environmental Sciences not elsewhere classified", "Ecology", "Developmental Biology"], "users"=>["Meagan M. Gilbert", "Eric Snively", "John Cotton"], "doi"=>"https://dx.doi.org/10.1371/journal.pone.0149708.g003", "stats"=>{"downloads"=>0, "page_views"=>0, "likes"=>0}, "figshare_url"=>"https://figshare.com/articles/The_Tarsometatarsus_of_the_Ostrich_i_Struthio_camelus_i_Anatomy_Bone_Densities_and_Structural_Mechanics_Fig_3/3130972", "title"=>"The Tarsometatarsus of the Ostrich <i>Struthio camelus</i>: Anatomy, Bone Densities, and Structural Mechanics - Fig 3", "pos_in_sequence"=>4, "defined_type"=>1, "published_date"=>"2016-03-25 05:46:44"}
  • {"files"=>["https://ndownloader.figshare.com/files/4870693"], "description"=>"<p>Densities in Hounsfield units (HU) on the external surface of an adult ostrich left tarsometatarsus, reconstructed in anterior (A), posterior (B), medial (C), and lateral (D) views. High-density compact bone occurs throughout the shaft. Low density is present at the articular ends near the mesotarsal and metatarsophalangeal joints. Note that the hypotarsus grades from proximal low density bone to distal high density compact bone. Abbreviations: CL = cotyla lateralis, CM = cotya medialis, FI = fossa infracotylaris, CTC = Crista tibialis cranialis, H = hypotarsus, CMP = Crista medianoplantaris, CPL = Crista plantares lateralis, CPM = Crista plantares medialis, OL = ossified ligament, TM III = trochlea metatarsi III, TM IV = trochlea metatarsi IV.</p>", "links"=>[], "tags"=>["speed", "midstance ground reaction", "cancellous bone", "von Mises stress", "Ostrich Struthio camelus", "bone densities", "adult tarsometatarsus shafts", "TMT", "FE", "Structural Mechanics BackgroundThe", "CT"], "article_id"=>3130909, "categories"=>["Biophysics", "Cell Biology", "Physiology", "Biotechnology", "Evolutionary Biology", "Geology", "Environmental Sciences not elsewhere classified", "Ecology", "Developmental Biology"], "users"=>["Meagan M. Gilbert", "Eric Snively", "John Cotton"], "doi"=>"https://dx.doi.org/10.1371/journal.pone.0149708.g001", "stats"=>{"downloads"=>0, "page_views"=>0, "likes"=>0}, "figshare_url"=>"https://figshare.com/articles/The_Tarsometatarsus_of_the_Ostrich_i_Struthio_camelus_i_Anatomy_Bone_Densities_and_Structural_Mechanics_Fig_1/3130909", "title"=>"The Tarsometatarsus of the Ostrich <i>Struthio camelus</i>: Anatomy, Bone Densities, and Structural Mechanics - Fig 1", "pos_in_sequence"=>2, "defined_type"=>1, "published_date"=>"2016-03-25 05:46:44"}
  • {"files"=>["https://ndownloader.figshare.com/files/4880488"], "description"=>"<p>A and B are for a lateral view, and C and D in anterior view. A and C are in the global reference frame and coordinate system of the ground (<a href=\"http://www.plosone.org/article/info:doi/10.1371/journal.pone.0149708#pone.0149708.g015\" target=\"_blank\">Fig 15</a>). B and D are in the anatomical reference frame and coordinate system of the tarsometatarsus (TMT). <a href=\"http://www.plosone.org/article/info:doi/10.1371/journal.pone.0149708#pone.0149708.t005\" target=\"_blank\">Table 5</a> includes rotation angles and matrices for forces in this frame. Variable definitions are in <a href=\"http://www.plosone.org/article/info:doi/10.1371/journal.pone.0149708#pone.0149708.t004\" target=\"_blank\">Table 4</a>.</p>", "links"=>[], "tags"=>["speed", "midstance ground reaction", "cancellous bone", "von Mises stress", "Ostrich Struthio camelus", "bone densities", "adult tarsometatarsus shafts", "TMT", "FE", "Structural Mechanics BackgroundThe", "CT"], "article_id"=>3131296, "categories"=>["Biophysics", "Cell Biology", "Physiology", "Biotechnology", "Evolutionary Biology", "Geology", "Environmental Sciences not elsewhere classified", "Ecology", "Developmental Biology"], "users"=>["Meagan M. Gilbert", "Eric Snively", "John Cotton"], "doi"=>"https://dx.doi.org/10.1371/journal.pone.0149708.g019", "stats"=>{"downloads"=>0, "page_views"=>0, "likes"=>0}, "figshare_url"=>"https://figshare.com/articles/Free_body_diagrams_for_forces_and_their_components_acting_upon_the_tarsometatarsus_including_muscle_and_reaction_forces_as_listed_in_Fig_15_/3131296", "title"=>"Free body diagrams for forces and their components acting upon the tarsometatarsus, including muscle and reaction forces as listed in Fig 15.", "pos_in_sequence"=>20, "defined_type"=>1, "published_date"=>"2016-03-25 06:42:00"}
