Novel Drosophila viruses encode host-specific suppressors of RNAi
Events
Loading … Spinner

Mendeley | Further Information

{"title"=>"Novel Drosophila Viruses Encode Host-Specific Suppressors of RNAi", "type"=>"journal", "authors"=>[{"first_name"=>"Joël T.", "last_name"=>"van Mierlo", "scopus_author_id"=>"36478002900"}, {"first_name"=>"Gijs J.", "last_name"=>"Overheul", "scopus_author_id"=>"55070653000"}, {"first_name"=>"Benjamin", "last_name"=>"Obadia", "scopus_author_id"=>"57194560611"}, {"first_name"=>"Koen W.R.", "last_name"=>"van Cleef", "scopus_author_id"=>"7801508747"}, {"first_name"=>"Claire L.", "last_name"=>"Webster", "scopus_author_id"=>"22434373600"}, {"first_name"=>"Maria Carla", "last_name"=>"Saleh", "scopus_author_id"=>"7201797449"}, {"first_name"=>"Darren J.", "last_name"=>"Obbard", "scopus_author_id"=>"12784023500"}, {"first_name"=>"Ronald P.", "last_name"=>"van Rij", "scopus_author_id"=>"6603515102"}], "year"=>2014, "source"=>"PLoS Pathogens", "identifiers"=>{"scopus"=>"2-s2.0-84905183604", "doi"=>"10.1371/journal.ppat.1004256", "sgr"=>"84905183604", "isbn"=>"1553-7374 (Electronic)\\r1553-7366 (Linking)", "pmid"=>"25032815", "issn"=>"15537374", "pui"=>"373686572"}, "id"=>"893d119d-d406-31c4-87ac-21c24f6db9cf", "abstract"=>"The ongoing conflict between viruses and their hosts can drive the co-evolution between host immune genes and viral suppressors of immunity. It has been suggested that an evolutionary 'arms race' may occur between rapidly evolving components of the antiviral RNAi pathway of Drosophila and viral genes that antagonize it. We have recently shown that viral protein 1 (VP1) of Drosophila melanogaster Nora virus (DmelNV) suppresses Argonaute-2 (AGO2)-mediated target RNA cleavage (slicer activity) to antagonize antiviral RNAi. Here we show that viral AGO2 antagonists of divergent Nora-like viruses can have host specific activities. We have identified novel Nora-like viruses in wild-caught populations of D. immigrans (DimmNV) and D. subobscura (DsubNV) that are 36% and 26% divergent from DmelNV at the amino acid level. We show that DimmNV and DsubNV VP1 are unable to suppress RNAi in D. melanogaster S2 cells, whereas DmelNV VP1 potently suppresses RNAi in this host species. Moreover, we show that the RNAi suppressor activity of DimmNV VP1 is restricted to its natural host species, D. immigrans. Specifically, we find that DimmNV VP1 interacts with D. immigrans AGO2, but not with D. melanogaster AGO2, and that it suppresses slicer activity in embryo lysates from D. immigrans, but not in lysates from D. melanogaster. This species-specific interaction is reflected in the ability of DimmNV VP1 to enhance RNA production by a recombinant Sindbis virus in a host-specific manner. Our results emphasize the importance of analyzing viral RNAi suppressor activity in the relevant host species. We suggest that rapid co-evolution between RNA viruses and their hosts may result in host species-specific activities of RNAi suppressor proteins, and therefore that viral RNAi suppressors could be host-specificity factors.", "link"=>"http://www.mendeley.com/research/novel-drosophila-viruses-encode-hostspecific-suppressors-rnai", "reader_count"=>53, "reader_count_by_academic_status"=>{"Unspecified"=>3, "Researcher"=>13, "Student > Doctoral Student"=>2, "Student > Ph. D. Student"=>18, "Student > Master"=>6, "Other"=>2, "Student > Bachelor"=>7, "Professor"=>2}, "reader_count_by_user_role"=>{"Unspecified"=>3, "Researcher"=>13, "Student > Doctoral Student"=>2, "Student > Ph. D. Student"=>18, "Student > Master"=>6, "Other"=>2, "Student > Bachelor"=>7, "Professor"=>2}, "reader_count_by_subject_area"=>{"Unspecified"=>3, "Biochemistry, Genetics and Molecular Biology"=>7, "Agricultural and Biological Sciences"=>37, "Medicine and Dentistry"=>1, "Computer Science"=>3, "Immunology and Microbiology"=>2}, "reader_count_by_subdiscipline"=>{"Medicine and Dentistry"=>{"Medicine and Dentistry"=>1}, "Immunology and Microbiology"=>{"Immunology and Microbiology"=>2}, "Agricultural and Biological Sciences"=>{"Agricultural and Biological Sciences"=>37}, "Computer Science"=>{"Computer Science"=>3}, "Biochemistry, Genetics and Molecular Biology"=>{"Biochemistry, Genetics and Molecular Biology"=>7}, "Unspecified"=>{"Unspecified"=>3}}, "reader_count_by_country"=>{"Belgium"=>1, "United States"=>1, "United Kingdom"=>3, "France"=>3, "Germany"=>1}, "group_count"=>2}

Scopus | Further Information

{"@_fa"=>"true", "link"=>[{"@_fa"=>"true", "@ref"=>"self", "@href"=>"https://api.elsevier.com/content/abstract/scopus_id/84905183604"}, {"@_fa"=>"true", "@ref"=>"author-affiliation", "@href"=>"https://api.elsevier.com/content/abstract/scopus_id/84905183604?field=author,affiliation"}, {"@_fa"=>"true", "@ref"=>"scopus", "@href"=>"https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=84905183604&origin=inward"}, {"@_fa"=>"true", "@ref"=>"scopus-citedby", "@href"=>"https://www.scopus.com/inward/citedby.uri?partnerID=HzOxMe3b&scp=84905183604&origin=inward"}], "prism:url"=>"https://api.elsevier.com/content/abstract/scopus_id/84905183604", "dc:identifier"=>"SCOPUS_ID:84905183604", "eid"=>"2-s2.0-84905183604", "dc:title"=>"Novel Drosophila Viruses Encode Host-Specific Suppressors of RNAi", "dc:creator"=>"van Mierlo J.", "prism:publicationName"=>"PLoS Pathogens", "prism:issn"=>"15537366", "prism:eIssn"=>"15537374", "prism:volume"=>"10", "prism:issueIdentifier"=>"7", "prism:pageRange"=>nil, "prism:coverDate"=>"2014-01-01", "prism:coverDisplayDate"=>"July 2014", "prism:doi"=>"10.1371/journal.ppat.1004256", "citedby-count"=>"35", "affiliation"=>[{"@_fa"=>"true", "affilname"=>"Radboud University Nijmegen Medical Centre", "affiliation-city"=>"Nijmegen", "affiliation-country"=>"Netherlands"}], "pubmed-id"=>"25032815", "prism:aggregationType"=>"Journal", "subtype"=>"ar", "subtypeDescription"=>"Article", "article-number"=>"e1004256", "source-id"=>"4000151809", "openaccess"=>"1", "openaccessFlag"=>true}

Facebook

  • {"url"=>"http%3A%2F%2Fjournals.plos.org%2Fplospathogens%2Farticle%3Fid%3D10.1371%252Fjournal.ppat.1004256", "share_count"=>10, "like_count"=>46, "comment_count"=>7, "click_count"=>0, "total_count"=>63}

