Rising CO2 Levels Will Intensify Phytoplankton Blooms in Eutrophic and Hypertrophic Lakes
Publication Date
August 13, 2014
Journal
PLOS ONE
Authors
Jolanda M. H. Verspagen, Dedmer B. Van De Waal, Jan F. Finke, Petra M. Visser, et al
Volume
9
Issue
8
Pages
e104325
DOI
https://dx.plos.org/10.1371/journal.pone.0104325
Publisher URL
http://journals.plos.org/plosone/article?id=10.1371%2Fjournal.pone.0104325
PubMed
http://www.ncbi.nlm.nih.gov/pubmed/25119996
PubMed Central
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4132121
Europe PMC
http://europepmc.org/abstract/MED/25119996
Web of Science
000340900600050
Scopus
84905917139
Mendeley
http://www.mendeley.com/research/rising-co2-levels-intensify-phytoplankton-blooms-eutrophic-hypertrophic-lakes
Events
Loading … Spinner

Mendeley | Further Information

{"title"=>"Rising CO2 levels will intensify phytoplankton blooms in eutrophic and hypertrophic lakes", "type"=>"journal", "authors"=>[{"first_name"=>"Jolanda M.H.", "last_name"=>"Verspagen", "scopus_author_id"=>"6507866806"}, {"first_name"=>"Dedmer B.", "last_name"=>"Van De Waal", "scopus_author_id"=>"24179407300"}, {"first_name"=>"Jan F.", "last_name"=>"Finke", "scopus_author_id"=>"50661293700"}, {"first_name"=>"Petra M.", "last_name"=>"Visser", "scopus_author_id"=>"7101761152"}, {"first_name"=>"Ellen", "last_name"=>"Van Donk", "scopus_author_id"=>"7004642700"}, {"first_name"=>"Jef", "last_name"=>"Huisman", "scopus_author_id"=>"7102537375"}], "year"=>2014, "source"=>"PLoS ONE", "identifiers"=>{"pmid"=>"25119996", "doi"=>"10.1371/journal.pone.0104325", "issn"=>"19326203", "pui"=>"373752578", "isbn"=>"10.1371/journal.pone.0104325", "sgr"=>"84905917139", "scopus"=>"2-s2.0-84905917139"}, "id"=>"4b24b380-3fbf-381d-8b6e-ec371d891fc6", "abstract"=>"Harmful algal blooms threaten the water quality of many eutrophic and hypertrophic lakes and cause severe ecological and economic damage worldwide. Dense blooms often deplete the dissolved CO2 concentration and raise pH. Yet, quantitative prediction of the feedbacks between phytoplankton growth, CO2 drawdown and the inorganic carbon chemistry of aquatic ecosystems has received surprisingly little attention. Here, we develop a mathematical model to predict dynamic changes in dissolved inorganic carbon (DIC), pH and alkalinity during phytoplankton bloom development. We tested the model in chemostat experiments with the freshwater cyanobacterium Microcystis aeruginosa at different CO2 levels. The experiments showed that dense blooms sequestered large amounts of atmospheric CO2, not only by their own biomass production but also by inducing a high pH and alkalinity that enhanced the capacity for DIC storage in the system. We used the model to explore how phytoplankton blooms of eutrophic waters will respond to rising CO2 levels. The model predicts that (1) dense phytoplankton blooms in low- and moderately alkaline waters can deplete the dissolved CO2 concentration to limiting levels and raise the pH over a relatively wide range of atmospheric CO2 conditions, (2) rising atmospheric CO2 levels will enhance phytoplankton blooms in low- and moderately alkaline waters with high nutrient loads, and (3) above some threshold, rising atmospheric CO2 will alleviate phytoplankton blooms from carbon limitation, resulting in less intense CO2 depletion and a lesser increase in pH. Sensitivity analysis indicated that the model predictions were qualitatively robust. Quantitatively, the predictions were sensitive to variation in lake depth, DIC input and CO2 gas transfer across the air-water interface, but relatively robust to variation in the carbon uptake mechanisms of phytoplankton. In total, these findings warn that rising CO2 levels may result in a marked intensification of phytoplankton blooms in eutrophic and hypertrophic waters.", "link"=>"http://www.mendeley.com/research/rising-co2-levels-intensify-phytoplankton-blooms-eutrophic-hypertrophic-lakes", "reader_count"=>123, "reader_count_by_academic_status"=>{"Unspecified"=>4, "Professor > Associate Professor"=>3, "Librarian"=>1, "Researcher"=>21, "Student > Doctoral Student"=>4, "Student > Ph. D. Student"=>37, "Student > Postgraduate"=>8, "Student > Master"=>23, "Other"=>7, "Student > Bachelor"=>14, "Professor"=>1}, "reader_count_by_user_role"=>{"Unspecified"=>4, "Professor > Associate Professor"=>3, "Librarian"=>1, "Researcher"=>21, "Student > Doctoral Student"=>4, "Student > Ph. D. Student"=>37, "Student > Postgraduate"=>8, "Student > Master"=>23, "Other"=>7, "Student > Bachelor"=>14, "Professor"=>1}, "reader_count_by_subject_area"=>{"Unspecified"=>10, "Engineering"=>3, "Environmental Science"=>43, "Biochemistry, Genetics and Molecular Biology"=>6, "Agricultural and Biological Sciences"=>46, "Medicine and Dentistry"=>1, "Chemistry"=>1, "Immunology and Microbiology"=>1, "Earth and Planetary Sciences"=>12}, "reader_count_by_subdiscipline"=>{"Engineering"=>{"Engineering"=>3}, "Medicine and Dentistry"=>{"Medicine and Dentistry"=>1}, "Chemistry"=>{"Chemistry"=>1}, "Immunology and Microbiology"=>{"Immunology and Microbiology"=>1}, "Earth and Planetary Sciences"=>{"Earth and Planetary Sciences"=>12}, "Agricultural and Biological Sciences"=>{"Agricultural and Biological Sciences"=>46}, "Biochemistry, Genetics and Molecular Biology"=>{"Biochemistry, Genetics and Molecular Biology"=>6}, "Unspecified"=>{"Unspecified"=>10}, "Environmental Science"=>{"Environmental Science"=>43}}, "reader_count_by_country"=>{"Canada"=>1, "Japan"=>1, "United Kingdom"=>1, "France"=>1, "Australia"=>1, "Portugal"=>1, "Switzerland"=>1, "Germany"=>2, "Spain"=>1}, "group_count"=>2}

CrossRef

Scopus | Further Information

{"@_fa"=>"true", "link"=>[{"@_fa"=>"true", "@ref"=>"self", "@href"=>"https://api.elsevier.com/content/abstract/scopus_id/84905917139"}, {"@_fa"=>"true", "@ref"=>"author-affiliation", "@href"=>"https://api.elsevier.com/content/abstract/scopus_id/84905917139?field=author,affiliation"}, {"@_fa"=>"true", "@ref"=>"scopus", "@href"=>"https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=84905917139&origin=inward"}, {"@_fa"=>"true", "@ref"=>"scopus-citedby", "@href"=>"https://www.scopus.com/inward/citedby.uri?partnerID=HzOxMe3b&scp=84905917139&origin=inward"}], "prism:url"=>"https://api.elsevier.com/content/abstract/scopus_id/84905917139", "dc:identifier"=>"SCOPUS_ID:84905917139", "eid"=>"2-s2.0-84905917139", "dc:title"=>"Rising CO <inf>2</inf> levels will intensify phytoplankton blooms in eutrophic and hypertrophic lakes", "dc:creator"=>"Verspagen J.", "prism:publicationName"=>"PLoS ONE", "prism:eIssn"=>"19326203", "prism:volume"=>"9", "prism:issueIdentifier"=>"8", "prism:pageRange"=>nil, "prism:coverDate"=>"2014-08-13", "prism:coverDisplayDate"=>"13 August 2014", "prism:doi"=>"10.1371/journal.pone.0104325", "citedby-count"=>"69", "affiliation"=>[{"@_fa"=>"true", "affilname"=>"Institute for Biodiversity and Ecosystem Dynamics - Amsterdam", "affiliation-city"=>"Amsterdam", "affiliation-country"=>"Netherlands"}], "pubmed-id"=>"25119996", "prism:aggregationType"=>"Journal", "subtype"=>"ar", "subtypeDescription"=>"Article", "article-number"=>"e104325", "source-id"=>"10600153309", "openaccess"=>"1", "openaccessFlag"=>true}