  • {"files"=>["https://ndownloader.figshare.com/files/4870870"], "description"=>"<p>Results were sampled from anterior, posterior, lateral, and medial surfaces, in the center of the each transect (white lines), except proximally where results were sampled from MT II (black dot) to avoid the Fossa infracotylaris.</p>", "links"=>[], "tags"=>["speed", "midstance ground reaction", "cancellous bone", "von Mises stress", "Ostrich Struthio camelus", "bone densities", "adult tarsometatarsus shafts", "TMT", "FE", "Structural Mechanics BackgroundThe", "CT"], "article_id"=>3131041, "categories"=>["Biophysics", "Cell Biology", "Physiology", "Biotechnology", "Evolutionary Biology", "Geology", "Environmental Sciences not elsewhere classified", "Ecology", "Developmental Biology"], "users"=>["Meagan M. Gilbert", "Eric Snively", "John Cotton"], "doi"=>"https://dx.doi.org/10.1371/journal.pone.0149708.g006", "stats"=>{"downloads"=>0, "page_views"=>0, "likes"=>0}, "figshare_url"=>"https://figshare.com/articles/Adult_ostrich_left_tarsometatarsus_in_anterior_view_illustrating_longitudinal_positions_of_sampled_densities_stresses_and_strains_/3131041", "title"=>"Adult ostrich left tarsometatarsus in anterior view illustrating longitudinal positions of sampled densities, stresses and strains.", "pos_in_sequence"=>7, "defined_type"=>1, "published_date"=>"2016-03-25 05:46:44"}
  • {"files"=>["https://ndownloader.figshare.com/files/4880533"], "description"=>"<p>Brick numbers are sampled tetrahedral elements at the specified locations (<a href=\"http://www.plosone.org/article/info:doi/10.1371/journal.pone.0149708#pone.0149708.g007\" target=\"_blank\">Fig 7</a>). Abbreviations are as in Figs <a href=\"http://www.plosone.org/article/info:doi/10.1371/journal.pone.0149708#pone.0149708.g001\" target=\"_blank\">1</a>–<a href=\"http://www.plosone.org/article/info:doi/10.1371/journal.pone.0149708#pone.0149708.g004\" target=\"_blank\">4</a>; CLP = collateral ligament pit, and ITM IV = the centerpoint of Trochlea metatarsi IV. Positive values indicate tension, and negative indicates compression. Except at constraints (LCML = ligamentum collaterale mediale longum, CL = Cotyla lateralis), the greatest compressive stresses occur along the bone’s long axis (<i>σ</i><sub><i>ZZ</i></sub>) on the medial and anterior surfaces, and tensile stresses posteriorly and laterally at midshaft and just distal to this (“Mid-distal”). <i>σ</i><sub><i>vm</i></sub> are also highest at these positions. Note artificially high stresses where compact and cancellous elements meet in the collateral ligament pit of MT IV, low shear stresses (<i>σ</i><sub><i>XY</i></sub>, <i>σ</i><sub><i>YZ</i></sub>, <i>σ</i><sub><i>XZ</i></sub>) except at constraints, and low stresses at the trochlear applications of the ground reaction force (TM III lateral and medial; ITM IV).</p>", "links"=>[], "tags"=>["speed", "midstance ground reaction", "cancellous bone", "von Mises stress", "Ostrich Struthio camelus", "bone densities", "adult tarsometatarsus shafts", "TMT", "FE", "Structural Mechanics BackgroundThe", "CT"], "article_id"=>3138787, "categories"=>["Biophysics", "Cell Biology", "Physiology", "Biotechnology", "Evolutionary Biology", "Geology", "Environmental Sciences not elsewhere classified", "Ecology", "Developmental Biology"], "users"=>["Meagan M. Gilbert", "Eric Snively", "John Cotton"], "doi"=>"https://dx.doi.org/10.1371/journal.pone.0149708.t003", "stats"=>{"downloads"=>0, "page_views"=>0, "likes"=>0}, "figshare_url"=>"https://figshare.com/articles/Hounsfield_attenuation_units_HU_stresses_in_the_tarsometatarsus_s_coordinate_system_x_anterior_y_medial_z_proximal_and_von_Mises_stresses_i_i_sub_i_vm_i_sub_at_anatomical_features_and_positions_along_the_tarsometatarsus_shaft_/3138787", "title"=>"Hounsfield attenuation units (HU), stresses in the tarsometatarsus’s coordinate system (+x anterior, +y medial, +z proximal), and von Mises stresses <i>σ</i><sub><i>vm</i></sub>, at anatomical features and positions along the tarsometatarsus shaft.", "pos_in_sequence"=>24, "defined_type"=>3, "published_date"=>"2016-03-25 06:42:00"}
  • {"files"=>["https://ndownloader.figshare.com/files/4870609", "https://ndownloader.figshare.com/files/4870618", "https://ndownloader.figshare.com/files/4870645", "https://ndownloader.figshare.com/files/4870654"], "description"=>"<div><p>Background</p><p>The ostrich <i>Struthio camelus</i> reaches the highest speeds of any extant biped, and has been an extraordinary subject for studies of soft-tissue anatomy and dynamics of locomotion. An elongate tarsometatarsus in adult ostriches contributes to their speed. The internal osteology of the tarsometatarsus, and its mechanical response to forces of running, are potentially revealing about ostrich foot function.</p><p>Methods/Principal Findings</p><p>Computed tomography (CT) reveals anatomy and bone densities in tarsometatarsi of an adult and a young juvenile ostrich. A finite element (FE) model for the adult was constructed with properties of compact and cancellous bone where these respective tissues predominate in the original specimen. The model was subjected to a quasi-static analysis under the midstance ground reaction and muscular forces of a fast run. <i>Anatomy–</i>Metatarsals are divided proximally and distally and unify around a single internal cavity in most adult tarsometatarsus shafts, but the juvenile retains an internal three-part division of metatarsals throughout the element. The juvenile has a sparsely ossified hypotarsus for insertion