Twitter

Counter

  • {"month"=>"7", "year"=>"2014", "pdf_views"=>"122", "xml_views"=>"8", "html_views"=>"998"}
  • {"month"=>"8", "year"=>"2014", "pdf_views"=>"74", "xml_views"=>"6", "html_views"=>"526"}
  • {"month"=>"9", "year"=>"2014", "pdf_views"=>"38", "xml_views"=>"0", "html_views"=>"151"}
  • {"month"=>"10", "year"=>"2014", "pdf_views"=>"18", "xml_views"=>"3", "html_views"=>"112"}
  • {"month"=>"11", "year"=>"2014", "pdf_views"=>"22", "xml_views"=>"3", "html_views"=>"163"}
  • {"month"=>"12", "year"=>"2014", "pdf_views"=>"15", "xml_views"=>"0", "html_views"=>"51"}
  • {"month"=>"1", "year"=>"2015", "pdf_views"=>"24", "xml_views"=>"1", "html_views"=>"97"}
  • {"month"=>"2", "year"=>"2015", "pdf_views"=>"15", "xml_views"=>"0", "html_views"=>"64"}
  • {"month"=>"3", "year"=>"2015", "pdf_views"=>"13", "xml_views"=>"0", "html_views"=>"87"}
  • {"month"=>"4", "year"=>"2015", "pdf_views"=>"11", "xml_views"=>"1", "html_views"=>"60"}
  • {"month"=>"5", "year"=>"2015", "pdf_views"=>"10", "xml_views"=>"0", "html_views"=>"46"}
  • {"month"=>"6", "year"=>"2015", "pdf_views"=>"9", "xml_views"=>"0", "html_views"=>"66"}
  • {"month"=>"7", "year"=>"2015", "pdf_views"=>"8", "xml_views"=>"0", "html_views"=>"34"}
  • {"month"=>"8", "year"=>"2015", "pdf_views"=>"15", "xml_views"=>"0", "html_views"=>"52"}
  • {"month"=>"9", "year"=>"2015", "pdf_views"=>"5", "xml_views"=>"1", "html_views"=>"36"}
  • {"month"=>"10", "year"=>"2015", "pdf_views"=>"8", "xml_views"=>"0", "html_views"=>"41"}
  • {"month"=>"11", "year"=>"2015", "pdf_views"=>"15", "xml_views"=>"0", "html_views"=>"47"}
  • {"month"=>"12", "year"=>"2015", "pdf_views"=>"9", "xml_views"=>"1", "html_views"=>"42"}
  • {"month"=>"1", "year"=>"2016", "pdf_views"=>"7", "xml_views"=>"0", "html_views"=>"37"}
  • {"month"=>"2", "year"=>"2016", "pdf_views"=>"5", "xml_views"=>"0", "html_views"=>"42"}
  • {"month"=>"3", "year"=>"2016", "pdf_views"=>"12", "xml_views"=>"0", "html_views"=>"50"}
  • {"month"=>"4", "year"=>"2016", "pdf_views"=>"16", "xml_views"=>"0", "html_views"=>"56"}
  • {"month"=>"5", "year"=>"2016", "pdf_views"=>"13", "xml_views"=>"0", "html_views"=>"31"}
  • {"month"=>"6", "year"=>"2016", "pdf_views"=>"10", "xml_views"=>"0", "html_views"=>"30"}
  • {"month"=>"7", "year"=>"2016", "pdf_views"=>"13", "xml_views"=>"0", "html_views"=>"25"}
  • {"month"=>"8", "year"=>"2016", "pdf_views"=>"11", "xml_views"=>"0", "html_views"=>"44"}
  • {"month"=>"9", "year"=>"2016", "pdf_views"=>"11", "xml_views"=>"0", "html_views"=>"47"}
  • {"month"=>"10", "year"=>"2016", "pdf_views"=>"6", "xml_views"=>"0", "html_views"=>"37"}
  • {"month"=>"11", "year"=>"2016", "pdf_views"=>"3", "xml_views"=>"0", "html_views"=>"36"}
  • {"month"=>"12", "year"=>"2016", "pdf_views"=>"26", "xml_views"=>"0", "html_views"=>"43"}
  • {"month"=>"1", "year"=>"2017", "pdf_views"=>"7", "xml_views"=>"0", "html_views"=>"38"}
  • {"month"=>"2", "year"=>"2017", "pdf_views"=>"6", "xml_views"=>"1", "html_views"=>"48"}
  • {"month"=>"3", "year"=>"2017", "pdf_views"=>"13", "xml_views"=>"1", "html_views"=>"40"}
  • {"month"=>"4", "year"=>"2017", "pdf_views"=>"8", "xml_views"=>"0", "html_views"=>"38"}
  • {"month"=>"5", "year"=>"2017", "pdf_views"=>"2", "xml_views"=>"0", "html_views"=>"40"}
  • {"month"=>"6", "year"=>"2017", "pdf_views"=>"2", "xml_views"=>"0", "html_views"=>"23"}
  • {"month"=>"7", "year"=>"2017", "pdf_views"=>"10", "xml_views"=>"0", "html_views"=>"30"}
  • {"month"=>"8", "year"=>"2017", "pdf_views"=>"2", "xml_views"=>"0", "html_views"=>"24"}
  • {"month"=>"9", "year"=>"2017", "pdf_views"=>"13", "xml_views"=>"0", "html_views"=>"39"}
  • {"month"=>"10", "year"=>"2017", "pdf_views"=>"4", "xml_views"=>"1", "html_views"=>"27"}
  • {"month"=>"11", "year"=>"2017", "pdf_views"=>"9", "xml_views"=>"1", "html_views"=>"33"}
  • {"month"=>"12", "year"=>"2017", "pdf_views"=>"7", "xml_views"=>"0", "html_views"=>"20"}
  • {"month"=>"1", "year"=>"2018", "pdf_views"=>"10", "xml_views"=>"0", "html_views"=>"26"}
  • {"month"=>"2", "year"=>"2018", "pdf_views"=>"9", "xml_views"=>"0", "html_views"=>"14"}
  • {"month"=>"3", "year"=>"2018", "pdf_views"=>"7", "xml_views"=>"0", "html_views"=>"9"}
  • {"month"=>"4", "year"=>"2018", "pdf_views"=>"5", "xml_views"=>"1", "html_views"=>"3"}
  • {"month"=>"5", "year"=>"2018", "pdf_views"=>"4", "xml_views"=>"1", "html_views"=>"7"}
  • {"month"=>"6", "year"=>"2018", "pdf_views"=>"5", "xml_views"=>"1", "html_views"=>"9"}
  • {"month"=>"7", "year"=>"2018", "pdf_views"=>"11", "xml_views"=>"6", "html_views"=>"8"}
  • {"month"=>"8", "year"=>"2018", "pdf_views"=>"4", "xml_views"=>"1", "html_views"=>"8"}
  • {"month"=>"9", "year"=>"2018", "pdf_views"=>"11", "xml_views"=>"0", "html_views"=>"11"}
  • {"month"=>"10", "year"=>"2018", "pdf_views"=>"4", "xml_views"=>"0", "html_views"=>"11"}
  • {"month"=>"11", "year"=>"2018", "pdf_views"=>"5", "xml_views"=>"0", "html_views"=>"10"}
  • {"month"=>"12", "year"=>"2018", "pdf_views"=>"2", "xml_views"=>"0", "html_views"=>"3"}
  • {"month"=>"1", "year"=>"2019", "pdf_views"=>"0", "xml_views"=>"0", "html_views"=>"6"}
  • {"month"=>"2", "year"=>"2019", "pdf_views"=>"3", "xml_views"=>"0", "html_views"=>"11"}
  • {"month"=>"3", "year"=>"2019", "pdf_views"=>"8", "xml_views"=>"2", "html_views"=>"7"}
  • {"month"=>"4", "year"=>"2019", "pdf_views"=>"6", "xml_views"=>"0", "html_views"=>"6"}
  • {"month"=>"5", "year"=>"2019", "pdf_views"=>"11", "xml_views"=>"0", "html_views"=>"11"}
  • {"month"=>"6", "year"=>"2019", "pdf_views"=>"9", "xml_views"=>"0", "html_views"=>"15"}
  • {"month"=>"7", "year"=>"2019", "pdf_views"=>"7", "xml_views"=>"0", "html_views"=>"14"}
  • {"month"=>"8", "year"=>"2019", "pdf_views"=>"6", "xml_views"=>"0", "html_views"=>"6"}
  • {"month"=>"9", "year"=>"2019", "pdf_views"=>"1", "xml_views"=>"0", "html_views"=>"2"}