Facebook

  • {"url"=>"http%3A%2F%2Fjournals.plos.org%2Fplosone%2Farticle%3Fid%3D10.1371%252Fjournal.pone.0104325", "share_count"=>6, "like_count"=>19, "comment_count"=>2, "click_count"=>0, "total_count"=>27}

Twitter

Counter

  • {"month"=>"8", "year"=>"2014", "pdf_views"=>"80", "xml_views"=>"14", "html_views"=>"505"}
  • {"month"=>"9", "year"=>"2014", "pdf_views"=>"49", "xml_views"=>"1", "html_views"=>"158"}
  • {"month"=>"10", "year"=>"2014", "pdf_views"=>"41", "xml_views"=>"2", "html_views"=>"217"}
  • {"month"=>"11", "year"=>"2014", "pdf_views"=>"46", "xml_views"=>"4", "html_views"=>"344"}
  • {"month"=>"12", "year"=>"2014", "pdf_views"=>"26", "xml_views"=>"3", "html_views"=>"232"}
  • {"month"=>"1", "year"=>"2015", "pdf_views"=>"24", "xml_views"=>"0", "html_views"=>"172"}
  • {"month"=>"2", "year"=>"2015", "pdf_views"=>"25", "xml_views"=>"0", "html_views"=>"106"}
  • {"month"=>"3", "year"=>"2015", "pdf_views"=>"12", "xml_views"=>"0", "html_views"=>"132"}
  • {"month"=>"4", "year"=>"2015", "pdf_views"=>"14", "xml_views"=>"1", "html_views"=>"80"}
  • {"month"=>"5", "year"=>"2015", "pdf_views"=>"13", "xml_views"=>"0", "html_views"=>"99"}
  • {"month"=>"6", "year"=>"2015", "pdf_views"=>"14", "xml_views"=>"0", "html_views"=>"77"}
  • {"month"=>"7", "year"=>"2015", "pdf_views"=>"20", "xml_views"=>"0", "html_views"=>"94"}
  • {"month"=>"8", "year"=>"2015", "pdf_views"=>"14", "xml_views"=>"0", "html_views"=>"112"}
  • {"month"=>"9", "year"=>"2015", "pdf_views"=>"18", "xml_views"=>"1", "html_views"=>"76"}
  • {"month"=>"10", "year"=>"2015", "pdf_views"=>"17", "xml_views"=>"0", "html_views"=>"171"}
  • {"month"=>"11", "year"=>"2015", "pdf_views"=>"24", "xml_views"=>"0", "html_views"=>"96"}
  • {"month"=>"12", "year"=>"2015", "pdf_views"=>"31", "xml_views"=>"0", "html_views"=>"125"}
  • {"month"=>"1", "year"=>"2016", "pdf_views"=>"11", "xml_views"=>"0", "html_views"=>"60"}
  • {"month"=>"2", "year"=>"2016", "pdf_views"=>"9", "xml_views"=>"0", "html_views"=>"68"}
  • {"month"=>"3", "year"=>"2016", "pdf_views"=>"18", "xml_views"=>"0", "html_views"=>"75"}
  • {"month"=>"4", "year"=>"2016", "pdf_views"=>"10", "xml_views"=>"0", "html_views"=>"73"}
  • {"month"=>"5", "year"=>"2016", "pdf_views"=>"9", "xml_views"=>"0", "html_views"=>"46"}
  • {"month"=>"6", "year"=>"2016", "pdf_views"=>"6", "xml_views"=>"0", "html_views"=>"46"}
  • {"month"=>"7", "year"=>"2016", "pdf_views"=>"8", "xml_views"=>"0", "html_views"=>"29"}
  • {"month"=>"8", "year"=>"2016", "pdf_views"=>"13", "xml_views"=>"0", "html_views"=>"37"}
  • {"month"=>"9", "year"=>"2016", "pdf_views"=>"25", "xml_views"=>"0", "html_views"=>"82"}
  • {"month"=>"10", "year"=>"2016", "pdf_views"=>"29", "xml_views"=>"0", "html_views"=>"96"}
  • {"month"=>"11", "year"=>"2016", "pdf_views"=>"13", "xml_views"=>"0", "html_views"=>"82"}
  • {"month"=>"12", "year"=>"2016", "pdf_views"=>"9", "xml_views"=>"0", "html_views"=>"49"}
  • {"month"=>"1", "year"=>"2017", "pdf_views"=>"15", "xml_views"=>"0", "html_views"=>"63"}
  • {"month"=>"2", "year"=>"2017", "pdf_views"=>"26", "xml_views"=>"0", "html_views"=>"105"}
  • {"month"=>"3", "year"=>"2017", "pdf_views"=>"20", "xml_views"=>"0", "html_views"=>"117"}
  • {"month"=>"4", "year"=>"2017", "pdf_views"=>"20", "xml_views"=>"0", "html_views"=>"126"}
  • {"month"=>"5", "year"=>"2017", "pdf_views"=>"24", "xml_views"=>"1", "html_views"=>"99"}
  • {"month"=>"6", "year"=>"2017", "pdf_views"=>"15", "xml_views"=>"0", "html_views"=>"84"}
  • {"month"=>"7", "year"=>"2017", "pdf_views"=>"27", "xml_views"=>"1", "html_views"=>"50"}
  • {"month"=>"8", "year"=>"2017", "pdf_views"=>"12", "xml_views"=>"0", "html_views"=>"55"}
  • {"month"=>"9", "year"=>"2017", "pdf_views"=>"9", "xml_views"=>"1", "html_views"=>"59"}
  • {"month"=>"10", "year"=>"2017", "pdf_views"=>"15", "xml_views"=>"2", "html_views"=>"82"}
  • {"month"=>"11", "year"=>"2017", "pdf_views"=>"28", "xml_views"=>"0", "html_views"=>"169"}
  • {"month"=>"12", "year"=>"2017", "pdf_views"=>"10", "xml_views"=>"2", "html_views"=>"87"}
  • {"month"=>"1", "year"=>"2018", "pdf_views"=>"7", "xml_views"=>"1", "html_views"=>"51"}
  • {"month"=>"2", "year"=>"2018", "pdf_views"=>"19", "xml_views"=>"1", "html_views"=>"43"}
  • {"month"=>"3", "year"=>"2018", "pdf_views"=>"18", "xml_views"=>"0", "html_views"=>"58"}
  • {"month"=>"4", "year"=>"2018", "pdf_views"=>"21", "xml_views"=>"1", "html_views"=>"76"}
  • {"month"=>"5", "year"=>"2018", "pdf_views"=>"12", "xml_views"=>"0", "html_views"=>"43"}
  • {"month"=>"6", "year"=>"2018", "pdf_views"=>"20", "xml_views"=>"3", "html_views"=>"32"}
  • {"month"=>"7", "year"=>"2018", "pdf_views"=>"17", "xml_views"=>"3", "html_views"=>"25"}
  • {"month"=>"8", "year"=>"2018", "pdf_views"=>"8", "xml_views"=>"1", "html_views"=>"24"}
  • {"month"=>"9", "year"=>"2018", "pdf_views"=>"18", "xml_views"=>"0", "html_views"=>"48"}
  • {"month"=>"10", "year"=>"2018", "pdf_views"=>"24", "xml_views"=>"2", "html_views"=>"40"}
  • {"month"=>"11", "year"=>"2018", "pdf_views"=>"24", "xml_views"=>"0", "html_views"=>"53"}
  • {"month"=>"12", "year"=>"2018", "pdf_views"=>"9", "xml_views"=>"0", "html_views"=>"33"}
  • {"month"=>"1", "year"=>"2019", "pdf_views"=>"15", "xml_views"=>"0", "html_views"=>"38"}
  • {"month"=>"2", "year"=>"2019", "pdf_views"=>"11", "xml_views"=>"0", "html_views"=>"17"}
  • {"month"=>"3", "year"=>"2019", "pdf_views"=>"25", "xml_views"=>"1", "html_views"=>"49"}
  • {"month"=>"4", "year"=>"2019", "pdf_views"=>"17", "xml_views"=>"0", "html_views"=>"30"}
  • {"month"=>"5", "year"=>"2019", "pdf_views"=>"25", "xml_views"=>"1", "html_views"=>"36"}
  • {"month"=>"6", "year"=>"2019", "pdf_views"=>"9", "xml_views"=>"0", "html_views"=>"34"}
  • {"month"=>"7", "year"=>"2019", "pdf_views"=>"15", "xml_views"=>"0", "html_views"=>"32"}
  • {"month"=>"8", "year"=>"2019", "pdf_views"=>"18", "xml_views"=>"0", "html_views"=>"52"}
  • {"month"=>"9", "year"=>"2019", "pdf_views"=>"19", "xml_views"=>"0", "html_views"=>"113"}
  • {"month"=>"10", "year"=>"2019", "pdf_views"=>"13", "xml_views"=>"1", "html_views"=>"49"}
  • {"month"=>"11", "year"=>"2019", "pdf_views"=>"30", "xml_views"=>"0", "html_views"=>"63"}
  • {"month"=>"12", "year"=>"2019", "pdf_views"=>"13", "xml_views"=>"0", "html_views"=>"27"}