of the m. fibularis longus, as part of a proximally separate third metatarsal. Bone is denser in all regions of the adult tarsometatarsus, with cancellous bone concentrated at proximal and distal articulations, and highly dense compact bone throughout the shaft. <i>Biomechanics–</i>FE simulations show stress and strain are much greater at midshaft than at force applications, suggesting that shaft bending is the most important stressor of the tarsometatarsus. Contraction of digital flexors, inducing a posterior force at the TMT distal condyles, likely reduces buildup of tensile stresses in the bone by inducing compression at these locations, and counteracts bending loads. Safety factors are high for von Mises stress, consistent with faster running speeds known for ostriches.</p><p>Conclusions/Significance</p><p>High safety factors suggest that bone densities and anatomy of the ostrich tarsometatarsus confer strength for selectively critical activities, such as fleeing and kicking predators. Anatomical results and FE modeling of the ostrich tarsometatarsus are a useful baseline for testing the structure’s capabilities and constraints for locomotion, through ontogeny and the full step cycle. With this foundation, future analyses can incorporate behaviorally realistic strain rates and distal joint forces, experimental validation, and proximal elements of the ostrich hind limb.</p></div>", "links"=>[], "tags"=>["speed", "midstance ground reaction", "cancellous bone", "von Mises stress", "Ostrich Struthio camelus", "bone densities", "adult tarsometatarsus shafts", "TMT", "FE", "Structural Mechanics BackgroundThe", "CT"], "article_id"=>3130855, "categories"=>["Biophysics", "Cell Biology", "Physiology", "Biotechnology", "Evolutionary Biology", "Geology", "Environmental Sciences not elsewhere classified", "Ecology", "Developmental Biology"], "users"=>["Meagan M. Gilbert", "Eric Snively", "John Cotton"], "doi"=>["https://dx.doi.org/10.1371/journal.pone.0149708.s001", "https://dx.doi.org/10.1371/journal.pone.0149708.s002", "https://dx.doi.org/10.1371/journal.pone.0149708.s003", "https://dx.doi.org/10.1371/journal.pone.0149708.s004"], "stats"=>{"downloads"=>0, "page_views"=>0, "likes"=>0}, "figshare_url"=>"https://figshare.com/articles/The_Tarsometatarsus_of_the_Ostrich_i_Struthio_camelus_i_Anatomy_Bone_Densities_and_Structural_Mechanics/3130855", "title"=>"The Tarsometatarsus of the Ostrich <i>Struthio camelus</i>: Anatomy, Bone Densities, and Structural Mechanics", "pos_in_sequence"=>1, "defined_type"=>4, "published_date"=>"2016-03-25 05:46:44"}
  • {"files"=>["https://ndownloader.figshare.com/files/4880500"], "description"=>"<p>Constraints (pink dots and regions) and resultants of forces applied to nodes (teal arrows) for FEA are shown in proximal (A), medial (B and C), anterodistal (D), posterior (E and F), and lateral (G and H) views. In D, the large teal area shows the tails of the arrows where the <i>F</i><sub><i>GRF</i></sub> was applied. Large arrows in B and G represent tension <i>F</i><sub><i>m</i></sub> in the gastrocnemius tendon, and the ground reaction force <i>F</i><sub><i>GRF</i></sub>. H prox. = proximal surface of the hypotarsus. H post. = distal surface of the hypotarsus, CPL = Crista plantares lateralis, CPM = Crista plantares medialis.</p>", "links"=>[], "tags"=>["speed", "midstance ground reaction", "cancellous bone", "von Mises stress", "Ostrich Struthio camelus", "bone densities", "adult tarsometatarsus shafts", "TMT", "FE", "Structural Mechanics BackgroundThe", "CT"], "article_id"=>3138748, "categories"=>["Biophysics", "Cell Biology", "Physiology", "Biotechnology", "Evolutionary Biology", "Geology", "Environmental Sciences not elsewhere classified", "Ecology", "Developmental Biology"], "users"=>["Meagan M. Gilbert", "Eric Snively", "John Cotton"], "doi"=>"https://dx.doi.org/10.1371/journal.pone.0149708.g020", "stats"=>{"downloads"=>0, "page_views"=>0, "likes"=>0}, "figshare_url"=>"https://figshare.com/articles/The_Tarsometatarsus_of_the_Ostrich_i_Struthio_camelus_i_Anatomy_Bone_Densities_and_Structural_Mechanics_Fig_20/3138748", "title"=>"The Tarsometatarsus of the Ostrich <i>Struthio camelus</i>: Anatomy, Bone Densities, and Structural Mechanics - Fig 20", "pos_in_sequence"=>21, "defined_type"=>1, "published_date"=>"2016-03-25 06:42:00"}