Figshare

  • {"files"=>["https://ndownloader.figshare.com/files/1598419"], "description"=>"<p>(<b>A</b>) Western blot analysis of S2 cells expressing V5 epitope-tagged VP1 from <i>D. melanogaster</i> Nora virus (DmelNV) and <i>D. immigrans</i> Nora-like virus (DimmNV). S2 cells were transfected with plasmids encoding full-length VP1 (FL) and C-terminal (ΔC) or N-terminal (ΔN) deletions thereof. Expression of the VP1 constructs was analyzed by western blot using an anti-V5 (α-V5) antibody. Detection of tubulin with anti-tubulin (α-tub) antibody was used as a loading control. Molecular mass (in kDa) is indicated on the left. For DmelNV VP1<sup>ΔN284</sup>, bands of lower mobility were observed in addition to the expected 26 kDa protein, the nature of which remains unknown. Note that these additional bands are not consistently observed (<a href=\"http://www.plospathogens.org/article/info:doi/10.1371/journal.ppat.1004256#ppat.1004256.s002\" target=\"_blank\">Figure S2A</a>, lane 5, and <a href=\"http://www.plospathogens.org/article/info:doi/10.1371/journal.ppat.1004256#ppat.1004256-vanMierlo2\" target=\"_blank\">[14]</a>). (<b>B</b>) RNAi sensor assay in S2 cells. Firefly luciferase (Fluc) and <i>Renilla</i> luciferase (Rluc) reporter plasmids were transfected into S2 cells, together with plasmids encoding the indicated VP1 constructs. Two days after transfection, S2 cells were soaked in either control (Ctrl) dsRNA or Fluc dsRNA, and luciferase activities were measured the next day. Fluc counts were normalized to Rluc counts, and presented as fold silencing relative to the corresponding control dsRNA treatment. (<b>C</b>) Hairpin-based RNAi sensor assay in S2 cells. S2 cells were transfected with plasmids coding for Fluc, Rluc, and an Rluc-hairpin RNA together with a control vector (Vector) or plasmids encoding the N-terminal deletion mutants of DmelNV VP1<sup>ΔN284</sup> or DimmNV VP1<sup>ΔN295</sup>. Rluc counts were normalized to Fluc counts, and presented as fold silencing over non-hairpin control transfections. Bars in Panels B and C represent means and standard deviations of three independent biological replicates. One-way ANOVA followed by Dunnett's <i>post hoc</i> test was used to evaluate whether VP1 constructs significantly suppressed RNAi relative to the vector control (light gray bar). ** <i>P</i><0.01; *** <i>P</i><0.001; ns, not significant.</p>", "links"=>[], "tags"=>["Biochemistry", "Nucleic acids", "rna", "cell biology", "Molecular cell biology", "genetics", "epigenetics", "RNA interference", "microbiology", "Virology", "Viral immune evasion", "organisms", "animals", "invertebrates", "arthropoda", "insects", "drosophila", "Drosophila melanogaster", "Model organisms", "Animal models", "suppressor"], "article_id"=>1108670, "categories"=>["Biological Sciences"], "users"=>["Joël T. van Mierlo", "Gijs J. Overheul", "Benjamin Obadia", "Koen W. R. van Cleef", "Claire L. Webster", "Maria-Carla Saleh", "Darren J. Obbard", "Ronald P. van Rij"], "doi"=>"https://dx.doi.org/10.1371/journal.ppat.1004256.g002", "stats"=>{"downloads"=>0, "page_views"=>8, "likes"=>0}, "figshare_url"=>"https://figshare.com/articles/_VP1_suppressor_activity_is_species_specific_/1108670", "title"=>"VP1 suppressor activity is species-specific.", "pos_in_sequence"=>0, "defined_type"=>1, "published_date"=>"2014-07-17 03:17:20"}
  • {"files"=>["https://ndownloader.figshare.com/files/1598417"], "description"=>"<p>(<b>A</b>) Schematic representation of the genome organization of Nora virus. The virus encodes four open reading frames, some of which have a slight overlap. (<b>B</b>) Phylogenetic analysis of the most conserved Nora virus gene (VP4) suggests that the three Drosophila Nora-like viruses are each other's closest relatives, and that they are all closely related to the Nora-like sequence derived from <i>Haematobia irritans</i>. Although DimmNV appears to be most closely related to DmelNV based on VP4, the extreme divergence from the other Nora-like sequences may make the rooting unreliable. The tree presented is the mid-point rooted Bayesian maximum <i>a posteriori</i> tree (99% of the posterior set), the topology of which is identical to a Maximum Likelihood (ML) tree. Support values are given for internal nodes (Bayesian posteriors/ML bootstraps). The scale bar represents 0.5 amino acid substitutions per site. (<b>C</b>) A sliding-window analysis of nonsynonymous divergence between the three Drosophila Nora viruses, calculated as the number of nonsynonymous substitutions per nonsynonymous site. Dashed lines show a nominal 95% significance threshold for genome-wide peaks in divergence derived from randomisation tests, such that peaks crossing the lines are unlikely to occur by chance, given the overall divergence for that virus (colours correspond to the three viral lineages). Insets for each viral protein are unrooted trees with branch lengths proportional to overall divergence for that gene.</p>", "links"=>[], "tags"=>["Biochemistry", "Nucleic acids", "rna", "cell biology", "Molecular cell biology", "genetics", "epigenetics", "RNA interference", "microbiology", "Virology", "Viral immune evasion", "organisms", "animals", "invertebrates", "arthropoda", "insects", "drosophila", "Drosophila melanogaster", "Model organisms", "Animal models", "non-synonymous", "divergence", "nora"], "article_id"=>1108667, "categories"=>["Biological Sciences"], "users"=>["Joël T. van Mierlo", "Gijs J. Overheul", "Benjamin Obadia", "Koen W. R. van Cleef", "Claire L. Webster", "Maria-Carla Saleh", "Darren J. Obbard", "Ronald P. van Rij"], "doi"=>"https://dx.doi.org/10.1371/journal.ppat.1004256.g001", "stats"=>{"downloads"=>0, "page_views"=>15, "likes"=>0}, "figshare_url"=>"https://figshare.com/articles/_Phylogenetic_analysis_and_non_synonymous_divergence_between_Nora_viruses_/1108667", "title"=>"Phylogenetic analysis and non-synonymous divergence between Nora viruses.", "pos_in_sequence"=>0, "defined_type"=>1, "published_date"=>"2014-07-17 03:17:20"}
  • {"files"=>["https://ndownloader.figshare.com/files/1598433", "https://ndownloader.figshare.com/files/1598435", "https://ndownloader.figshare.com/files/1598436"], "description"=>"<div><p>The ongoing conflict between viruses and their hosts can drive the co-evolution between host immune genes and viral suppressors of immunity. It has been suggested that an evolutionary ‘arms race’ may occur between rapidly evolving components of the antiviral RNAi pathway of <i>Drosophila</i> and viral genes that antagonize it. We have recently shown that viral protein 1 (VP1) of <i>Drosophila melanogaster</i> Nora virus (DmelNV) suppresses Argonaute-2 (AGO2)-mediated target RNA cleavage (slicer activity) to antagonize antiviral RNAi. Here we show that viral AGO2 antagonists of divergent Nora-like viruses can have host specific activities. We have identified novel Nora-like viruses in wild-caught populations of <i>D. immigrans</i> (DimmNV) and <i>D. subobscura</i> (DsubNV) that are 36% and 26% divergent from DmelNV at the amino acid level. We show that DimmNV and DsubNV VP1 are unable to suppress RNAi in <i>D. melanogaster</i> S2 cells, whereas DmelNV VP1 potently suppresses RNAi in this host species. Moreover, we show that the RNAi suppressor activity of DimmNV VP1 is restricted to its natural host species, <i>D. immigrans</i>. Specifically, we find that DimmNV VP1 interacts with <i>D. immigrans</i> AGO2, but not with <i>D. melanogaster</i> AGO2, and that it suppresses slicer activity in embryo lysates from <i>D. immigrans</i>, but not in lysates from <i>D. melanogaster</i>. This species-specific interaction is reflected in the ability of DimmNV VP1 to enhance RNA production by a recombinant Sindbis virus in a host-specific manner. Our results emphasize the importance of analyzing viral RNAi suppressor activity in the relevant host species. We suggest that rapid co-evolution between RNA viruses and their hosts may result in host species-specific activities of RNAi suppressor proteins, and therefore that viral RNAi suppressors could be host-specificity factors.