Figshare

  • {"files"=>["https://ndownloader.figshare.com/files/1634278"], "description"=>"<p>(A) Changes in phytoplankton population density (strongly dominated by the cyanobacterium <i>Microcystis</i>) and measured dissolved CO<sub>2</sub> concentration ([CO<sub>2</sub>]) during two consecutive years. The dashed line is the expected dissolved CO<sub>2</sub> concentration ([CO<sub>2</sub>*]) when assuming equilibrium with atmospheric pCO<sub>2</sub>. Dark shading indicates that the lake is supersaturated with CO<sub>2</sub>, while light shading indicates undersaturation. (B) Changes in pH, bicarbonate and total DIC concentration. Sampling details are described in <a href=\"http://www.plosone.org/article/info:doi/10.1371/journal.pone.0104325#pone.0104325.s001\" target=\"_blank\">Text S1</a>.</p>", "links"=>[], "tags"=>["CO 2 concentration", "phytoplankton blooms", "CO 2 Levels", "CO 2 gas transfer", "carbon uptake mechanisms", "phytoplankton bloom development", "ph", "CO 2 drawdown", "CO 2 conditions", "dic", "CO 2 depletion", "cyanobacterium Microcystis aeruginosa", "model", "Intensify Phytoplankton Blooms"], "article_id"=>1137928, "categories"=>["Biological Sciences", "Ecology"], "users"=>["Jolanda M. H. Verspagen", "Dedmer B. Van de Waal", "Jan F. Finke", "Petra M. Visser", "Ellen van Donk", "Jef Huisman"], "doi"=>"https://dx.doi.org/10.1371/journal.pone.0104325.g001", "stats"=>{"downloads"=>1, "page_views"=>17, "likes"=>0}, "figshare_url"=>"https://figshare.com/articles/_Seasonal_dynamics_of_phytoplankton_blooms_in_Lake_Volkerak_/1137928", "title"=>"Seasonal dynamics of phytoplankton blooms in Lake Volkerak.", "pos_in_sequence"=>0, "defined_type"=>1, "published_date"=>"2014-08-13 04:37:49"}
  • {"files"=>["https://ndownloader.figshare.com/files/1634279"], "description"=>"<p>Left panels: Chemostat experiment with low pCO<sub>2</sub> of 200 ppm in the gas flow and 500 µmol L<sup>−1</sup> bicarbonate in the mineral medium. Right panels: Chemostat experiment with high pCO<sub>2</sub> of 1,200 ppm in the gas flow and 2,000 µmol L<sup>−1</sup> bicarbonate in the mineral medium. Both chemostats were inoculated with <i>Microcystis</i> CYA140. (A, B) Population density (expressed as biovolume) and light intensity penetrating through the chemostat (<i>I<sub>OUT</sub></i>), (C, D) dissolved CO<sub>2</sub>, bicarbonate and carbonate concentrations, (E, F) total DIC concentration and pH, and (G, H) alkalinity (ALK) and concentrations of dissolved inorganic nitrogen (DIN) and phosphorus (DIP). Symbols represent measurements, lines show the model fits. The model and its parameter values are detailed in <a href=\"http://www.plosone.org/article/info:doi/10.1371/journal.pone.0104325#pone.0104325.s002\" target=\"_blank\">Text S2</a>.</p>", "links"=>[], "tags"=>["CO 2 concentration", "phytoplankton blooms", "CO 2 Levels", "CO 2 gas transfer", "carbon uptake mechanisms", "phytoplankton bloom development", "ph", "CO 2 drawdown", "CO 2 conditions", "dic", "CO 2 depletion", "cyanobacterium Microcystis aeruginosa", "model", "Intensify Phytoplankton Blooms"], "article_id"=>1137929, "categories"=>["Biological Sciences", "Ecology"], "users"=>["Jolanda M. H. Verspagen", "Dedmer B. Van de Waal", "Jan F. Finke", "Petra M. Visser", "Ellen van Donk", "Jef Huisman"], "doi"=>"https://dx.doi.org/10.1371/journal.pone.0104325.g002", "stats"=>{"downloads"=>0, "page_views"=>15, "likes"=>0}, "figshare_url"=>"https://figshare.com/articles/_Changes_in_inorganic_carbon_chemistry_during_phytoplankton_growth_in_two_chemostat_experiments_/1137929", "title"=>"Changes in inorganic carbon chemistry during phytoplankton growth in two chemostat experiments.", "pos_in_sequence"=>0, "defined_type"=>1, "published_date"=>"2014-08-13 04:37:49"}
  • {"files"=>["https://ndownloader.figshare.com/files/1634280"], "description"=>"<p>Trajectories predicted by the model for chemostats with (A) low pCO<sub>2</sub> of 200 ppm in the gas flow and 500 µmol L<sup>−1</sup> bicarbonate in the mineral medium, and (B) high pCO<sub>2</sub> of 1,200 ppm in the gas flow and 2,000 µmol L<sup>−1</sup> bicarbonate in the mineral medium. The trajectories start from a series of different initial conditions, and all converge to the same equilibrium point. Arrows indicate the direction of the trajectories. The model assumes species parameters specific for <i>Microcystis</i> CYA140, and is detailed in <a href=\"http://www.plosone.org/article/info:doi/10.1371/journal.pone.0104325#pone.0104325.s002\" target=\"_blank\">Text S2</a>.</p>", "links"=>[], "tags"=>["CO 2 concentration", "phytoplankton blooms", "CO 2 Levels", "CO 2 gas transfer", "carbon uptake mechanisms", "phytoplankton bloom development", "ph", "CO 2 drawdown", "CO 2 conditions", "dic", "CO 2 depletion", "cyanobacterium Microcystis aeruginosa", "model", "Intensify Phytoplankton Blooms"], "article_id"=>1137930, "categories"=>["Biological Sciences", "Ecology"], "users"=>["Jolanda M. H. Verspagen", "Dedmer B. Van de Waal", "Jan F. Finke", "Petra M. Visser", "Ellen van Donk", "Jef Huisman"], "doi"=>"https://dx.doi.org/10.1371/journal.pone.0104325.g003", "stats"=>{"downloads"=>0, "page_views"=>10, "likes"=>0}, "figshare_url"=>"https://figshare.com/articles/_Trajectories_of_dissolved_CO_2_and_population_density_/1137930", "title"=>"Trajectories of dissolved CO<sub>2</sub> and population density.", "pos_in_sequence"=>0, "defined_type"=>1, "published_date"=>"2014-08-13 04:37:49"}
  • {"files"=>["https://ndownloader.figshare.com/files/1634281"], "description"=>"<p>Steady-state results are shown for 6 chemostats with <i>Microcystis</i> HUB5-2-4 exposed to different pCO<sub>2</sub> levels in the gas flow and two different bicarbonate concentrations in the mineral medium (0.5 or 2.0 mmol L<sup>−1</sup>). (A) Phytoplankton population density (expressed as biovolume), (B) light intensity penetrating through the chemostat (<i>I<sub>OUT</sub></i>), (C) dissolved CO<sub>2</sub> concentration, (D) bicarbonate concentration, (E) pH, (F) alkalinity, (G) DIC concentration, and (H) carbon sequestration rate. Symbols show the mean (± s.d.) of 5 measurements in each steady-state chemostat, lines show the model fits. For comparison, dashed lines show steady-state patterns predicted for chemostats without phytoplankton. Shading indicates the level of carbon limitation (<i>L<sub>C</sub></i>) predicted by the model. The model and its parameter values are detailed in <a href=\"http://www.plosone.org/article/info:doi/10.1371/journal.pone.0104325#pone.0104325.s002\" target=\"_blank\">Text S2</a>.</p>", "links"=>[], "tags"=>["CO 2 concentration", "phytoplankton blooms", "CO 2 Levels", "CO 2 gas transfer", "carbon uptake mechanisms", "phytoplankton bloom development", "ph", "CO 2 drawdown", "CO 2 conditions", "dic", "CO 2 depletion", "cyanobacterium Microcystis aeruginosa", "model", "Intensify Phytoplankton Blooms"], "article_id"=>1137931, "categories"=>["Biological Sciences", "Ecology"], "users"=>["Jolanda M. H. Verspagen", "Dedmer B. Van de Waal", "Jan F. Finke", "Petra M. Visser", "Ellen van Donk", "Jef Huisman"], "doi"=>"https://dx.doi.org/10.1371/journal.pone.0104325.g004", "stats"=>{"downloads"=>2, "page_views"=>83, "likes"=>0}, "figshare_url"=>"https://figshare.com/articles/_Steady_state_patterns_of_phytoplankton_population_density_and_inorganic_carbon_chemistry_in_chemostat_experiments_/1137931", "title"=>"Steady-state patterns of phytoplankton population density and inorganic carbon chemistry in chemostat experiments.", "pos_in_sequence"=>0, "defined_type"=>1, "published_date"=>"2014-08-13 04:37:49"}