  • {"files"=>["https://ndownloader.figshare.com/files/4870957"], "description"=>"<p>Cross-sections through a juvenile tarsometatarsus, from proximal (A) to distal (H). Most abbreviations are as in <a href=\"http://www.plosone.org/article/info:doi/10.1371/journal.pone.0149708#pone.0149708.g006\" target=\"_blank\">Fig 6</a>; CLC-bone indicates a region where calcified cartilage is being replaced by bone, with many blood vessels perpendicular to the section. Only a small region of the tarsometatarsus has extensive fusion and compact bone (E and F). Note that the second metatarsal (MT II) is still prominent at this age, evident in F, G, and H.</p>", "links"=>[], "tags"=>["speed", "midstance ground reaction", "cancellous bone", "von Mises stress", "Ostrich Struthio camelus", "bone densities", "adult tarsometatarsus shafts", "TMT", "FE", "Structural Mechanics BackgroundThe", "CT"], "article_id"=>3131116, "categories"=>["Biophysics", "Cell Biology", "Physiology", "Biotechnology", "Evolutionary Biology", "Geology", "Environmental Sciences not elsewhere classified", "Ecology", "Developmental Biology"], "users"=>["Meagan M. Gilbert", "Eric Snively", "John Cotton"], "doi"=>"https://dx.doi.org/10.1371/journal.pone.0149708.g009", "stats"=>{"downloads"=>0, "page_views"=>0, "likes"=>0}, "figshare_url"=>"https://figshare.com/articles/The_Tarsometatarsus_of_the_Ostrich_i_Struthio_camelus_i_Anatomy_Bone_Densities_and_Structural_Mechanics_Fig_9/3131116", "title"=>"The Tarsometatarsus of the Ostrich <i>Struthio camelus</i>: Anatomy, Bone Densities, and Structural Mechanics - Fig 9", "pos_in_sequence"=>10, "defined_type"=>1, "published_date"=>"2016-03-25 05:46:44"}
  • {"files"=>["https://ndownloader.figshare.com/files/4880545"], "description"=>"<p>Brick numbers are sampled tetrahedral elements at the specified locations (<a href=\"http://www.plosone.org/article/info:doi/10.1371/journal.pone.0149708#pone.0149708.g007\" target=\"_blank\">Fig 7</a>). Abbreviations are as in Figs <a href=\"http://www.plosone.org/article/info:doi/10.1371/journal.pone.0149708#pone.0149708.g001\" target=\"_blank\">1</a>–<a href=\"http://www.plosone.org/article/info:doi/10.1371/journal.pone.0149708#pone.0149708.g004\" target=\"_blank\">4</a>; CLP = collateral ligament pit, and ITM IV = the centerpoint of Trochlea metatarsi IV. All notable patterns are the same as for stresses, explained in the caption for <a href=\"http://www.plosone.org/article/info:doi/10.1371/journal.pone.0149708#pone.0149708.t003\" target=\"_blank\">Table 3</a>.</p>", "links"=>[], "tags"=>["speed", "midstance ground reaction", "cancellous bone", "von Mises stress", "Ostrich Struthio camelus", "bone densities", "adult tarsometatarsus shafts", "TMT", "FE", "Structural Mechanics BackgroundThe", "CT"], "article_id"=>3138799, "categories"=>["Biophysics", "Cell Biology", "Physiology", "Biotechnology", "Evolutionary Biology", "Geology", "Environmental Sciences not elsewhere classified", "Ecology", "Developmental Biology"], "users"=>["Meagan M. Gilbert", "Eric Snively", "John Cotton"], "doi"=>"https://dx.doi.org/10.1371/journal.pone.0149708.t004", "stats"=>{"downloads"=>0, "page_views"=>0, "likes"=>0}, "figshare_url"=>"https://figshare.com/articles/Hounsfield_attenuation_units_HU_strains_in_the_tarsometatarsus_s_coordinate_system_x_anterior_y_medial_z_proximal_and_von_Mises_strains_i_i_sub_i_vm_i_sub_at_anatomical_features_and_positions_along_the_tarsometatarsus_shaft_/3138799", "title"=>"Hounsfield attenuation units (HU), strains in the tarsometatarsus’s coordinate system (+x anterior, +y medial, +z proximal), and von Mises strains <i>ε</i><sub><i>vm</i></sub>, at anatomical features and positions along the tarsometatarsus shaft.", "pos_in_sequence"=>25, "defined_type"=>3, "published_date"=>"2016-03-25 06:42:00"}
  • {"files"=>["https://ndownloader.figshare.com/files/4871110"], "description"=>"<p>Convergence and material property sensitivity in highest (A) and lowest (B) resolution models. The lowest resolution model (77,722 nodes) has lower peak von Mises stresses (84.6 MPa) than the highest resolution model (180,029 nodes; 100 MPa). Peak stress occurs at the proximal constraints in both models. Stresses elsewhere in the models are similar. The lower peak value in the stress color histogram (B) makes anteriomedial stresses appear greater (yellower) than in the high resolution model, but sampled stresses are nearly identical throughout the TMT shaft. Both models have material properties of compact bone. Note the smoother transition from proximal to distal stresses than in models with both cancellous and compact bone properties in appropriate regions (<a href=\"http://www.plosone.org/article/info:doi/10.1371/journal.pone.0149708#pone.0149708.g011\" target=\"_blank\">Fig 11</a>).</p>", "links"=>[], "tags"=>["speed", "midstance ground reaction", "cancellous bone", "von Mises stress", "Ostrich Struthio camelus", "bone densities", "adult tarsometatarsus shafts", "TMT", "FE", "Structural Mechanics BackgroundThe", "CT"], "article_id"=>3131248, "categories"=>["Biophysics", "Cell Biology", "Physiology", "Biotechnology", "Evolutionary Biology", "Geology", "Environmental Sciences not elsewhere classified", "Ecology", "Developmental Biology"], "users"=>["Meagan M. Gilbert", "Eric Snively", "John Cotton"], "doi"=>"https://dx.doi.org/10.1371/journal.pone.0149708.g015", "stats"=>{"downloads"=>0, "page_views"=>0, "likes"=>0}, "figshare_url"=>"https://figshare.com/articles/The_Tarsometatarsus_of_the_Ostrich_i_Struthio_camelus_i_Anatomy_Bone_Densities_and_Structural_Mechanics_Fig_15/3131248", "title"=>"The Tarsometatarsus of the Ostrich <i>Struthio camelus</i>: Anatomy, Bone Densities, and Structural Mechanics - Fig 15", "pos_in_sequence"=>16, "defined_type"=>1, "published_date"=>"2016-03-25 05:46:44"}