</p></div>", "links"=>[], "tags"=>["Biochemistry", "Nucleic acids", "rna", "cell biology", "Molecular cell biology", "genetics", "epigenetics", "RNA interference", "microbiology", "Virology", "Viral immune evasion", "organisms", "animals", "invertebrates", "arthropoda", "insects", "drosophila", "Drosophila melanogaster", "Model organisms", "Animal models", "viruses", "encode", "host-specific", "suppressors"], "article_id"=>1108684, "categories"=>["Biological Sciences"], "users"=>["Joël T. van Mierlo", "Gijs J. Overheul", "Benjamin Obadia", "Koen W. R. van Cleef", "Claire L. Webster", "Maria-Carla Saleh", "Darren J. Obbard", "Ronald P. van Rij"], "doi"=>["https://dx.doi.org/10.1371/journal.ppat.1004256.s001", "https://dx.doi.org/10.1371/journal.ppat.1004256.s002", "https://dx.doi.org/10.1371/journal.ppat.1004256.s003"], "stats"=>{"downloads"=>4, "page_views"=>13, "likes"=>0}, "figshare_url"=>"https://figshare.com/articles/_Novel_Drosophila_Viruses_Encode_Host_Specific_Suppressors_of_RNAi_/1108684", "title"=>"Novel Drosophila Viruses Encode Host-Specific Suppressors of RNAi", "pos_in_sequence"=>0, "defined_type"=>4, "published_date"=>"2014-07-17 03:17:20"}
  • {"files"=>["https://ndownloader.figshare.com/files/1598429"], "description"=>"<p>(<b>A</b>) Outline of the experimental set-up. VP1 from DimmNV and DmelNV was expressed under control of a duplicated subgenomic promoter in Sindbis virus and recombinant viruses were tested for replication in two <i>Drosophila</i> host species. A GFP-expressing Sindbis virus recombinant was included as a control. (<b>B</b>) Western blot analysis of BHK cells infected with Sindbis recombinants expressing the indicated transgenes. Expression of the VP1 constructs was analyzed by western blot using anti-V5 antibody. M, size marker; molecular mass (in kDa) is indicated on the left. (<b>C</b>) Viral RNA production of recombinant Sindbis viruses in <i>Dicer-2</i> deficient cells. C6/36 cells were inoculated with the indicated Sindbis recombinants (multiplicity of infection of 0.01) and viral RNA levels were analyzed at 24 h post inoculation by qRT-PCR. Data are normalized to viral RNA levels in cells harvested directly after inoculation (t = 0). Bars indicate means and SEM (n = 3 biological replicates). (<b>D</b>) Viral RNA production in <i>D. melanogaster</i> (left panel) and <i>D. immigrans</i> (right panel) infected with recombinant Sindbis viruses expressing the indicated VP1 transgenes or, as a control, GFP. Viral RNA levels were measured at 7 days post inoculation (dpi) by qRT-PCR and normalized to viral RNA levels in flies that were harvested immediately after inoculation (t = 0). Mean viral RNA levels and SEM (n = 3 biological replicates) are shown. A Student's T-test was used for pairwise comparison between the Sindbis VP1 recombinants and Sindbis-GFP (white bars). * <i>P</i><0.05; *** <i>P</i><0.001; ns, not significant.</p>", "links"=>[], "tags"=>["Biochemistry", "Nucleic acids", "rna", "cell biology", "Molecular cell biology", "genetics", "epigenetics", "RNA interference", "microbiology", "Virology", "Viral immune evasion", "organisms", "animals", "invertebrates", "arthropoda", "insects", "drosophila", "Drosophila melanogaster", "Model organisms", "Animal models", "rnai", "suppressors", "species-specific", "pathogenicity"], "article_id"=>1108680, "categories"=>["Biological Sciences"], "users"=>["Joël T. van Mierlo", "Gijs J. Overheul", "Benjamin Obadia", "Koen W. R. van Cleef", "Claire L. Webster", "Maria-Carla Saleh", "Darren J. Obbard", "Ronald P. van Rij"], "doi"=>"https://dx.doi.org/10.1371/journal.ppat.1004256.g007", "stats"=>{"downloads"=>1, "page_views"=>16, "likes"=>0}, "figshare_url"=>"https://figshare.com/articles/_Viral_RNAi_suppressors_are_host_species_specific_pathogenicity_determinants_/1108680", "title"=>"Viral RNAi suppressors are host species-specific pathogenicity determinants.", "pos_in_sequence"=>0, "defined_type"=>1, "published_date"=>"2014-07-17 03:17:20"}
  • {"files"=>["https://ndownloader.figshare.com/files/1598427"], "description"=>"<p>(<b>A</b>) RNAi reporter assay based on hairpin-induced silencing of an Rluc reporter. The experiment was performed as described in the legend to <a href=\"http://www.plospathogens.org/article/info:doi/10.1371/journal.ppat.1004256#ppat-1004256-g002\" target=\"_blank\">Figure 2C</a>, except that a non-specific control dsRNA (Ctrl) or dsRNA targeting the coding sequence or the 3′UTR of Dmel AGO2 (AGO2 CDS and AGO2 3′UTR, respectively) was co-transfected along with the reporter plasmids. Bars represent means and standard deviations of three biological replicates. One-way ANOVA followed by Dunnett's <i>post hoc</i> test was used to evaluate loss of silencing by AGO2 dsRNA compared to control dsRNA treated samples (light gray bars). (<b>B</b>) Rescue of endogenous AGO2 knockdown by <i>D. immigrans</i> AGO2 and suppression thereof by DimmNV VP1. Endogenous AGO2 expression was reduced by dsRNA targeting the AGO2 3′UTR, which was transfected along with luciferase reporter plasmids, Rluc hairpin plasmid, and control plasmid (Vector) or expression plasmids encoding <i>D. melanogaster</i> AGO1 (Dmel AGO1), AGO2 (Dmel AGO2), or <i>D. immigrans</i> AGO2 (Dimm AGO2). Control vector (Ctrl, white bars) or a plasmid encoding <i>D. immigrans</i> Nora virus VP1 (DimmNV VP1<sup>ΔN295</sup>, black bars) was co-transfected to analyze the ability of DimmNV VP1 to suppress Dimm and Dmel AGO2-mediated silencing. Data are presented as fold silencing relative to the corresponding vector control transfection. Bars represent means and standard deviations of three biological replicates. One-way ANOVA followed by Dunnett's <i>post hoc</i> test was used to evaluate whether AGO expression rescued silencing relative to the vector control in the absence of VP1 (light gray bar). A Student's T-test was used to analyze whether loss of silencing by expression of DimmNV VP1 was significant. * <i>P</i><0.05; *** <i>P</i><0.001.</p>", "links"=>[], "tags"=>["Biochemistry", "Nucleic acids", "rna", "cell biology", "Molecular cell biology", "genetics", "epigenetics", "RNA interference", "microbiology", "Virology", "Viral immune evasion", "organisms", "animals", "invertebrates", "arthropoda", "insects", "drosophila", "Drosophila melanogaster", "Model organisms", "Animal models", "vp1", "inhibits", "dimm", "ago2"], "article_id"=>1108678, "categories"=>["Biological Sciences"], "users"=>["Joël T. van Mierlo", "Gijs J. Overheul", "Benjamin Obadia", "Koen W. R. van Cleef", "Claire L. Webster", "Maria-Carla Saleh", "Darren J. Obbard", "Ronald P. van Rij"], "doi"=>"https://dx.doi.org/10.1371/journal.ppat.1004256.g006", "stats"=>{"downloads"=>1, "page_views"=>22, "likes"=>0}, "figshare_url"=>"https://figshare.com/articles/_DimmNV_VP1_inhibits_Dimm_AGO2_function_/1108678", "title"=>"DimmNV VP1 inhibits Dimm AGO2 function.", "pos_in_sequence"=>0, "defined_type"=>1, "published_date"=>"2014-07-17 03:17:20"}