  • {"files"=>["https://ndownloader.figshare.com/files/1634282"], "description"=>"<p>Steady-state predictions of the model evaluated across a wide range of atmospheric pCO<sub>2</sub> levels. (A) Phytoplankton population density (expressed as biovolume), (B) light intensity reaching the lake sediment (<i>I<sub>OUT</sub></i>), (C) dissolved CO<sub>2</sub> concentration, (D) bicarbonate concentration, (E) pH, (F) alkalinity, (G) DIC concentration, and (H) carbon sequestration rate. Shading indicates the level of carbon limitation (<i>L<sub>C</sub></i>). For comparison, dashed lines show steady-state patterns predicted for low-alkaline waters without phytoplankton. The model parameters are representative for eutrophic low-alkaline lakes (ALK<sub>IN</sub> = 0.5 mEq L<sup>−1</sup>) dominated by the cyanobacterium <i>Microcystis</i> HUB5-2-4. The model and its parameter values are detailed in <a href=\"http://www.plosone.org/article/info:doi/10.1371/journal.pone.0104325#pone.0104325.s002\" target=\"_blank\">Text S2</a> and <a href=\"http://www.plosone.org/article/info:doi/10.1371/journal.pone.0104325#pone.0104325.s003\" target=\"_blank\">Text S3</a>.</p>", "links"=>[], "tags"=>["CO 2 concentration", "phytoplankton blooms", "CO 2 Levels", "CO 2 gas transfer", "carbon uptake mechanisms", "phytoplankton bloom development", "ph", "CO 2 drawdown", "CO 2 conditions", "dic", "CO 2 depletion", "cyanobacterium Microcystis aeruginosa", "model", "Intensify Phytoplankton Blooms"], "article_id"=>1137932, "categories"=>["Biological Sciences", "Ecology"], "users"=>["Jolanda M. H. Verspagen", "Dedmer B. Van de Waal", "Jan F. Finke", "Petra M. Visser", "Ellen van Donk", "Jef Huisman"], "doi"=>"https://dx.doi.org/10.1371/journal.pone.0104325.g005", "stats"=>{"downloads"=>0, "page_views"=>11, "likes"=>0}, "figshare_url"=>"https://figshare.com/articles/_Steady_state_patterns_predicted_for_phytoplankton_blooms_in_low_alkaline_lakes_/1137932", "title"=>"Steady-state patterns predicted for phytoplankton blooms in low-alkaline lakes.", "pos_in_sequence"=>0, "defined_type"=>1, "published_date"=>"2014-08-13 04:37:49"}
  • {"files"=>["https://ndownloader.figshare.com/files/1634283"], "description"=>"<p>Model predictions of (A) the level of carbon limitation, and (B) phytoplankton population density (expressed as biovolume, in mm<sup>3 </sup>L<sup>−1</sup>). The vertical solid line represents the present-day atmospheric CO<sub>2</sub> level of ∼400 ppm, while the vertical dashed line shows the atmospheric CO<sub>2</sub> level of 750 ppm predicted for the year 2150 by the RCP6 scenario of the Fifth Assessment Report of the IPCC. The model predictions are based on steady-state solutions across a grid of 40×50 = 2,000 simulations, using the model and parameter values detailed in <a href=\"http://www.plosone.org/article/info:doi/10.1371/journal.pone.0104325#pone.0104325.s002\" target=\"_blank\">Text S2</a> and <a href=\"http://www.plosone.org/article/info:doi/10.1371/journal.pone.0104325#pone.0104325.s003\" target=\"_blank\">Text S3</a>.</p>", "links"=>[], "tags"=>["CO 2 concentration", "phytoplankton blooms", "CO 2 Levels", "CO 2 gas transfer", "carbon uptake mechanisms", "phytoplankton bloom development", "ph", "CO 2 drawdown", "CO 2 conditions", "dic", "CO 2 depletion", "cyanobacterium Microcystis aeruginosa", "model", "Intensify Phytoplankton Blooms"], "article_id"=>1137933, "categories"=>["Biological Sciences", "Ecology"], "users"=>["Jolanda M. H. Verspagen", "Dedmer B. Van de Waal", "Jan F. Finke", "Petra M. Visser", "Ellen van Donk", "Jef Huisman"], "doi"=>"https://dx.doi.org/10.1371/journal.pone.0104325.g006", "stats"=>{"downloads"=>4, "page_views"=>21, "likes"=>0}, "figshare_url"=>"https://figshare.com/articles/_Contour_plots_of_phytoplankton_blooms_predicted_for_different_pCO_2_levels_and_alkalinities_/1137933", "title"=>"Contour plots of phytoplankton blooms predicted for different pCO<sub>2</sub> levels and alkalinities.", "pos_in_sequence"=>0, "defined_type"=>1, "published_date"=>"2014-08-13 04:37:49"}
  • {"files"=>["https://ndownloader.figshare.com/files/1634284"], "description"=>"<p>Contour plots of the level of carbon limitation (left panels) and steady-state phytoplankton population density (right panels, expressed as biovolume, in mm<sup>3 </sup>L<sup>−1</sup>) predicted for different atmospheric pCO<sub>2</sub> levels and phytoplankton traits. The phytoplankton traits are (A, B) the half-saturation constant for CO<sub>2</sub> uptake (<i>H<sub>CO2</sub></i>), (C, D) the half-saturation constant for bicarbonate uptake (<i>H<sub>HCO3</sub></i>), (E, F) the maximum CO<sub>2</sub> uptake rate (<i>u<sub>MAX, CO2</sub></i>), and (G, H) the cellular N:C ratio (<i>c<sub>N</sub></i>). The model considers a low-alkaline lake (<i>ALK<sub>IN</sub></i> = 0.5 mEq L<sup>−1</sup>). Vertical lines represent atmospheric CO<sub>2</sub> levels of 400 ppm (present-day) and 750 ppm (predicted for the year 2150 by the RCP6 scenario of the IPCC). Horizontal dotted lines represent our default parameter values. The contour plots are based on steady-state solutions across a grid of 40×50 = 2,000 simulations.</p>", "links"=>[], "tags"=>["CO 2 concentration", "phytoplankton blooms", "CO 2 Levels", "CO 2 gas transfer", "carbon uptake mechanisms", "phytoplankton bloom development", "ph", "CO 2 drawdown", "CO 2 conditions", "dic", "CO 2 depletion", "cyanobacterium Microcystis aeruginosa", "model", "Intensify Phytoplankton Blooms"], "article_id"=>1137934, "categories"=>["Biological Sciences", "Ecology"], "users"=>["Jolanda M. H. Verspagen", "Dedmer B. Van de Waal", "Jan F. Finke", "Petra M. Visser", "Ellen van Donk", "Jef Huisman"], "doi"=>"https://dx.doi.org/10.1371/journal.pone.0104325.g007", "stats"=>{"downloads"=>1, "page_views"=>15, "likes"=>0}, "figshare_url"=>"https://figshare.com/articles/_Sensitivity_of_the_model_predictions_to_variation_in_phytoplankton_traits_/1137934", "title"=>"Sensitivity of the model predictions to variation in phytoplankton traits.", "pos_in_sequence"=>0, "defined_type"=>1, "published_date"=>"2014-08-13 04:37:49"}