  • {"files"=>["https://ndownloader.figshare.com/files/4871047"], "description"=>"<p>Stress color scales and histograms are the same as in Figs <a href=\"http://www.plosone.org/article/info:doi/10.1371/journal.pone.0149708#pone.0149708.g008\" target=\"_blank\">8</a> and <a href=\"http://www.plosone.org/article/info:doi/10.1371/journal.pone.0149708#pone.0149708.g009\" target=\"_blank\">9</a>. A. An oblique view of tarsometatarsus shows external <i>σ</i><sub><i>ZZ</i></sub> stresses, B. Cross-sections indicate regions of low <i>σ</i><sub><i>ZZ</i></sub> stress (green), tension (“hot” colors) and compression (“cool” colors). C. Another oblique view depicts external von Mises stresses. D. Cross-sections show distribution of low (blue), intermediate (green), and high (yellow and red) <i>σ</i><sub>von Mises</sub>. Note that in this scale, with maximum absolute values of 50 MPa, stresses are clipped out at the constraints on the mesotarsal joint, appearing white because their values are higher than the highest stresses in the color scale. The restricted scale allows us to better visualize stress differences, with greatly contrasting colors for moderately different stresses. The highest stresses are medial (D), and are compressive (B).</p>", "links"=>[], "tags"=>["speed", "midstance ground reaction", "cancellous bone", "von Mises stress", "Ostrich Struthio camelus", "bone densities", "adult tarsometatarsus shafts", "TMT", "FE", "Structural Mechanics BackgroundThe", "CT"], "article_id"=>3131185, "categories"=>["Biophysics", "Cell Biology", "Physiology", "Biotechnology", "Evolutionary Biology", "Geology", "Environmental Sciences not elsewhere classified", "Ecology", "Developmental Biology"], "users"=>["Meagan M. Gilbert", "Eric Snively", "John Cotton"], "doi"=>"https://dx.doi.org/10.1371/journal.pone.0149708.g012", "stats"=>{"downloads"=>0, "page_views"=>0, "likes"=>0}, "figshare_url"=>"https://figshare.com/articles/Cross_sections_reveal_internal_stresses_in_the_tarsometatarsus_/3131185", "title"=>"Cross-sections reveal internal stresses in the tarsometatarsus.", "pos_in_sequence"=>13, "defined_type"=>1, "published_date"=>"2016-03-25 05:46:44"}
  • {"files"=>["https://ndownloader.figshare.com/files/4880554"], "description"=>"<p>Problem statement variables used for determining ankle extensor muscle forces, in Figs <a href=\"http://www.plosone.org/article/info:doi/10.1371/journal.pone.0149708#pone.0149708.g014\" target=\"_blank\">14</a>–<a href=\"http://www.plosone.org/article/info:doi/10.1371/journal.pone.0149708#pone.0149708.g016\" target=\"_blank\">16</a> and <a href=\"http://www.plosone.org/article/info:doi/10.1371/journal.pone.0149708#pone.0149708.t006\" target=\"_blank\">Table 6</a>.</p>", "links"=>[], "tags"=>["speed", "midstance ground reaction", "cancellous bone", "von Mises stress", "Ostrich Struthio camelus", "bone densities", "adult tarsometatarsus shafts", "TMT", "FE", "Structural Mechanics BackgroundThe", "CT"], "article_id"=>3138802, "categories"=>["Biophysics", "Cell Biology", "Physiology", "Biotechnology", "Evolutionary Biology", "Geology", "Environmental Sciences not elsewhere classified", "Ecology", "Developmental Biology"], "users"=>["Meagan M. Gilbert", "Eric Snively", "John Cotton"], "doi"=>"https://dx.doi.org/10.1371/journal.pone.0149708.t005", "stats"=>{"downloads"=>0, "page_views"=>0, "likes"=>0}, "figshare_url"=>"https://figshare.com/articles/Problem_statement_variables_used_for_determining_ankle_extensor_muscle_forces_in_Figs_14_16_and_Table_6_/3138802", "title"=>"Problem statement variables used for determining ankle extensor muscle forces, in Figs 14–16 and Table 6.", "pos_in_sequence"=>26, "defined_type"=>3, "published_date"=>"2016-03-25 06:42:00"}
  • {"files"=>["https://ndownloader.figshare.com/files/4871071"], "description"=>"<p>The Fig depicts A (anterior), B (posterior), C (medial), and D (lateral) views. Peak stresses at the constraints of 76 MPa (E for scale) are lower than if all forces necessary to counteract the <i>F</i><sub><i>GRF</i></sub> moment are applied to the hypotarsus.</p>", "links"=>[], "tags"=>["speed", "midstance ground reaction", "cancellous bone", "von Mises stress", "Ostrich Struthio camelus", "bone densities", "adult tarsometatarsus shafts", "TMT", "FE", "Structural Mechanics BackgroundThe", "CT"], "article_id"=>3131209, "categories"=>["Biophysics", "Cell Biology", "Physiology", "Biotechnology", "Evolutionary Biology", "Geology", "Environmental Sciences not elsewhere classified", "Ecology", "Developmental Biology"], "users"=>["Meagan M. Gilbert", "Eric Snively", "John Cotton"], "doi"=>"https://dx.doi.org/10.1371/journal.pone.0149708.g013", "stats"=>{"downloads"=>0, "page_views"=>0, "likes"=>0}, "figshare_url"=>"https://figshare.com/articles/von_Mises_stresses_in_the_i_Struthio_i_tarsometatarsus_with_m_gastrocnemius_restricted_to_the_posterior_insertions_and_excluded_from_the_hypotarsus_and_m_fibularis_longus_inserting_alone_on_the_hypotarsus_/3131209", "title"=>"von Mises stresses in the <i>Struthio</i> tarsometatarsus with m. gastrocnemius restricted to the posterior insertions and excluded from the hypotarsus, and m. fibularis longus inserting alone on the hypotarsus.", "pos_in_sequence"=>14, "defined_type"=>1, "published_date"=>"2016-03-25 05:46:44"}