  • {"files"=>["https://ndownloader.figshare.com/files/1598424"], "description"=>"<p>(<b>A</b>) Western blot (WB) analysis of V5 immunoprecipitation on lysates from S2 cells transfected with a FLAG-AGO2 expression plasmid and either V5-tagged DmelNV VP1 (V5-VP1) or V5-control plasmid (Vector). The epitope-tagged proteins were detected in the input, supernatant after immunoprecipitation (Sup), and the immunoprecipitate (V5-IP) with the indicated antibodies. (<b>B</b>) FLAG immunoprecipitation of lysates from S2 cells transfected with V5-tagged DmelNV VP1 (V5-VP1) and either FLAG-AGO2 or FLAG-control plasmids (Vector), followed by western blot analysis with the indicated antibodies. (<b>C</b>) V5 immunoprecipitation of lysates from S2 cells transfected with V5-tagged DmelNV VP1 (+) or V5-control (−) plasmids. After SDS-PAGE, endogenous AGO2 or DmelNV VP1 proteins were detected by western blot using anti-AGO2 (α-AGO2) and anti-V5 (α-V5) antibody, respectively. Asterisk (*) indicates a non-specific background band; triangle indicates AGO2. The DmelNV VP1<sup>ΔN351</sup> construct was used in these experiments.</p>", "links"=>[], "tags"=>["Biochemistry", "Nucleic acids", "rna", "cell biology", "Molecular cell biology", "genetics", "epigenetics", "RNA interference", "microbiology", "Virology", "Viral immune evasion", "organisms", "animals", "invertebrates", "arthropoda", "insects", "drosophila", "Drosophila melanogaster", "Model organisms", "Animal models", "vp1", "interacts", "dmel", "ago2", "s2"], "article_id"=>1108675, "categories"=>["Biological Sciences"], "users"=>["Joël T. van Mierlo", "Gijs J. Overheul", "Benjamin Obadia", "Koen W. R. van Cleef", "Claire L. Webster", "Maria-Carla Saleh", "Darren J. Obbard", "Ronald P. van Rij"], "doi"=>"https://dx.doi.org/10.1371/journal.ppat.1004256.g004", "stats"=>{"downloads"=>4, "page_views"=>53, "likes"=>0}, "figshare_url"=>"https://figshare.com/articles/_DmelNV_VP1_interacts_with_Dmel_AGO2_in_S2_cells_/1108675", "title"=>"DmelNV VP1 interacts with Dmel AGO2 in S2 cells.", "pos_in_sequence"=>0, "defined_type"=>1, "published_date"=>"2014-07-17 03:17:20"}
  • {"files"=>["https://ndownloader.figshare.com/files/1598426"], "description"=>"<p>(<b>A</b>) V5 Immunoprecipitation (V5-IP) of lysates from S2 cells transfected with FLAG-tagged Dmel AGO2 expression plasmid and either V5-tagged DmelNV VP1, DimmNV VP1, or V5-control plasmids (−). Input, supernatant after immunoprecipitation (Sup), and the immunoprecipitate (V5-IP) were analyzed by western blot (WB) using anti-V5 (α-V5) or anti-FLAG (α-FLAG) antibodies. (<b>B</b>) V5 immunoprecipitation of S2 cells transfected with plasmids encoding V5-tagged DmelNV VP1, DimmNV VP1, or V5-control vector (−). Input, sup, and IP fractions were analyzed by western blot using antibodies for endogenous AGO2 (α-Dmel AGO2) and V5 (α-V5). (<b>C</b>) V5 immunoprecipitation on lysates from S2 cells co-transfected with plasmids encoding FLAG-tagged Dimm AGO2 and either V5-tagged DmelNV VP1, DimmNV VP1, or V5-control vector (−). VP1 and Dimm AGO2 proteins were detected on western blot using anti-V5 (α-V5) and anti-FLAG (α-FLAG) antibodies, respectively. Asterisks (*) indicate a non-specific background band; triangles indicate AGO2. For these experiments the corresponding DmelNV VP1<sup>ΔN284</sup> and DimmNV VP1<sup>ΔN295</sup> constructs were used (<a href=\"http://www.plospathogens.org/article/info:doi/10.1371/journal.ppat.1004256#ppat.1004256.s001\" target=\"_blank\">Figure S1</a>).</p>", "links"=>[], "tags"=>["Biochemistry", "Nucleic acids", "rna", "cell biology", "Molecular cell biology", "genetics", "epigenetics", "RNA interference", "microbiology", "Virology", "Viral immune evasion", "organisms", "animals", "invertebrates", "arthropoda", "insects", "drosophila", "Drosophila melanogaster", "Model organisms", "Animal models", "vp1"], "article_id"=>1108677, "categories"=>["Biological Sciences"], "users"=>["Joël T. van Mierlo", "Gijs J. Overheul", "Benjamin Obadia", "Koen W. R. van Cleef", "Claire L. Webster", "Maria-Carla Saleh", "Darren J. Obbard", "Ronald P. van Rij"], "doi"=>"https://dx.doi.org/10.1371/journal.ppat.1004256.g005", "stats"=>{"downloads"=>3, "page_views"=>11, "likes"=>0}, "figshare_url"=>"https://figshare.com/articles/_Species_specific_interaction_between_VP1_and_AGO2_/1108677", "title"=>"Species-specific interaction between VP1 and AGO2.", "pos_in_sequence"=>0, "defined_type"=>1, "published_date"=>"2014-07-17 03:17:20"}
  • {"files"=>["https://ndownloader.figshare.com/files/1598422"], "description"=>"<p>(<b>A</b>) <i>In vitro</i> RNA cleavage (slicer) assays in lysates from <i>D. melanogaster</i> embryos (left panel) or <i>D. immigrans</i> embryos (right panel). Radioactively cap-labelled target RNA was incubated in embryo lysate together with a non-specific control siRNA (lanes 1 and 6) or a target specific siRNA (lanes 2–5, 7–10). Target cleavage was determined either in the absence of recombinant protein (lanes 2 and 7) or in the presence of 0.3 µM of MBP (lanes 3 and 8), MBP-DmelNV VP1 (lanes 4 and 9), or DimmNV VP1 (lanes 5 and 10). (<b>B</b>) Quantification of target cleavage in <i>D. melanogaster</i> and <i>D. immigrans</i> embryo lysate in the presence of MBP, DmelNV VP1, or DimmNV VP1 protein. The fraction of cleaved RNA was determined by dividing the intensity of the cleavage product by the total intensity of cleavage product and non-cleaved target. Data are normalized to MBP. Bars represent means and standard deviations of two independent experiments.</p>", "links"=>[], "tags"=>["Biochemistry", "Nucleic acids", "rna", "cell biology", "Molecular cell biology", "genetics", "epigenetics", "RNA interference", "microbiology", "Virology", "Viral immune evasion", "organisms", "animals", "invertebrates", "arthropoda", "insects", "drosophila", "Drosophila melanogaster", "Model organisms", "Animal models", "inhibition", "ago2", "slicer"], "article_id"=>1108673, "categories"=>["Biological Sciences"], "users"=>["Joël T. van Mierlo", "Gijs J. Overheul", "Benjamin Obadia", "Koen W. R. van Cleef", "Claire L. Webster", "Maria-Carla Saleh", "Darren J. Obbard", "Ronald P. van Rij"], "doi"=>"https://dx.doi.org/10.1371/journal.ppat.1004256.g003", "stats"=>{"downloads"=>4, "page_views"=>75, "likes"=>0}, "figshare_url"=>"https://figshare.com/articles/_Species_specific_inhibition_of_AGO2_slicer_activity_/1108673", "title"=>"Species-specific inhibition of AGO2 slicer activity.", "pos_in_sequence"=>0, "defined_type"=>1, "published_date"=>"2014-07-17 03:17:20"}