  • {"files"=>["https://ndownloader.figshare.com/files/1634285"], "description"=>"<p>Contour plots of the level of carbon limitation (left panels) and steady-state phytoplankton population density (right panels, expressed as biovolume, in mm<sup>3 </sup>L<sup>−1</sup>) predicted for different atmospheric pCO<sub>2</sub> levels and lake properties. The lake properties are (A, B) lake depth (<i>z<sub>MAX</sub></i>), (C, D) CO<sub>2</sub> gas transfer velocity (<i>v</i>), (E, F) DIC concentration of the influx ([DIC]<sub>IN</sub>), and (G, H) salinity (<i>Sal</i>). The model considers a low-alkaline lake (<i>ALK<sub>IN</sub></i> = 0.5 mEq L<sup>−1</sup>). Vertical lines represent atmospheric CO<sub>2</sub> levels of 400 ppm (present-day) and 750 ppm (predicted for the year 2150 by the RCP6 scenario of the IPCC). Horizontal dotted lines represent our default parameter values. In (E, F), the dotted line indicates equilibrium with the atmospheric CO<sub>2</sub> pressure. The contour plots are based on steady-state solutions across a grid of 40×50 = 2,000 simulations.</p>", "links"=>[], "tags"=>["CO 2 concentration", "phytoplankton blooms", "CO 2 Levels", "CO 2 gas transfer", "carbon uptake mechanisms", "phytoplankton bloom development", "ph", "CO 2 drawdown", "CO 2 conditions", "dic", "CO 2 depletion", "cyanobacterium Microcystis aeruginosa", "model", "Intensify Phytoplankton Blooms"], "article_id"=>1137935, "categories"=>["Biological Sciences", "Ecology"], "users"=>["Jolanda M. H. Verspagen", "Dedmer B. Van de Waal", "Jan F. Finke", "Petra M. Visser", "Ellen van Donk", "Jef Huisman"], "doi"=>"https://dx.doi.org/10.1371/journal.pone.0104325.g008", "stats"=>{"downloads"=>0, "page_views"=>5, "likes"=>0}, "figshare_url"=>"https://figshare.com/articles/_Sensitivity_of_the_model_predictions_to_variation_in_lake_properties_/1137935", "title"=>"Sensitivity of the model predictions to variation in lake properties.", "pos_in_sequence"=>0, "defined_type"=>1, "published_date"=>"2014-08-13 04:37:49"}
  • {"files"=>["https://ndownloader.figshare.com/files/1634286"], "description"=>"<p>The normalized sensitivity coefficient expresses the relative change in model output with respect to a relative change in input parameter. We used several species traits and lake properties as input parameters, and the level of carbon limitation and phytoplankton population density as model output.</p>", "links"=>[], "tags"=>["CO 2 concentration", "phytoplankton blooms", "CO 2 Levels", "CO 2 gas transfer", "carbon uptake mechanisms", "phytoplankton bloom development", "ph", "CO 2 drawdown", "CO 2 conditions", "dic", "CO 2 depletion", "cyanobacterium Microcystis aeruginosa", "model", "Intensify Phytoplankton Blooms"], "article_id"=>1137936, "categories"=>["Biological Sciences", "Ecology"], "users"=>["Jolanda M. H. Verspagen", "Dedmer B. Van de Waal", "Jan F. Finke", "Petra M. Visser", "Ellen van Donk", "Jef Huisman"], "doi"=>"https://dx.doi.org/10.1371/journal.pone.0104325.t001", "stats"=>{"downloads"=>5, "page_views"=>205, "likes"=>0}, "figshare_url"=>"https://figshare.com/articles/_Normalized_sensitivity_coefficients_of_selected_model_parameters_at_atmospheric_CO_2_levels_of_400_ppm_SC_400_and_750_ppm_SC_750_/1137936", "title"=>"Normalized sensitivity coefficients of selected model parameters at atmospheric CO<sub>2</sub> levels of 400 ppm (<i>SC</i><sub>400</sub>) and 750 ppm (<i>SC</i><sub>750</sub>).", "pos_in_sequence"=>0, "defined_type"=>3, "published_date"=>"2014-08-13 04:37:49"}
  • {"files"=>["https://ndownloader.figshare.com/files/1634287", "https://ndownloader.figshare.com/files/1634288", "https://ndownloader.figshare.com/files/1634289", "https://ndownloader.figshare.com/files/1634290"], "description"=>"<div><p>Harmful algal blooms threaten the water quality of many eutrophic and hypertrophic lakes and cause severe ecological and economic damage worldwide. Dense blooms often deplete the dissolved CO<sub>2</sub> concentration and raise pH. Yet, quantitative prediction of the feedbacks between phytoplankton growth, CO<sub>2</sub> drawdown and the inorganic carbon chemistry of aquatic ecosystems has received surprisingly little attention. Here, we develop a mathematical model to predict dynamic changes in dissolved inorganic carbon (DIC), pH and alkalinity during phytoplankton bloom development. We tested the model in chemostat experiments with the freshwater cyanobacterium <i>Microcystis aeruginosa</i> at different CO<sub>2</sub> levels. The experiments showed that dense blooms sequestered large amounts of atmospheric CO<sub>2</sub>, not only by their own biomass production but also by inducing a high pH and alkalinity that enhanced the capacity for DIC storage in the system. We used the model to explore how phytoplankton blooms of eutrophic waters will respond to rising CO<sub>2</sub> levels. The model predicts that (1) dense phytoplankton blooms in low- and moderately alkaline waters can deplete the dissolved CO<sub>2</sub> concentration to limiting levels and raise the pH over a relatively wide range of atmospheric CO<sub>2</sub> conditions, (2) rising atmospheric CO<sub>2</sub> levels will enhance phytoplankton blooms in low- and moderately alkaline waters with high nutrient loads, and (3) above some threshold, rising atmospheric CO<sub>2</sub> will alleviate phytoplankton blooms from carbon limitation, resulting in less intense CO<sub>2</sub> depletion and a lesser increase in pH. Sensitivity analysis indicated that the model predictions were qualitatively robust. Quantitatively, the predictions were sensitive to variation in lake depth, DIC input and CO<sub>2</sub> gas transfer across the air-water interface, but relatively robust to variation in the carbon uptake mechanisms of phytoplankton. In total, these findings warn that rising CO<sub>2</sub> levels may result in a marked intensification of phytoplankton blooms in eutrophic and hypertrophic waters.</p></div>", "links"=>[], "tags"=>["CO 2 concentration", "phytoplankton blooms", "CO 2 Levels", "CO 2 gas transfer", "carbon uptake mechanisms", "phytoplankton bloom development", "ph", "CO 2 drawdown", "CO 2 conditions", "dic", "CO 2 depletion", "cyanobacterium Microcystis aeruginosa", "model", "Intensify Phytoplankton Blooms"], "article_id"=>1137937, "categories"=>["Biological Sciences", "Ecology"], "users"=>["Jolanda M. H. Verspagen", "Dedmer B. Van de Waal", "Jan F. Finke", "Petra M. Visser", "Ellen van Donk", "Jef Huisman"], "doi"=>["https://dx.doi.org/10.1371/journal.pone.0104325.s001", "https://dx.doi.org/10.1371/journal.pone.0104325.s002", "https://dx.doi.org/10.1371/journal.pone.0104325.s003", "https://dx.doi.org/10.1371/journal.pone.0104325.s004"], "stats"=>{"downloads"=>10, "page_views"=>13, "likes"=>0}, "figshare_url"=>"https://figshare.com/articles/Rising_CO_2_Levels_Will_Intensify_Phytoplankton_Blooms_in_Eutrophic_and_Hypertrophic_Lakes/1137937", "title"=>"Rising CO<sub>2</sub> Levels Will Intensify Phytoplankton Blooms in Eutrophic and Hypertrophic Lakes", "pos_in_sequence"=>0, "defined_type"=>4, "published_date"=>"2014-08-13 04:37:49"}