  • {"files"=>["https://ndownloader.figshare.com/files/4870777"], "description"=>"<p>Note the C-shaped meniscus lateralis at the lateral joint surface. Abbreviations: C.ca = Cornu caudale, C.cr = Cornu craniale, CL = Cotyla lateralis, CM = Cotyla medialis, LCL = lateral collaterale ligament, LCM = ligamentum collaterale mediale, LCML = ligamentum collaterale mediale longum, ML = meniscus lateralis, MFB = M. fibularis brevis, MGT = M. gastrocnemius tendon.</p>", "links"=>[], "tags"=>["speed", "midstance ground reaction", "cancellous bone", "von Mises stress", "Ostrich Struthio camelus", "bone densities", "adult tarsometatarsus shafts", "TMT", "FE", "Structural Mechanics BackgroundThe", "CT"], "article_id"=>3130993, "categories"=>["Biophysics", "Cell Biology", "Physiology", "Biotechnology", "Evolutionary Biology", "Geology", "Environmental Sciences not elsewhere classified", "Ecology", "Developmental Biology"], "users"=>["Meagan M. Gilbert", "Eric Snively", "John Cotton"], "doi"=>"https://dx.doi.org/10.1371/journal.pone.0149708.g004", "stats"=>{"downloads"=>0, "page_views"=>0, "likes"=>0}, "figshare_url"=>"https://figshare.com/articles/Proximal_left_tarsometatarsus_joint_surface_showing_attachment_sites_for_ligaments_and_menisci_/3130993", "title"=>"Proximal left tarsometatarsus joint surface showing attachment sites for ligaments and menisci.", "pos_in_sequence"=>5, "defined_type"=>1, "published_date"=>"2016-03-25 05:46:44"}
  • {"files"=>["https://ndownloader.figshare.com/files/4870897"], "description"=>"<p>CT cross sections of left adult tarsometatarsus, from proximal (A) to distal (H). Despite ankylosis, distinct metatarsal bones separated by intermetatarsal septa are present in the proximal and distal sections of the bone. The individual metatarsals become fully fused through the center of the shaft, creating a circular, hollow tube composed of compact bone. Abbreviations: CA = cancellous bone, CP = compact bone, IMTS = intermetatarsal septum, MT II = metatarsal II, MT III = metatarsal III, MT IV = metatarsal IV, OL = ossified ligament, RM = residual marrow.</p>", "links"=>[], "tags"=>["speed", "midstance ground reaction", "cancellous bone", "von Mises stress", "Ostrich Struthio camelus", "bone densities", "adult tarsometatarsus shafts", "TMT", "FE", "Structural Mechanics BackgroundThe", "CT"], "article_id"=>3131068, "categories"=>["Biophysics", "Cell Biology", "Physiology", "Biotechnology", "Evolutionary Biology", "Geology", "Environmental Sciences not elsewhere classified", "Ecology", "Developmental Biology"], "users"=>["Meagan M. Gilbert", "Eric Snively", "John Cotton"], "doi"=>"https://dx.doi.org/10.1371/journal.pone.0149708.g007", "stats"=>{"downloads"=>0, "page_views"=>0, "likes"=>0}, "figshare_url"=>"https://figshare.com/articles/The_Tarsometatarsus_of_the_Ostrich_i_Struthio_camelus_i_Anatomy_Bone_Densities_and_Structural_Mechanics_Fig_7/3131068", "title"=>"The Tarsometatarsus of the Ostrich <i>Struthio camelus</i>: Anatomy, Bone Densities, and Structural Mechanics - Fig 7", "pos_in_sequence"=>8, "defined_type"=>1, "published_date"=>"2016-03-25 05:46:44"}
  • {"files"=>["https://ndownloader.figshare.com/files/4870732"], "description"=>"<p>Densities in Hounsfield units (HU on the external surface of an adult ostrich left tarsometatarsus, reconstructed in proximal (A) and distal (B) views. Note bone density at joint surfaces is significantly less dense then that at the shaft. Abbreviations: CL = cotyla lateralis, CM = cotyla medialis, H = hypotarsus, TM III = trochlea metatarsi III, TM IV = trochlea metatarsi IV. Finite element constraints: CM, CL.</p>", "links"=>[], "tags"=>["speed", "midstance ground reaction", "cancellous bone", "von Mises stress", "Ostrich Struthio camelus", "bone densities", "adult tarsometatarsus shafts", "TMT", "FE", "Structural Mechanics BackgroundThe", "CT"], "article_id"=>3130942, "categories"=>["Biophysics", "Cell Biology", "Physiology", "Biotechnology", "Evolutionary Biology", "Geology", "Environmental Sciences not elsewhere classified", "Ecology", "Developmental Biology"], "users"=>["Meagan M. Gilbert", "Eric Snively", "John Cotton"], "doi"=>"https://dx.doi.org/10.1371/journal.pone.0149708.g002", "stats"=>{"downloads"=>0, "page_views"=>0, "likes"=>0}, "figshare_url"=>"https://figshare.com/articles/The_Tarsometatarsus_of_the_Ostrich_i_Struthio_camelus_i_Anatomy_Bone_Densities_and_Structural_Mechanics_Fig_2/3130942", "title"=>"The Tarsometatarsus of the Ostrich <i>Struthio camelus</i>: Anatomy, Bone Densities, and Structural Mechanics - Fig 2", "pos_in_sequence"=>3, "defined_type"=>1, "published_date"=>"2016-03-25 05:46:44"}