PMC Usage Stats | Further Information

  • {"unique-ip"=>"15", "full-text"=>"17", "pdf"=>"5", "abstract"=>"0", "scanned-summary"=>"0", "scanned-page-browse"=>"0", "figure"=>"3", "supp-data"=>"0", "cited-by"=>"0", "year"=>"2014", "month"=>"7"}
  • {"unique-ip"=>"29", "full-text"=>"26", "pdf"=>"14", "abstract"=>"2", "scanned-summary"=>"0", "scanned-page-browse"=>"0", "figure"=>"3", "supp-data"=>"0", "cited-by"=>"0", "year"=>"2014", "month"=>"8"}
  • {"unique-ip"=>"37", "full-text"=>"22", "pdf"=>"15", "abstract"=>"0", "scanned-summary"=>"0", "scanned-page-browse"=>"0", "figure"=>"16", "supp-data"=>"8", "cited-by"=>"0", "year"=>"2014", "month"=>"9"}
  • {"unique-ip"=>"46", "full-text"=>"41", "pdf"=>"12", "abstract"=>"1", "scanned-summary"=>"0", "scanned-page-browse"=>"0", "figure"=>"5", "supp-data"=>"1", "cited-by"=>"0", "year"=>"2014", "month"=>"10"}
  • {"unique-ip"=>"28", "full-text"=>"32", "pdf"=>"18", "abstract"=>"2", "scanned-summary"=>"0", "scanned-page-browse"=>"0", "figure"=>"7", "supp-data"=>"1", "cited-by"=>"0", "year"=>"2014", "month"=>"11"}
  • {"unique-ip"=>"21", "full-text"=>"23", "pdf"=>"9", "abstract"=>"0", "scanned-summary"=>"0", "scanned-page-browse"=>"0", "figure"=>"5", "supp-data"=>"0", "cited-by"=>"0", "year"=>"2014", "month"=>"12"}
  • {"unique-ip"=>"16", "full-text"=>"12", "pdf"=>"2", "abstract"=>"0", "scanned-summary"=>"0", "scanned-page-browse"=>"0", "figure"=>"4", "supp-data"=>"2", "cited-by"=>"0", "year"=>"2015", "month"=>"1"}
  • {"unique-ip"=>"21", "full-text"=>"26", "pdf"=>"7", "abstract"=>"0", "scanned-summary"=>"0", "scanned-page-browse"=>"0", "figure"=>"1", "supp-data"=>"0", "cited-by"=>"0", "year"=>"2015", "month"=>"2"}
  • {"unique-ip"=>"20", "full-text"=>"16", "pdf"=>"9", "abstract"=>"0", "scanned-summary"=>"0", "scanned-page-browse"=>"0", "figure"=>"4", "supp-data"=>"0", "cited-by"=>"1", "year"=>"2015", "month"=>"3"}
  • {"unique-ip"=>"17", "full-text"=>"19", "pdf"=>"2", "abstract"=>"0", "scanned-summary"=>"0", "scanned-page-browse"=>"0", "figure"=>"3", "supp-data"=>"0", "cited-by"=>"1", "year"=>"2015", "month"=>"4"}
  • {"unique-ip"=>"16", "full-text"=>"17", "pdf"=>"4", "abstract"=>"0", "scanned-summary"=>"0", "scanned-page-browse"=>"0", "figure"=>"3", "supp-data"=>"0", "cited-by"=>"0", "year"=>"2015", "month"=>"5"}
  • {"unique-ip"=>"12", "full-text"=>"12", "pdf"=>"1", "abstract"=>"0", "scanned-summary"=>"0", "scanned-page-browse"=>"0", "figure"=>"3", "supp-data"=>"0", "cited-by"=>"0", "year"=>"2015", "month"=>"6"}
  • {"unique-ip"=>"11", "full-text"=>"9", "pdf"=>"1", "abstract"=>"0", "scanned-summary"=>"0", "scanned-page-browse"=>"0", "figure"=>"2", "supp-data"=>"0", "cited-by"=>"0", "year"=>"2015", "month"=>"7"}
  • {"unique-ip"=>"9", "full-text"=>"9", "pdf"=>"2", "abstract"=>"0", "scanned-summary"=>"0", "scanned-page-browse"=>"0", "figure"=>"0", "supp-data"=>"0", "cited-by"=>"0", "year"=>"2015", "month"=>"8"}
  • {"unique-ip"=>"18", "full-text"=>"17", "pdf"=>"3", "abstract"=>"0", "scanned-summary"=>"0", "scanned-page-browse"=>"0", "figure"=>"7", "supp-data"=>"0", "cited-by"=>"0", "year"=>"2015", "month"=>"9"}
  • {"unique-ip"=>"19", "full-text"=>"18", "pdf"=>"3", "abstract"=>"0", "scanned-summary"=>"0", "scanned-page-browse"=>"0", "figure"=>"0", "supp-data"=>"0", "cited-by"=>"1", "year"=>"2015", "month"=>"10"}
  • {"unique-ip"=>"23", "full-text"=>"18", "pdf"=>"10", "abstract"=>"0", "scanned-summary"=>"0", "scanned-page-browse"=>"0", "figure"=>"5", "supp-data"=>"0", "cited-by"=>"1", "year"=>"2015", "month"=>"11"}
  • {"unique-ip"=>"12", "full-text"=>"11", "pdf"=>"4", "abstract"=>"0", "scanned-summary"=>"0", "scanned-page-browse"=>"0", "figure"=>"1", "supp-data"=>"0", "cited-by"=>"0", "year"=>"2015", "month"=>"12"}
  • {"unique-ip"=>"9", "full-text"=>"7", "pdf"=>"3", "abstract"=>"0", "scanned-summary"=>"0", "scanned-page-browse"=>"0", "figure"=>"2", "supp-data"=>"0", "cited-by"=>"0", "year"=>"2016", "month"=>"1"}
  • {"unique-ip"=>"8", "full-text"=>"6", "pdf"=>"5", "abstract"=>"0", "scanned-summary"=>"0", "scanned-page-browse"=>"0", "figure"=>"0", "supp-data"=>"0", "cited-by"=>"0", "year"=>"2016", "month"=>"2"}