PMC Usage Stats | Further Information

  • {"unique-ip"=>"18", "full-text"=>"18", "pdf"=>"3", "abstract"=>"0", "scanned-summary"=>"0", "scanned-page-browse"=>"0", "figure"=>"5", "supp-data"=>"0", "cited-by"=>"0", "year"=>"2015", "month"=>"4"}
  • {"unique-ip"=>"26", "full-text"=>"25", "pdf"=>"5", "abstract"=>"0", "scanned-summary"=>"0", "scanned-page-browse"=>"0", "figure"=>"0", "supp-data"=>"5", "cited-by"=>"0", "year"=>"2015", "month"=>"5"}
  • {"unique-ip"=>"8", "full-text"=>"8", "pdf"=>"2", "abstract"=>"0", "scanned-summary"=>"0", "scanned-page-browse"=>"0", "figure"=>"0", "supp-data"=>"0", "cited-by"=>"0", "year"=>"2015", "month"=>"6"}
  • {"unique-ip"=>"19", "full-text"=>"19", "pdf"=>"10", "abstract"=>"0", "scanned-summary"=>"0", "scanned-page-browse"=>"0", "figure"=>"0", "supp-data"=>"0", "cited-by"=>"0", "year"=>"2015", "month"=>"7"}
  • {"unique-ip"=>"28", "full-text"=>"31", "pdf"=>"11", "abstract"=>"0", "scanned-summary"=>"0", "scanned-page-browse"=>"0", "figure"=>"1", "supp-data"=>"0", "cited-by"=>"0", "year"=>"2015", "month"=>"3"}
  • {"unique-ip"=>"24", "full-text"=>"28", "pdf"=>"5", "abstract"=>"0", "scanned-summary"=>"0", "scanned-page-browse"=>"0", "figure"=>"0", "supp-data"=>"1", "cited-by"=>"0", "year"=>"2015", "month"=>"2"}
  • {"unique-ip"=>"15", "full-text"=>"30", "pdf"=>"11", "abstract"=>"0", "scanned-summary"=>"0", "scanned-page-browse"=>"0", "figure"=>"0", "supp-data"=>"0", "cited-by"=>"0", "year"=>"2015", "month"=>"8"}
  • {"unique-ip"=>"39", "full-text"=>"48", "pdf"=>"5", "abstract"=>"0", "scanned-summary"=>"0", "scanned-page-browse"=>"0", "figure"=>"9", "supp-data"=>"0", "cited-by"=>"0", "year"=>"2015", "month"=>"9"}
  • {"unique-ip"=>"38", "full-text"=>"48", "pdf"=>"8", "abstract"=>"0", "scanned-summary"=>"0", "scanned-page-browse"=>"0", "figure"=>"2", "supp-data"=>"0", "cited-by"=>"2", "year"=>"2015", "month"=>"10"}
  • {"unique-ip"=>"10", "full-text"=>"11", "pdf"=>"4", "abstract"=>"0", "scanned-summary"=>"0", "scanned-page-browse"=>"0", "figure"=>"0", "supp-data"=>"0", "cited-by"=>"0", "year"=>"2014", "month"=>"8"}
  • {"unique-ip"=>"10", "full-text"=>"9", "pdf"=>"5", "abstract"=>"1", "scanned-summary"=>"0", "scanned-page-browse"=>"0", "figure"=>"0", "supp-data"=>"0", "cited-by"=>"0", "year"=>"2014", "month"=>"9"}
  • {"unique-ip"=>"17", "full-text"=>"18", "pdf"=>"9", "abstract"=>"0", "scanned-summary"=>"0", "scanned-page-browse"=>"0", "figure"=>"0", "supp-data"=>"1", "cited-by"=>"0", "year"=>"2014", "month"=>"10"}
  • {"unique-ip"=>"46", "full-text"=>"52", "pdf"=>"9", "abstract"=>"0", "scanned-summary"=>"0", "scanned-page-browse"=>"0", "figure"=>"1", "supp-data"=>"0", "cited-by"=>"0", "year"=>"2016", "month"=>"2"}
  • {"unique-ip"=>"11", "full-text"=>"13", "pdf"=>"5", "abstract"=>"0", "scanned-summary"=>"0", "scanned-page-browse"=>"0", "figure"=>"0", "supp-data"=>"0", "cited-by"=>"0", "year"=>"2014", "month"=>"11"}
  • {"unique-ip"=>"9", "full-text"=>"9", "pdf"=>"3", "abstract"=>"0", "scanned-summary"=>"0", "scanned-page-browse"=>"0", "figure"=>"0", "supp-data"=>"0", "cited-by"=>"0", "year"=>"2014", "month"=>"12"}
  • {"unique-ip"=>"17", "full-text"=>"21", "pdf"=>"7", "abstract"=>"0", "scanned-summary"=>"0", "scanned-page-browse"=>"0", "figure"=>"6", "supp-data"=>"4", "cited-by"=>"0", "year"=>"2015", "month"=>"1"}
  • {"unique-ip"=>"50", "full-text"=>"41", "pdf"=>"20", "abstract"=>"0", "scanned-summary"=>"0", "scanned-page-browse"=>"0", "figure"=>"2", "supp-data"=>"2", "cited-by"=>"1", "year"=>"2015", "month"=>"11"}
  • {"unique-ip"=>"43", "full-text"=>"39", "pdf"=>"13", "abstract"=>"0", "scanned-summary"=>"0", "scanned-page-browse"=>"0", "figure"=>"0", "supp-data"=>"2", "cited-by"=>"0", "year"=>"2015", "month"=>"12"}
  • {"unique-ip"=>"27", "full-text"=>"23", "pdf"=>"9", "abstract"=>"0", "scanned-summary"=>"0", "scanned-page-browse"=>"0", "figure"=>"4", "supp-data"=>"0", "cited-by"=>"0", "year"=>"2016", "month"=>"1"}
  • {"unique-ip"=>"44", "full-text"=>"49", "pdf"=>"7", "abstract"=>"0", "scanned-summary"=>"0", "scanned-page-browse"=>"0", "figure"=>"2", "supp-data"=>"0", "cited-by"=>"0", "year"=>"2016", "month"=>"3"}
  • {"unique-ip"=>"37", "full-text"=>"37", "pdf"=>"4", "abstract"=>"0", "scanned-summary"=>"0", "scanned-page-browse"=>"0", "figure"=>"2", "supp-data"=>"0", "cited-by"=>"0", "year"=>"2016", "month"=>"4"}