PMC Usage Stats | Further Information

  • {"unique-ip"=>"12", "full-text"=>"13", "pdf"=>"3", "abstract"=>"0", "scanned-summary"=>"0", "scanned-page-browse"=>"0", "figure"=>"2", "supp-data"=>"0", "cited-by"=>"0", "year"=>"2016", "month"=>"4"}
  • {"unique-ip"=>"10", "full-text"=>"10", "pdf"=>"2", "abstract"=>"0", "scanned-summary"=>"0", "scanned-page-browse"=>"0", "figure"=>"2", "supp-data"=>"0", "cited-by"=>"0", "year"=>"2016", "month"=>"5"}
  • {"unique-ip"=>"11", "full-text"=>"12", "pdf"=>"0", "abstract"=>"0", "scanned-summary"=>"0", "scanned-page-browse"=>"0", "figure"=>"0", "supp-data"=>"0", "cited-by"=>"0", "year"=>"2016", "month"=>"6"}
  • {"unique-ip"=>"17", "full-text"=>"17", "pdf"=>"5", "abstract"=>"0", "scanned-summary"=>"0", "scanned-page-browse"=>"0", "figure"=>"2", "supp-data"=>"0", "cited-by"=>"0", "year"=>"2016", "month"=>"7"}
  • {"unique-ip"=>"13", "full-text"=>"15", "pdf"=>"3", "abstract"=>"0", "scanned-summary"=>"0", "scanned-page-browse"=>"0", "figure"=>"0", "supp-data"=>"0", "cited-by"=>"0", "year"=>"2016", "month"=>"8"}
  • {"unique-ip"=>"10", "full-text"=>"11", "pdf"=>"5", "abstract"=>"0", "scanned-summary"=>"0", "scanned-page-browse"=>"0", "figure"=>"0", "supp-data"=>"0", "cited-by"=>"0", "year"=>"2016", "month"=>"9"}
  • {"unique-ip"=>"16", "full-text"=>"15", "pdf"=>"7", "abstract"=>"0", "scanned-summary"=>"0", "scanned-page-browse"=>"0", "figure"=>"1", "supp-data"=>"0", "cited-by"=>"0", "year"=>"2016", "month"=>"10"}
  • {"unique-ip"=>"11", "full-text"=>"9", "pdf"=>"3", "abstract"=>"0", "scanned-summary"=>"0", "scanned-page-browse"=>"0", "figure"=>"3", "supp-data"=>"0", "cited-by"=>"0", "year"=>"2016", "month"=>"11"}
  • {"unique-ip"=>"8", "full-text"=>"10", "pdf"=>"1", "abstract"=>"0", "scanned-summary"=>"0", "scanned-page-browse"=>"0", "figure"=>"1", "supp-data"=>"0", "cited-by"=>"0", "year"=>"2016", "month"=>"12"}
  • {"unique-ip"=>"15", "full-text"=>"11", "pdf"=>"2", "abstract"=>"0", "scanned-summary"=>"0", "scanned-page-browse"=>"0", "figure"=>"2", "supp-data"=>"0", "cited-by"=>"0", "year"=>"2017", "month"=>"1"}
  • {"unique-ip"=>"9", "full-text"=>"9", "pdf"=>"0", "abstract"=>"0", "scanned-summary"=>"0", "scanned-page-browse"=>"0", "figure"=>"2", "supp-data"=>"0", "cited-by"=>"0", "year"=>"2017", "month"=>"2"}
  • {"unique-ip"=>"16", "full-text"=>"23", "pdf"=>"7", "abstract"=>"0", "scanned-summary"=>"0", "scanned-page-browse"=>"0", "figure"=>"13", "supp-data"=>"0", "cited-by"=>"0", "year"=>"2017", "month"=>"3"}
  • {"unique-ip"=>"6", "full-text"=>"6", "pdf"=>"0", "abstract"=>"0", "scanned-summary"=>"0", "scanned-page-browse"=>"0", "figure"=>"2", "supp-data"=>"0", "cited-by"=>"0", "year"=>"2017", "month"=>"4"}
  • {"unique-ip"=>"5", "full-text"=>"5", "pdf"=>"1", "abstract"=>"0", "scanned-summary"=>"0", "scanned-page-browse"=>"0", "figure"=>"0", "supp-data"=>"0", "cited-by"=>"0", "year"=>"2017", "month"=>"5"}
  • {"unique-ip"=>"3", "full-text"=>"2", "pdf"=>"0", "abstract"=>"0", "scanned-summary"=>"0", "scanned-page-browse"=>"0", "figure"=>"2", "supp-data"=>"0", "cited-by"=>"0", "year"=>"2017", "month"=>"6"}
  • {"unique-ip"=>"3", "full-text"=>"3", "pdf"=>"0", "abstract"=>"0", "scanned-summary"=>"0", "scanned-page-browse"=>"0", "figure"=>"0", "supp-data"=>"0", "cited-by"=>"0", "year"=>"2017", "month"=>"7"}
  • {"unique-ip"=>"7", "full-text"=>"5", "pdf"=>"0", "abstract"=>"0", "scanned-summary"=>"0", "scanned-page-browse"=>"0", "figure"=>"1", "supp-data"=>"0", "cited-by"=>"0", "year"=>"2017", "month"=>"8"}
  • {"unique-ip"=>"7", "full-text"=>"7", "pdf"=>"4", "abstract"=>"0", "scanned-summary"=>"0", "scanned-page-browse"=>"0", "figure"=>"0", "supp-data"=>"0", "cited-by"=>"0", "year"=>"2017", "month"=>"9"}
  • {"unique-ip"=>"6", "full-text"=>"6", "pdf"=>"2", "abstract"=>"0", "scanned-summary"=>"0", "scanned-page-browse"=>"0", "figure"=>"1", "supp-data"=>"0", "cited-by"=>"0", "year"=>"2017", "month"=>"10"}
  • {"unique-ip"=>"8", "full-text"=>"8", "pdf"=>"1", "abstract"=>"0", "scanned-summary"=>"0", "scanned-page-browse"=>"0", "figure"=>"0", "supp-data"=>"0", "cited-by"=>"0", "year"=>"2017", "month"=>"11"}
  • {"unique-ip"=>"17", "full-text"=>"14", "pdf"=>"3", "abstract"=>"0", "scanned-summary"=>"0", "scanned-page-browse"=>"0", "figure"=>"0", "supp-data"=>"0", "cited-by"=>"1", "year"=>"2017", "month"=>"12"}
  • {"unique-ip"=>"5", "full-text"=>"6", "pdf"=>"1", "abstract"=>"0", "scanned-summary"=>"0", "scanned-page-browse"=>"0", "figure"=>"0", "supp-data"=>"0", "cited-by"=>"0", "year"=>"2018", "month"=>"1"}
  • {"unique-ip"=>"19", "full-text"=>"20", "pdf"=>"0", "abstract"=>"0", "scanned-summary"=>"0", "scanned-page-browse"=>"0", "figure"=>"0", "supp-data"=>"0", "cited-by"=>"0", "year"=>"2018", "month"=>"3"}