  • {"unique-ip"=>"16", "full-text"=>"14", "pdf"=>"4", "abstract"=>"0", "scanned-summary"=>"0", "scanned-page-browse"=>"0", "figure"=>"0", "supp-data"=>"0", "cited-by"=>"0", "year"=>"2016", "month"=>"3"}
  • {"unique-ip"=>"4", "full-text"=>"3", "pdf"=>"2", "abstract"=>"0", "scanned-summary"=>"0", "scanned-page-browse"=>"0", "figure"=>"1", "supp-data"=>"0", "cited-by"=>"0", "year"=>"2016", "month"=>"4"}
  • {"unique-ip"=>"10", "full-text"=>"12", "pdf"=>"5", "abstract"=>"0", "scanned-summary"=>"0", "scanned-page-browse"=>"0", "figure"=>"0", "supp-data"=>"0", "cited-by"=>"0", "year"=>"2016", "month"=>"5"}
  • {"unique-ip"=>"11", "full-text"=>"10", "pdf"=>"6", "abstract"=>"0", "scanned-summary"=>"0", "scanned-page-browse"=>"0", "figure"=>"0", "supp-data"=>"0", "cited-by"=>"0", "year"=>"2016", "month"=>"6"}
  • {"unique-ip"=>"11", "full-text"=>"8", "pdf"=>"1", "abstract"=>"0", "scanned-summary"=>"0", "scanned-page-browse"=>"0", "figure"=>"2", "supp-data"=>"0", "cited-by"=>"0", "year"=>"2016", "month"=>"7"}
  • {"unique-ip"=>"9", "full-text"=>"10", "pdf"=>"1", "abstract"=>"0", "scanned-summary"=>"0", "scanned-page-browse"=>"0", "figure"=>"1", "supp-data"=>"0", "cited-by"=>"0", "year"=>"2016", "month"=>"8"}
  • {"unique-ip"=>"10", "full-text"=>"6", "pdf"=>"1", "abstract"=>"0", "scanned-summary"=>"0", "scanned-page-browse"=>"0", "figure"=>"8", "supp-data"=>"1", "cited-by"=>"0", "year"=>"2016", "month"=>"9"}
  • {"unique-ip"=>"8", "full-text"=>"5", "pdf"=>"2", "abstract"=>"0", "scanned-summary"=>"0", "scanned-page-browse"=>"0", "figure"=>"7", "supp-data"=>"0", "cited-by"=>"0", "year"=>"2016", "month"=>"10"}
  • {"unique-ip"=>"4", "full-text"=>"4", "pdf"=>"2", "abstract"=>"0", "scanned-summary"=>"0", "scanned-page-browse"=>"0", "figure"=>"0", "supp-data"=>"0", "cited-by"=>"0", "year"=>"2016", "month"=>"11"}
  • {"unique-ip"=>"4", "full-text"=>"4", "pdf"=>"1", "abstract"=>"0", "scanned-summary"=>"0", "scanned-page-browse"=>"0", "figure"=>"1", "supp-data"=>"0", "cited-by"=>"0", "year"=>"2016", "month"=>"12"}
  • {"unique-ip"=>"12", "full-text"=>"13", "pdf"=>"5", "abstract"=>"0", "scanned-summary"=>"0", "scanned-page-browse"=>"0", "figure"=>"0", "supp-data"=>"0", "cited-by"=>"0", "year"=>"2017", "month"=>"1"}
  • {"unique-ip"=>"9", "full-text"=>"8", "pdf"=>"2", "abstract"=>"0", "scanned-summary"=>"0", "scanned-page-browse"=>"0", "figure"=>"4", "supp-data"=>"0", "cited-by"=>"0", "year"=>"2017", "month"=>"2"}
  • {"unique-ip"=>"8", "full-text"=>"6", "pdf"=>"3", "abstract"=>"0", "scanned-summary"=>"0", "scanned-page-browse"=>"0", "figure"=>"18", "supp-data"=>"0", "cited-by"=>"0", "year"=>"2017", "month"=>"3"}
  • {"unique-ip"=>"2", "full-text"=>"2", "pdf"=>"0", "abstract"=>"0", "scanned-summary"=>"0", "scanned-page-browse"=>"0", "figure"=>"0", "supp-data"=>"0", "cited-by"=>"0", "year"=>"2017", "month"=>"4"}
  • {"unique-ip"=>"7", "full-text"=>"8", "pdf"=>"4", "abstract"=>"0", "scanned-summary"=>"0", "scanned-page-browse"=>"0", "figure"=>"0", "supp-data"=>"0", "cited-by"=>"0", "year"=>"2017", "month"=>"5"}
  • {"unique-ip"=>"2", "full-text"=>"2", "pdf"=>"2", "abstract"=>"0", "scanned-summary"=>"0", "scanned-page-browse"=>"0", "figure"=>"0", "supp-data"=>"0", "cited-by"=>"0", "year"=>"2017", "month"=>"6"}
  • {"unique-ip"=>"9", "full-text"=>"10", "pdf"=>"5", "abstract"=>"0", "scanned-summary"=>"0", "scanned-page-browse"=>"0", "figure"=>"2", "supp-data"=>"0", "cited-by"=>"0", "year"=>"2017", "month"=>"7"}
  • {"unique-ip"=>"7", "full-text"=>"11", "pdf"=>"2", "abstract"=>"0", "scanned-summary"=>"0", "scanned-page-browse"=>"0", "figure"=>"0", "supp-data"=>"0", "cited-by"=>"0", "year"=>"2017", "month"=>"8"}
  • {"unique-ip"=>"3", "full-text"=>"2", "pdf"=>"1", "abstract"=>"0", "scanned-summary"=>"0", "scanned-page-browse"=>"0", "figure"=>"0", "supp-data"=>"0", "cited-by"=>"0", "year"=>"2017", "month"=>"9"}
  • {"unique-ip"=>"12", "full-text"=>"11", "pdf"=>"2", "abstract"=>"0", "scanned-summary"=>"0", "scanned-page-browse"=>"0", "figure"=>"1", "supp-data"=>"0", "cited-by"=>"0", "year"=>"2017", "month"=>"10"}