  • {"unique-ip"=>"37", "full-text"=>"48", "pdf"=>"5", "abstract"=>"0", "scanned-summary"=>"0", "scanned-page-browse"=>"0", "figure"=>"0", "supp-data"=>"0", "cited-by"=>"1", "year"=>"2016", "month"=>"5"}
  • {"unique-ip"=>"35", "full-text"=>"24", "pdf"=>"5", "abstract"=>"0", "scanned-summary"=>"0", "scanned-page-browse"=>"0", "figure"=>"8", "supp-data"=>"2", "cited-by"=>"1", "year"=>"2016", "month"=>"6"}
  • {"unique-ip"=>"18", "full-text"=>"14", "pdf"=>"5", "abstract"=>"0", "scanned-summary"=>"0", "scanned-page-browse"=>"0", "figure"=>"8", "supp-data"=>"0", "cited-by"=>"0", "year"=>"2016", "month"=>"7"}
  • {"unique-ip"=>"28", "full-text"=>"30", "pdf"=>"2", "abstract"=>"0", "scanned-summary"=>"0", "scanned-page-browse"=>"0", "figure"=>"3", "supp-data"=>"1", "cited-by"=>"0", "year"=>"2016", "month"=>"8"}
  • {"unique-ip"=>"41", "full-text"=>"44", "pdf"=>"1", "abstract"=>"0", "scanned-summary"=>"0", "scanned-page-browse"=>"0", "figure"=>"5", "supp-data"=>"1", "cited-by"=>"0", "year"=>"2016", "month"=>"9"}
  • {"unique-ip"=>"54", "full-text"=>"71", "pdf"=>"10", "abstract"=>"0", "scanned-summary"=>"0", "scanned-page-browse"=>"0", "figure"=>"18", "supp-data"=>"2", "cited-by"=>"0", "year"=>"2016", "month"=>"10"}
  • {"unique-ip"=>"42", "full-text"=>"48", "pdf"=>"4", "abstract"=>"0", "scanned-summary"=>"0", "scanned-page-browse"=>"0", "figure"=>"10", "supp-data"=>"1", "cited-by"=>"0", "year"=>"2016", "month"=>"11"}
  • {"unique-ip"=>"33", "full-text"=>"32", "pdf"=>"5", "abstract"=>"0", "scanned-summary"=>"0", "scanned-page-browse"=>"0", "figure"=>"0", "supp-data"=>"0", "cited-by"=>"0", "year"=>"2016", "month"=>"12"}
  • {"unique-ip"=>"36", "full-text"=>"37", "pdf"=>"8", "abstract"=>"0", "scanned-summary"=>"0", "scanned-page-browse"=>"0", "figure"=>"2", "supp-data"=>"0", "cited-by"=>"0", "year"=>"2017", "month"=>"1"}
  • {"unique-ip"=>"42", "full-text"=>"47", "pdf"=>"5", "abstract"=>"0", "scanned-summary"=>"0", "scanned-page-browse"=>"0", "figure"=>"0", "supp-data"=>"0", "cited-by"=>"0", "year"=>"2017", "month"=>"2"}
  • {"unique-ip"=>"63", "full-text"=>"62", "pdf"=>"10", "abstract"=>"0", "scanned-summary"=>"0", "scanned-page-browse"=>"0", "figure"=>"18", "supp-data"=>"2", "cited-by"=>"0", "year"=>"2017", "month"=>"3"}
  • {"unique-ip"=>"58", "full-text"=>"63", "pdf"=>"4", "abstract"=>"0", "scanned-summary"=>"0", "scanned-page-browse"=>"0", "figure"=>"11", "supp-data"=>"1", "cited-by"=>"0", "year"=>"2017", "month"=>"4"}
  • {"unique-ip"=>"50", "full-text"=>"55", "pdf"=>"5", "abstract"=>"0", "scanned-summary"=>"0", "scanned-page-browse"=>"0", "figure"=>"0", "supp-data"=>"0", "cited-by"=>"0", "year"=>"2017", "month"=>"5"}
  • {"unique-ip"=>"20", "full-text"=>"24", "pdf"=>"3", "abstract"=>"0", "scanned-summary"=>"0", "scanned-page-browse"=>"0", "figure"=>"9", "supp-data"=>"0", "cited-by"=>"0", "year"=>"2017", "month"=>"6"}
  • {"unique-ip"=>"23", "full-text"=>"25", "pdf"=>"2", "abstract"=>"0", "scanned-summary"=>"0", "scanned-page-browse"=>"0", "figure"=>"9", "supp-data"=>"0", "cited-by"=>"0", "year"=>"2017", "month"=>"7"}
  • {"unique-ip"=>"32", "full-text"=>"35", "pdf"=>"5", "abstract"=>"0", "scanned-summary"=>"0", "scanned-page-browse"=>"0", "figure"=>"7", "supp-data"=>"0", "cited-by"=>"0", "year"=>"2017", "month"=>"8"}
  • {"unique-ip"=>"68", "full-text"=>"78", "pdf"=>"6", "abstract"=>"0", "scanned-summary"=>"0", "scanned-page-browse"=>"0", "figure"=>"2", "supp-data"=>"0", "cited-by"=>"0", "year"=>"2017", "month"=>"9"}
  • {"unique-ip"=>"48", "full-text"=>"52", "pdf"=>"4", "abstract"=>"0", "scanned-summary"=>"0", "scanned-page-browse"=>"0", "figure"=>"1", "supp-data"=>"0", "cited-by"=>"0", "year"=>"2017", "month"=>"10"}
  • {"unique-ip"=>"46", "full-text"=>"56", "pdf"=>"4", "abstract"=>"0", "scanned-summary"=>"0", "scanned-page-browse"=>"0", "figure"=>"3", "supp-data"=>"0", "cited-by"=>"0", "year"=>"2017", "month"=>"11"}
  • {"unique-ip"=>"58", "full-text"=>"67", "pdf"=>"6", "abstract"=>"0", "scanned-summary"=>"0", "scanned-page-browse"=>"0", "figure"=>"10", "supp-data"=>"0", "cited-by"=>"0", "year"=>"2017", "month"=>"12"}
  • {"unique-ip"=>"36", "full-text"=>"38", "pdf"=>"3", "abstract"=>"0", "scanned-summary"=>"0", "scanned-page-browse"=>"0", "figure"=>"1", "supp-data"=>"0", "cited-by"=>"0", "year"=>"2018", "month"=>"1"}