  • {"unique-ip"=>"23", "full-text"=>"27", "pdf"=>"2", "scanned-summary"=>"0", "scanned-page-browse"=>"0", "figure"=>"2", "supp-data"=>"0", "cited-by"=>"0", "year"=>"2019", "month"=>"1"}
  • {"unique-ip"=>"23", "full-text"=>"21", "pdf"=>"8", "scanned-summary"=>"0", "scanned-page-browse"=>"0", "figure"=>"0", "supp-data"=>"1", "cited-by"=>"0", "year"=>"2018", "month"=>"11"}
  • {"unique-ip"=>"14", "full-text"=>"16", "pdf"=>"1", "scanned-summary"=>"0", "scanned-page-browse"=>"0", "figure"=>"0", "supp-data"=>"0", "cited-by"=>"0", "year"=>"2018", "month"=>"9"}
  • {"unique-ip"=>"20", "full-text"=>"20", "pdf"=>"0", "scanned-summary"=>"0", "scanned-page-browse"=>"0", "figure"=>"2", "supp-data"=>"0", "cited-by"=>"0", "year"=>"2018", "month"=>"4"}
  • {"unique-ip"=>"33", "full-text"=>"25", "pdf"=>"2", "scanned-summary"=>"0", "scanned-page-browse"=>"0", "figure"=>"9", "supp-data"=>"0", "cited-by"=>"0", "year"=>"2018", "month"=>"5"}
  • {"unique-ip"=>"13", "full-text"=>"11", "pdf"=>"3", "scanned-summary"=>"0", "scanned-page-browse"=>"0", "figure"=>"2", "supp-data"=>"0", "cited-by"=>"0", "year"=>"2018", "month"=>"6"}
  • {"unique-ip"=>"8", "full-text"=>"7", "pdf"=>"1", "scanned-summary"=>"0", "scanned-page-browse"=>"0", "figure"=>"0", "supp-data"=>"2", "cited-by"=>"0", "year"=>"2018", "month"=>"7"}
  • {"unique-ip"=>"12", "full-text"=>"12", "pdf"=>"1", "scanned-summary"=>"0", "scanned-page-browse"=>"0", "figure"=>"7", "supp-data"=>"4", "cited-by"=>"0", "year"=>"2018", "month"=>"8"}
  • {"unique-ip"=>"15", "full-text"=>"18", "pdf"=>"0", "scanned-summary"=>"0", "scanned-page-browse"=>"0", "figure"=>"1", "supp-data"=>"0", "cited-by"=>"0", "year"=>"2018", "month"=>"10"}
  • {"unique-ip"=>"25", "full-text"=>"32", "pdf"=>"9", "scanned-summary"=>"0", "scanned-page-browse"=>"0", "figure"=>"0", "supp-data"=>"0", "cited-by"=>"0", "year"=>"2018", "month"=>"12"}
  • {"unique-ip"=>"21", "full-text"=>"23", "pdf"=>"3", "scanned-summary"=>"0", "scanned-page-browse"=>"0", "figure"=>"0", "supp-data"=>"0", "cited-by"=>"0", "year"=>"2019", "month"=>"2"}
  • {"unique-ip"=>"15", "full-text"=>"15", "pdf"=>"2", "scanned-summary"=>"0", "scanned-page-browse"=>"0", "figure"=>"0", "supp-data"=>"0", "cited-by"=>"0", "year"=>"2019", "month"=>"3"}
  • {"unique-ip"=>"9", "full-text"=>"8", "pdf"=>"2", "scanned-summary"=>"0", "scanned-page-browse"=>"0", "figure"=>"0", "supp-data"=>"0", "cited-by"=>"0", "year"=>"2019", "month"=>"4"}
  • {"unique-ip"=>"17", "full-text"=>"18", "pdf"=>"0", "scanned-summary"=>"0", "scanned-page-browse"=>"0", "figure"=>"1", "supp-data"=>"0", "cited-by"=>"0", "year"=>"2019", "month"=>"5"}
  • {"unique-ip"=>"17", "full-text"=>"15", "pdf"=>"3", "scanned-summary"=>"0", "scanned-page-browse"=>"0", "figure"=>"1", "supp-data"=>"0", "cited-by"=>"0", "year"=>"2019", "month"=>"8"}
  • {"unique-ip"=>"20", "full-text"=>"23", "pdf"=>"1", "scanned-summary"=>"0", "scanned-page-browse"=>"0", "figure"=>"0", "supp-data"=>"0", "cited-by"=>"0", "year"=>"2019", "month"=>"9"}
  • {"unique-ip"=>"24", "full-text"=>"26", "pdf"=>"2", "scanned-summary"=>"0", "scanned-page-browse"=>"0", "figure"=>"0", "supp-data"=>"0", "cited-by"=>"0", "year"=>"2019", "month"=>"10"}
  • {"unique-ip"=>"17", "full-text"=>"17", "pdf"=>"3", "scanned-summary"=>"0", "scanned-page-browse"=>"0", "figure"=>"0", "supp-data"=>"0", "cited-by"=>"0", "year"=>"2019", "month"=>"12"}
  • {"unique-ip"=>"36", "full-text"=>"39", "pdf"=>"3", "scanned-summary"=>"0", "scanned-page-browse"=>"0", "figure"=>"0", "supp-data"=>"0", "cited-by"=>"0", "year"=>"2020", "month"=>"2"}
  • {"unique-ip"=>"32", "full-text"=>"35", "pdf"=>"1", "scanned-summary"=>"0", "scanned-page-browse"=>"0", "figure"=>"0", "supp-data"=>"0", "cited-by"=>"0", "year"=>"2020", "month"=>"3"}
  • {"unique-ip"=>"34", "full-text"=>"38", "pdf"=>"2", "scanned-summary"=>"0", "scanned-page-browse"=>"0", "figure"=>"0", "supp-data"=>"0", "cited-by"=>"1", "year"=>"2020", "month"=>"4"}
  • {"unique-ip"=>"54", "full-text"=>"61", "pdf"=>"3", "scanned-summary"=>"0", "scanned-page-browse"=>"0", "figure"=>"0", "supp-data"=>"0", "cited-by"=>"1", "year"=>"2020", "month"=>"5"}
  • {"unique-ip"=>"19", "full-text"=>"21", "pdf"=>"4", "scanned-summary"=>"0", "scanned-page-browse"=>"0", "figure"=>"0", "supp-data"=>"0", "cited-by"=>"0", "year"=>"2020", "month"=>"6"}
  • {"unique-ip"=>"16", "full-text"=>"17", "pdf"=>"8", "scanned-summary"=>"0", "scanned-page-browse"=>"0", "figure"=>"1", "supp-data"=>"0", "cited-by"=>"0", "year"=>"2020", "month"=>"7"}
  • {"unique-ip"=>"15", "full-text"=>"11", "pdf"=>"5", "scanned-summary"=>"0", "scanned-page-browse"=>"0", "figure"=>"0", "supp-data"=>"0", "cited-by"=>"0", "year"=>"2020", "month"=>"8"}
  • {"unique-ip"=>"25", "full-text"=>"28", "pdf"=>"11", "scanned-summary"=>"0", "scanned-page-browse"=>"0", "figure"=>"1", "supp-data"=>"0", "cited-by"=>"0", "year"=>"2020", "month"=>"9"}

Relative Metric

{"start_date"=>"2016-01-01T00:00:00Z", "end_date"=>"2016-12-31T00:00:00Z", "subject_areas"=>[]}
Loading … Spinner
There are currently no alerts