  • {"unique-ip"=>"16", "full-text"=>"11", "pdf"=>"0", "abstract"=>"0", "scanned-summary"=>"0", "scanned-page-browse"=>"0", "figure"=>"0", "supp-data"=>"2", "cited-by"=>"1", "year"=>"2017", "month"=>"11"}
  • {"unique-ip"=>"4", "full-text"=>"4", "pdf"=>"0", "abstract"=>"0", "scanned-summary"=>"0", "scanned-page-browse"=>"0", "figure"=>"0", "supp-data"=>"0", "cited-by"=>"0", "year"=>"2017", "month"=>"12"}
  • {"unique-ip"=>"5", "full-text"=>"4", "pdf"=>"1", "abstract"=>"0", "scanned-summary"=>"0", "scanned-page-browse"=>"0", "figure"=>"0", "supp-data"=>"0", "cited-by"=>"0", "year"=>"2018", "month"=>"1"}
  • {"unique-ip"=>"1", "full-text"=>"1", "pdf"=>"0", "abstract"=>"0", "scanned-summary"=>"0", "scanned-page-browse"=>"0", "figure"=>"0", "supp-data"=>"0", "cited-by"=>"0", "year"=>"2018", "month"=>"3"}
  • {"unique-ip"=>"5", "full-text"=>"6", "pdf"=>"0", "scanned-summary"=>"0", "scanned-page-browse"=>"0", "figure"=>"0", "supp-data"=>"0", "cited-by"=>"0", "year"=>"2019", "month"=>"1"}
  • {"unique-ip"=>"4", "full-text"=>"5", "pdf"=>"0", "scanned-summary"=>"0", "scanned-page-browse"=>"0", "figure"=>"0", "supp-data"=>"0", "cited-by"=>"0", "year"=>"2018", "month"=>"5"}
  • {"unique-ip"=>"4", "full-text"=>"5", "pdf"=>"2", "scanned-summary"=>"0", "scanned-page-browse"=>"0", "figure"=>"0", "supp-data"=>"0", "cited-by"=>"0", "year"=>"2018", "month"=>"4"}
  • {"unique-ip"=>"11", "full-text"=>"13", "pdf"=>"6", "scanned-summary"=>"0", "scanned-page-browse"=>"0", "figure"=>"12", "supp-data"=>"0", "cited-by"=>"0", "year"=>"2018", "month"=>"6"}
  • {"unique-ip"=>"5", "full-text"=>"6", "pdf"=>"2", "scanned-summary"=>"0", "scanned-page-browse"=>"0", "figure"=>"0", "supp-data"=>"1", "cited-by"=>"0", "year"=>"2018", "month"=>"7"}
  • {"unique-ip"=>"8", "full-text"=>"8", "pdf"=>"2", "scanned-summary"=>"0", "scanned-page-browse"=>"0", "figure"=>"3", "supp-data"=>"0", "cited-by"=>"0", "year"=>"2018", "month"=>"8"}
  • {"unique-ip"=>"8", "full-text"=>"10", "pdf"=>"1", "scanned-summary"=>"0", "scanned-page-browse"=>"0", "figure"=>"1", "supp-data"=>"1", "cited-by"=>"0", "year"=>"2018", "month"=>"9"}
  • {"unique-ip"=>"14", "full-text"=>"21", "pdf"=>"4", "scanned-summary"=>"0", "scanned-page-browse"=>"0", "figure"=>"0", "supp-data"=>"0", "cited-by"=>"0", "year"=>"2018", "month"=>"10"}
  • {"unique-ip"=>"8", "full-text"=>"7", "pdf"=>"0", "scanned-summary"=>"0", "scanned-page-browse"=>"0", "figure"=>"0", "supp-data"=>"1", "cited-by"=>"0", "year"=>"2018", "month"=>"11"}
  • {"unique-ip"=>"14", "full-text"=>"15", "pdf"=>"1", "scanned-summary"=>"0", "scanned-page-browse"=>"0", "figure"=>"0", "supp-data"=>"0", "cited-by"=>"0", "year"=>"2018", "month"=>"12"}
  • {"unique-ip"=>"4", "full-text"=>"4", "pdf"=>"0", "scanned-summary"=>"0", "scanned-page-browse"=>"0", "figure"=>"1", "supp-data"=>"0", "cited-by"=>"0", "year"=>"2019", "month"=>"2"}
  • {"unique-ip"=>"9", "full-text"=>"9", "pdf"=>"2", "scanned-summary"=>"0", "scanned-page-browse"=>"0", "figure"=>"0", "supp-data"=>"0", "cited-by"=>"0", "year"=>"2019", "month"=>"3"}
  • {"unique-ip"=>"4", "full-text"=>"2", "pdf"=>"1", "scanned-summary"=>"0", "scanned-page-browse"=>"0", "figure"=>"1", "supp-data"=>"0", "cited-by"=>"0", "year"=>"2019", "month"=>"4"}
  • {"unique-ip"=>"11", "full-text"=>"15", "pdf"=>"4", "scanned-summary"=>"0", "scanned-page-browse"=>"0", "figure"=>"0", "supp-data"=>"0", "cited-by"=>"0", "year"=>"2019", "month"=>"5"}
  • {"unique-ip"=>"6", "full-text"=>"4", "pdf"=>"2", "scanned-summary"=>"0", "scanned-page-browse"=>"0", "figure"=>"0", "supp-data"=>"0", "cited-by"=>"0", "year"=>"2019", "month"=>"8"}

Relative Metric

{"start_date"=>"2014-01-01T00:00:00Z", "end_date"=>"2014-12-31T00:00:00Z", "subject_areas"=>[{"subject_area"=>"/Biology and life sciences", "average_usage"=>[291]}, {"subject_area"=>"/Biology and life sciences/Microbiology", "average_usage"=>[317]}, {"subject_area"=>"/Biology and life sciences/Organisms", "average_usage"=>[310]}, {"subject_area"=>"/Medicine and health sciences/Pathology and laboratory medicine", "average_usage"=>[287]}]}
Loading … Spinner
There are currently no alerts