  • {"unique-ip"=>"2", "full-text"=>"2", "pdf"=>"0", "abstract"=>"0", "scanned-summary"=>"0", "scanned-page-browse"=>"0", "figure"=>"0", "supp-data"=>"0", "cited-by"=>"0", "year"=>"2018", "month"=>"2"}
  • {"unique-ip"=>"66", "full-text"=>"72", "pdf"=>"6", "abstract"=>"0", "scanned-summary"=>"0", "scanned-page-browse"=>"0", "figure"=>"0", "supp-data"=>"0", "cited-by"=>"2", "year"=>"2018", "month"=>"3"}
  • {"unique-ip"=>"24", "full-text"=>"26", "pdf"=>"8", "scanned-summary"=>"0", "scanned-page-browse"=>"0", "figure"=>"0", "supp-data"=>"0", "cited-by"=>"0", "year"=>"2019", "month"=>"1"}
  • {"unique-ip"=>"29", "full-text"=>"32", "pdf"=>"4", "scanned-summary"=>"0", "scanned-page-browse"=>"0", "figure"=>"0", "supp-data"=>"0", "cited-by"=>"0", "year"=>"2018", "month"=>"12"}
  • {"unique-ip"=>"42", "full-text"=>"46", "pdf"=>"11", "scanned-summary"=>"0", "scanned-page-browse"=>"0", "figure"=>"0", "supp-data"=>"5", "cited-by"=>"0", "year"=>"2018", "month"=>"11"}
  • {"unique-ip"=>"71", "full-text"=>"83", "pdf"=>"8", "scanned-summary"=>"0", "scanned-page-browse"=>"0", "figure"=>"0", "supp-data"=>"1", "cited-by"=>"0", "year"=>"2018", "month"=>"4"}
  • {"unique-ip"=>"55", "full-text"=>"57", "pdf"=>"4", "scanned-summary"=>"0", "scanned-page-browse"=>"0", "figure"=>"0", "supp-data"=>"0", "cited-by"=>"0", "year"=>"2018", "month"=>"5"}
  • {"unique-ip"=>"35", "full-text"=>"44", "pdf"=>"4", "scanned-summary"=>"0", "scanned-page-browse"=>"0", "figure"=>"1", "supp-data"=>"0", "cited-by"=>"0", "year"=>"2018", "month"=>"6"}
  • {"unique-ip"=>"29", "full-text"=>"27", "pdf"=>"4", "scanned-summary"=>"0", "scanned-page-browse"=>"0", "figure"=>"1", "supp-data"=>"1", "cited-by"=>"0", "year"=>"2018", "month"=>"7"}
  • {"unique-ip"=>"19", "full-text"=>"18", "pdf"=>"1", "scanned-summary"=>"0", "scanned-page-browse"=>"0", "figure"=>"1", "supp-data"=>"0", "cited-by"=>"0", "year"=>"2018", "month"=>"8"}
  • {"unique-ip"=>"32", "full-text"=>"43", "pdf"=>"9", "scanned-summary"=>"0", "scanned-page-browse"=>"0", "figure"=>"0", "supp-data"=>"0", "cited-by"=>"0", "year"=>"2018", "month"=>"10"}
  • {"unique-ip"=>"23", "full-text"=>"23", "pdf"=>"2", "scanned-summary"=>"0", "scanned-page-browse"=>"0", "figure"=>"1", "supp-data"=>"0", "cited-by"=>"0", "year"=>"2018", "month"=>"9"}
  • {"unique-ip"=>"89", "full-text"=>"116", "pdf"=>"6", "scanned-summary"=>"0", "scanned-page-browse"=>"0", "figure"=>"17", "supp-data"=>"5", "cited-by"=>"1", "year"=>"2019", "month"=>"2"}
  • {"unique-ip"=>"31", "full-text"=>"33", "pdf"=>"5", "scanned-summary"=>"0", "scanned-page-browse"=>"0", "figure"=>"1", "supp-data"=>"0", "cited-by"=>"0", "year"=>"2019", "month"=>"3"}
  • {"unique-ip"=>"41", "full-text"=>"43", "pdf"=>"2", "scanned-summary"=>"0", "scanned-page-browse"=>"0", "figure"=>"7", "supp-data"=>"4", "cited-by"=>"0", "year"=>"2019", "month"=>"4"}
  • {"unique-ip"=>"57", "full-text"=>"56", "pdf"=>"3", "scanned-summary"=>"0", "scanned-page-browse"=>"0", "figure"=>"18", "supp-data"=>"8", "cited-by"=>"1", "year"=>"2019", "month"=>"5"}
  • {"unique-ip"=>"18", "full-text"=>"17", "pdf"=>"3", "scanned-summary"=>"0", "scanned-page-browse"=>"0", "figure"=>"0", "supp-data"=>"0", "cited-by"=>"0", "year"=>"2019", "month"=>"8"}
  • {"unique-ip"=>"26", "full-text"=>"26", "pdf"=>"2", "scanned-summary"=>"0", "scanned-page-browse"=>"0", "figure"=>"0", "supp-data"=>"0", "cited-by"=>"0", "year"=>"2019", "month"=>"9"}
  • {"unique-ip"=>"38", "full-text"=>"46", "pdf"=>"3", "scanned-summary"=>"0", "scanned-page-browse"=>"0", "figure"=>"0", "supp-data"=>"0", "cited-by"=>"0", "year"=>"2019", "month"=>"10"}

Relative Metric

{"start_date"=>"2014-01-01T00:00:00Z", "end_date"=>"2014-12-31T00:00:00Z", "subject_areas"=>[{"subject_area"=>"/Biology and life sciences", "average_usage"=>[291]}, {"subject_area"=>"/Biology and life sciences/Organisms", "average_usage"=>[310]}, {"subject_area"=>"/Ecology and environmental sciences", "average_usage"=>[320]}, {"subject_area"=>"/Ecology and environmental sciences/Aquatic environments", "average_usage"=>[274]}, {"subject_area"=>"/Engineering and technology", "average_usage"=>[282]}, {"subject_area"=>"/Physical sciences", "average_usage"=>[271]}]}
Loading … Spinner
There are currently no alerts